ЛЕКЦИЯ 17

Метод неопределенных коэффициентов

Приведем простейшие дроби к общему знаменателю и приравняем коэффициенты при одинаковых степенях x в числителе. Получим систему m линейных алгебраических уравнений для определения коэффициентов разложения.

Примеры решения задач. Представить правильную дробь в виде суммы простейших дробей

Пример 125.
$$\frac{x^2}{x^3-8} = \frac{x^2}{(x-2)(x^2+2x+4)} = \frac{A}{x-2} + \frac{Bx+C}{x^2+2x+4} =$$

$$=\frac{A(x^2+2x+4)+(Bx+C)(x-2)}{(x-2)(x^2+2x+4)}$$

$$\begin{vmatrix} x^{2} \\ x^{1} \\ x^{0} \end{vmatrix} = A + B$$

$$\begin{pmatrix} 0 = 2A + C - 2B \\ 0 = 4A - 2C \end{pmatrix} A = \frac{1}{3} \quad B = \frac{2}{3} \quad C = \frac{2}{3}.$$

OTBET.
$$\frac{x^2}{x^3-8} = \frac{1}{3(x-2)} + \frac{2(x+1)}{3(x^2+2x+4)}$$
.

Пример 126.
$$\frac{7x^2 + 26x - 9}{x^4 + 4x^3 + 4x^2 - 9}.$$

$$\text{Решение. } \frac{7x^2 + 26x - 9}{x^4 + 4x^3 + 4x^2 - 9} =$$

$$= \begin{vmatrix} x^4 + 4x^3 + 4x^2 - 9 = (x^2 + 2x)^2 - 3^2 = \\ = (x^2 + 2x + 3)(x^2 + 2x - 3) = (x - 1)(x + 3)(x^2 + 2x + 3) \end{vmatrix} =$$

$$= \frac{A}{x-1} + \frac{B}{x+3} + \frac{Cx+D}{x^2+2x+3} =$$

$$=\frac{A(x+3)(x^2+2x+3)+B(x-1)(x^2+2x+3)+(Cx+D)(x-1)(x+3)}{(x-1)(x+3)(x^2+2x+3)}.$$

$$7x^{2} + 26x - 9 = (A + B + C)x^{3} + (5A + B + 2C + D)x^{2} + (9A + B - 3C + 2D)x + 9A - 3B - 3D.$$

$$\begin{vmatrix}
x^{3} \\ x^{2} \\ x^{2} \\ 7 = 5A + B + 2C + D \\ 7 = 5A + B + 2C + D \\ 26 = 9A + B - 3C + 2D \\ x^{0} \begin{vmatrix} 26 = 9A + B - 3C + 2D \\ -9 = 9A - 3B - 3D \end{vmatrix} \Rightarrow A = 1; B = 1; C = -2; D = 5.$$

OTBET.
$$\frac{7x^2 + 26x - 9}{x^4 + 4x^3 + 4x^2 - 9} = \frac{1}{x - 1} + \frac{1}{x + 3} + \frac{5 - 2x}{x^2 + 2x + 3}.$$

Метод частных значений

Задаем x определенное значение и приравниваем левую и правую часть числителя. Особенно удобно это делать, когда корни действительные.

Пример 127. Представить правильную дробь
$$\frac{4x^2 + 16x - 8}{x^3 - 4x}$$

в виде суммы простейших дробей.

Решение.
$$\frac{4x^2 + 16x - 8}{x^3 - 4x} = \frac{4x^2 + 16x - 8}{x(x - 2)(x + 2)} = \frac{A}{x} + \frac{B}{x + 2} + \frac{C}{x - 2} =$$

$$= \begin{vmatrix} 4x^2 + 16x - 8 = A(x+2)(x-2) + Bx(x-2) + Cx(x+2) \\ x = 0 \\ x = -2 \\ -24 = 8B \\ x = 2 \end{vmatrix} \Rightarrow B = -3 \\ C = 5$$
$$= \begin{vmatrix} 4x^2 + 16x - 8 = A(x+2)(x-2) + Bx(x-2) + Cx(x+2) \\ A = 2 \\ B = -3 \\ C = 5 \end{vmatrix}$$

Часто удобно применять комбинацию методов. Сначала использовать метод частных значений. А потом, сократив систему линейных алгебраических уравнений, применить метод неопределенных коэффициентов.

Правило интегрирования рациональных дробей

1) Для неправильной дроби выделить целую часть

$$\frac{P_k(x)}{Q_m(x)} = R(x) + \frac{P_n(x)}{Q_m(x)}, \quad n < m.$$

- 2) Представить $\frac{P_n(x)}{Q_m(x)}$ в виде суммы простейших дробей.
- 3) Интеграл от рациональной дроби представить в виде интеграла от многочлена и от простейших дробей. Вычислить его.

Примеры решения задач. Найти неопределенные интегралы

Пример 128.
$$I = \int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx$$
.

