Семинар 3

Параметрическое задание кривых и полярная система координат

Система функций
$$\begin{cases} x = x(t), \\ y = y(t) \end{cases}$$
 задает на плоскости

кривую.

Это можно понять, например, с помощью механической модели: x и y - координаты точки, параметр t - время.

Посчитав для каждого t из заданного промежутка $[t_1,t_2]$ координаты точки x(t), y(t) и нанеся их на чертеж, мы получим кривую — траекторию движения точки на плоскости.

Пример 7. Определить вид кривой, заданной

параметрически $\begin{cases} x = R\cos t, \\ y = R\sin t, \end{cases} t \in [0, 2\pi].$

Решение. Возведем каждое уравнение в квадрат и сложим. Получим $x^2 + y^2 = R^2 \cos^2 t + R^2 \sin^2 t$. Используя основное тригонометрическое тождество $\cos^2 t + \sin^2 t = 1$, имеем $x^2 + y^2 = R^2$.

Ответ. Окружность радиуса R с центром в начале координат.

Пример 8. Определить вид кривой, заданной

параметрически
$$\begin{cases} x = a \cos t, \\ y = b \sin t, \end{cases} t \in [0, 2\pi].$$

Решение. Преобразуем

$$\begin{cases} (x/a) = \cos t, \\ (y/b) = \sin t. \end{cases}$$

Возведем эти уравнения в квадрат и сложим. Получим каноническое уравнение эллипса

$$(x/a)^2 + (y/b)^2 = \cos^2 t + \sin^2 t = 1$$

Ответ. Эллипс с полуосями a и b, центром в начале координат.

Пример 9.
$$\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t), \end{cases} t \in (-\infty, \infty)$$
 - циклоида.

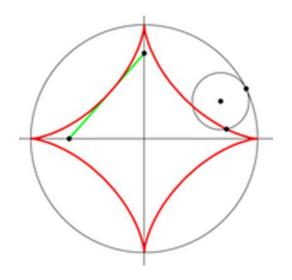
При $t \in [0,2\pi]$ получаем главную часть — первую арку циклоиды.

На чертеже изображены две арки циклоиды при a=1.

Механический смысл циклоиды: траектория движения фиксированной точки на ободе колеса радиуса а при его качении по оси Ох без проскальзывания.

Пример 10.
$$\begin{cases} x = a\cos^3 t, \\ y = b\sin^3 t, \end{cases} t \in [0, 2\pi] - \text{астроида.}$$

На чертеже изображена астроида в случае a=b.



Заметим, что в примерах 7) и 8) мы получили уравнение кривой в декартовой системе координат путем исключения параметра t.

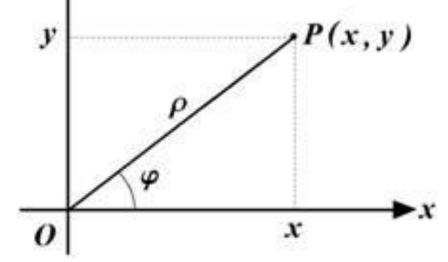
В случае циклоиды и астроиды такой прием не проходит – эти кривые строят по точкам.

Кроме декартовой системы координат используют полярную систему координат.

Назовем начало системы координат, точку O, *полюсом*, луч Ox декартовой системы координат — nonsphoй ocью.

Полярными координатами точки P(x, y) называют

 $\rho = |OP|$ - расстояние от точки до полюса (*полярный радиус*), $\phi = \angle (\overrightarrow{OP}, Ox)$ - угол между радиус-вектором точки и полярной осью (*полярный угол*).



Связь между полярной и декартовой системами координат задается формулами

$$\begin{cases} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \end{cases} \quad \rho^2 = x^2 + y^2, \quad \text{tg } \varphi = \frac{y}{x}.$$

Кривую в полярной системе координат можно задать уравнением: $\rho = \rho(\varphi)$.

Примеры

1) Прямые:

- а) $x=a \Leftrightarrow \rho=a/\cos\varphi$ ($a\neq 0$) вертикальная прямая;
- б) $y=b \Leftrightarrow \rho=b/\sin\varphi$ ($b\neq 0$) горизонтальная прямая;

B)
$$ax + by + c = 0 \Leftrightarrow \rho = -\frac{c}{a\cos\varphi + b\sin\varphi}$$

$$(c \neq 0, a^2 + b^2 \neq 0).$$

произвольная прямая, не проходящая через начало координат.

2) Сдвинутые окружности:

a)
$$x^2 + y^2 = 2ax \Leftrightarrow \rho = 2a\cos\varphi$$

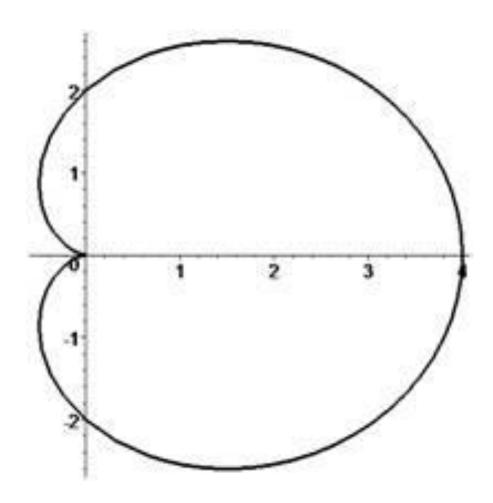
- окружность с центром в точке C(a,0), радиуса R=|a|;

б)
$$x^2 + y^2 = 2by \iff \rho = 2b\sin\varphi$$

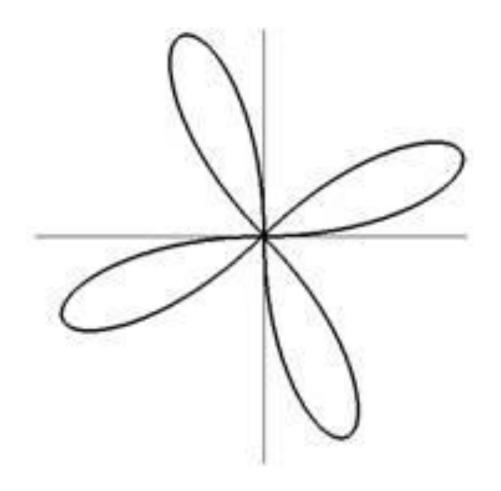
- окружность с центром в точке D(0,b), радиуса R=|b|.

3) *Kapduouda*: $\rho = a(1 + \cos \varphi)$.

На рисунке изображена кардиоида при a=2.

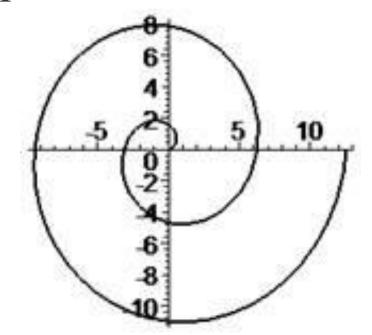


4) *n-лепестковая роза*: ρ =acos $n\varphi$ или ρ =asin $n\varphi$. На рисунке изображена роза ρ =asin 4φ .



- **5)** *Спирали*: $\rho = f(\varphi)$, где $f(\varphi)$ монотонная функция. Выделяют:
- а) $\rho = a \varphi$ -*спираль Архимеда*, характерная черта спирали Архимеда постоянное расстояние между соседними витками, равное $2\pi a$.

На чертеже изображено два витка спирали $\rho = \varphi$.

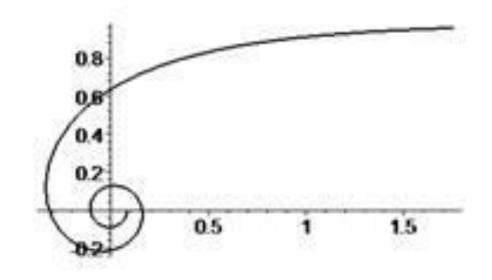


б)
$$\rho = \frac{a}{\varphi}$$
 - гиперболическая спираль, бесконечное

число витков накручивается к началу координат при $\phi \rightarrow \infty$.

На чертеже изображено два витка спирали

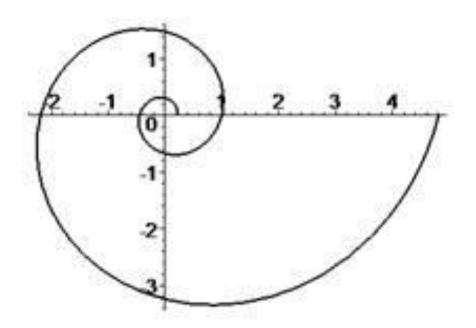
$$\rho = \frac{1}{\varphi}, \quad \varphi \in (0, 4\pi].$$



в) $\rho = ae^{k\phi}$ - *погарифмическая спираль*, бесконечное число витков накручивается и к началу координат и к бесконечности.

На чертеже изображено два витка спирали

$$\rho = e^{\varphi/4}, \quad \varphi \in [-2\pi, 2\pi].$$



6) Кривые второго порядка:

$$\rho = \frac{p}{1 \pm \varepsilon \cos \varphi}$$

здесь p>0 - так называемый фокальный параметр,

 ε - эксцентриситет кривой.

Поэтому,

при $0 \le \varepsilon < 1$ - получаем *уравнение эллипса* (окружность при $\varepsilon = 0$),

при $\varepsilon = 1$ - уравнение *параболы*,

при $\varepsilon > 1$ - уравнение *гиперболы*.

При этом надо помнить, что полюс расположен не в центре кривой, а в одном из ее фокусов.

Параметрическое задание кривой

Пример 11. Изобразить кривую

$$\begin{cases} x = \cos^2 t, \\ y = \sin^2 t. \end{cases}$$

Решение. Исключим параметр t.

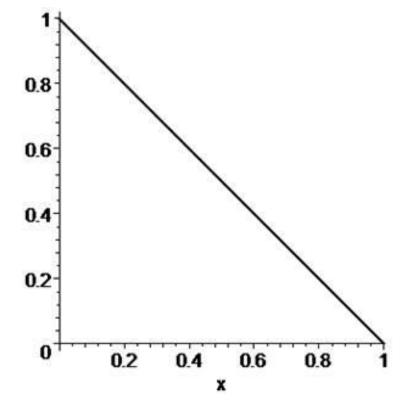
После сложения уравнений получим x+y=1.

Было бы грубой ошибкой изображать всю прямую y=1-x.

Из первого уравнения видим, что $x \ge 0$, из второго $y \ge 0$.

Поэтому правильный

Ответ: участок прямой y=1-x, лежащий в первой четверти.



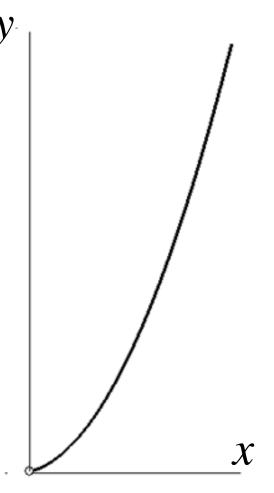
Пример 12. Изобразить кривую

$$\begin{cases} x = e^t, \\ y = e^{2t}. \end{cases}$$

Решение. Исключим параметр $y = e^{2t} = (e^t)^2 = x^2$. Получили параболу,

но изображать надо только первую четверть, поскольку $x = e^t > 0$.

Ответ. График кривой на рисунке.



Полярная система координат

Пример 13. Какая кривая записана уравнением

$$x^2 + y^2 = -4x?$$

Запишите ее полярное уравнение.

Решение. Перенесем правую часть налево и дополним до полного квадрата

$$x^{2} + y^{2} = -4x$$
, $x^{2} + 4x + y^{2} = 0$,
 $(x^{2} + 4x + 4) + y^{2} = 4$, $(x + 2)^{2} + y^{2} = 4$.

Для получения полярного уравнения заменим в первоначальном уравнении $x^2 + y^2 = \rho^2$ и $x = \rho \cos \varphi$. После сокращения на ρ получим: $\rho = -4\cos \varphi$.

Ответ. Уравнение окружности радиуса 2, с центром в точке C(-2,0). Уравнение кривой в полярной системе координат ρ = $-4\cos\varphi$.

Пример 14. Какая кривая записана уравнением

$$\rho = \frac{1}{1 - \cos \varphi}?$$

Запишите ее уравнение в декартовой системе координат.

Решение. Домножим уравнение на $1-\cos \varphi$.

Получим ρ - ρ cos φ =1, ρ =1+ ρ cos φ ,

$$\sqrt{x^2 + y^2} = 1 + x, \quad x^2 + y^2 = (1 + x)^2,$$
$$x^2 + y^2 = 1 + 2x + x^2, \quad y^2 = 2x + 1.$$

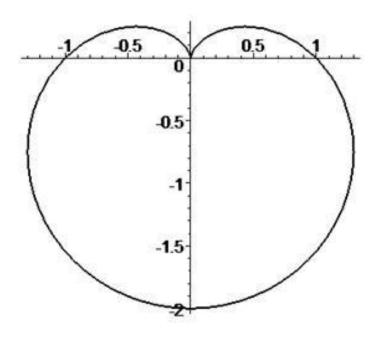
Ответ. Уравнение параболы $y^2 = 2x + 1$ ветвями направо с вершиной в точке (-1/2;0).

Пример 15.

Какая кривая записана уравнением $\rho = 1 - \sin \varphi$? Изобразите ее на чертеже.

Решение. Справедлива формула приведения $\cos(\varphi - \pi/2) = \sin\varphi$. Поэтому $\rho = 1 - \sin\varphi = 1 - \cos(\varphi - \pi/2)$, то есть мы получили уравнение кардиоиды, параметр φ сдвинут на $\pi/2$, что соответствует повороту на угол 90° кардиоиды $\rho = 1 - \cos\varphi$.

Ответ. Кардиоида



Работа в аудитории

Решаем задачи из Бермана № 155(1), 156(1), 163, 175(4,6)

Домашнее задание

- 1. Решить задачи 4, 5 типового расчета 1
- 2. Решить задачи из Бермана занятие 3

Ответы на задания типового расчета и задания из Бермана студенты, работающие on-line, присылают в Dispace, Дисциплины, Задания. Студенты очники — сдают очно.