Решение. Подынтегральная функция — неправильная дробь. Выделяем многочлен. Затем раскладываем правильную дробь на сумму простейших дробей и интегрируем.

$$I = \int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx = \int \left(x^2 + x + 4 + \frac{4x^2 + 16x - 8}{x^3 - 4x} \right) dx =$$

$$= \frac{x^3}{3} + \frac{x^2}{2} + 4x + \int \frac{4x^2 + 16x - 8}{x(x - 2)(x + 2)} dx = \frac{x^3}{3} + \frac{x^2}{2} + 4x +$$

$$+ \int \left(\frac{A}{x} + \frac{B}{x + 2} + \frac{C}{x - 2} \right) dx = \begin{vmatrix} A = 2 & B = -3 \\ C = 5 \end{vmatrix} =$$

$$= \frac{x^3}{3} + \frac{x^2}{2} + 4x + 2\int \frac{dx}{x} - 3\int \frac{dx}{x+2} + 5\int \frac{dx}{x-2} =$$

$$= \frac{x^3}{3} + \frac{x^2}{2} + 4x + 2\ln|x| - 3\ln|x+2| + 5\ln|x-2| + \ln C =$$

$$= \frac{x^3}{3} + \frac{x^2}{2} + 4x + \ln\left|\frac{Cx^2(x-2)^5}{(x+2)^3}\right|.$$

ОТВЕТ.
$$I = \int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx = \frac{x^3}{3} + \frac{x^2}{2} + 4x + \ln \left| \frac{Cx^2(x - 2)^5}{(x + 2)^3} \right|.$$

Пример 129.
$$I = \int \frac{x^2 dx}{x^3 - 8}$$
.

Решение.
$$\int \frac{x^2 dx}{x^3 - 8} = \int \frac{x^2 dx}{(x - 2)(x^2 + 2x + 4)} = \int \left(\frac{A}{x - 2} + \frac{Bx + C}{x^2 + 2x + 4} \right) dx =$$

$$= \begin{vmatrix} A = \frac{1}{3} \\ B = C = \frac{2}{3} \end{vmatrix} = \frac{1}{3} \int \frac{dx}{x - 2} + \frac{1}{3} \int \frac{2x + 2}{x^2 + 2x + 4} dx =$$

$$= \frac{1}{3}\ln|x-2| + \frac{1}{3}\int \frac{d(x^2+2x+4)}{x^2+2x+4} = \frac{1}{3}\ln|x-2| + \frac{1}{3}\ln(x^2+2x+4) + \ln C =$$

$$= \ln \left| \left(C(x-2)(x^2+2x+4) \right)^{\frac{1}{3}} \right| = \ln \left| \sqrt[3]{C(x^3-8)} \right|.$$

Замечание. Пример 129 можно решить проще методом подведения функции под знак дифференциала

$$\int \frac{x^2 dx}{x^3 - 8} = \frac{1}{3} \int \frac{d(x^3 - 8)}{x^3 - 8} = \frac{1}{3} \ln \left| x^3 - 8 \right| + \frac{1}{3} \ln C = \ln \left| \sqrt[3]{C(x^3 - 8)} \right|.$$

В интегральном исчислении нет общих правил. Интегрирование может быть выполнено не единственным образом. Даже теоретическое правило вычисления может быть не очень удачным.

7.8. Интегрирование тригонометрических выражений 7.8.1. Рациональные функции

Выражение R(u,v,w,...) есть рациональная функция относительно переменных u,v,w,..., если оно получено из любых величин u,v,w,..., а также действительных чисел с помощью четырех арифметических действий.

Примеры рациональных функций.

Пример 130.
$$R(u,v) = \frac{\sqrt{2}u^2 - 3v}{5u^2 - 6uv + v^2}$$
 рациональная функция относи-

тельно u, v.

Пример 131.
$$R\left(x,\sqrt{x},\sqrt[3]{x^2}\right) = \frac{\sqrt{5}\sqrt[3]{x^2}}{x-\sqrt{x}+\sqrt[3]{x}}$$
 рациональная функция относительно $x,\sqrt{x},\sqrt[3]{x}$.

Пример 132.
$$R(\sin x, \cos x) = \frac{\sin x - 2\cos^2 x}{3\sin^2 x + \cos x + 1}$$
 рациональная функция относительно $\sin x, \cos x$.

Примеры функций, не являющихся рациональными.

Пример 133. Функция $\frac{\sqrt{x}}{\sqrt{x} + \sqrt[3]{x} + 2}$ не является рациональной функци-

ей относительно x.

Пример 134. Функция $\frac{\sqrt{\sin x + 2\cos^2 x}}{\sin^2 x + 3\cos x + 5}$ не является рациональной

функцией относительно $\sin x$.

7.8.2. Интегралы вида $\int R(\sin x, \cos x) dx$

7.8.2.1. Преобразование подынтегрального выражения

Рассмотрим интегралы вида $\int R(\sin x, \cos x) dx$ при условии, что он не является табличным. Иногда достаточно преобразовать подынтегральное выражение.

Пример 135.
$$\int \frac{dx}{\cos^4 x} = \int \frac{\sin^2 x + \cos^2 x}{\cos^4 x} dx = \int tg^2 x \frac{1}{\cos^2 x} dx + \int tg^2 x \frac{1}{\cos^2 x} dx$$

$$+\int \frac{dx}{\cos^2 x} = \int tg^2 x d(tg x) + tg x = \frac{1}{3} tg^3 x + tg x + C.$$

Пример 136.
$$\int \frac{dx}{\sin x} = \int \frac{d\left(\frac{x}{2}\right)}{\sin\frac{x}{2}\cos\frac{x}{2}} = \int \frac{d\left(\frac{x}{2}\right)}{\operatorname{tg}\frac{x}{2}\cos^{2}\frac{x}{2}} = \int \frac{d\left(\operatorname{tg}\frac{x}{2}\right)}{\operatorname{tg}\frac{x}{2}} = \ln\left|\operatorname{tg}\frac{x}{2}\right| + C.$$

Пример 137.
$$\int \cos^2 x dx = \frac{1}{2} \int (1 + \cos 2x) dx = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) + C$$
.

7.8.2.2. Универсальная тригонометрическая подстановка $t = tg \frac{x}{2}$

Подынтегральное выражение преобразуется в рациональную ϕ ункцию от t.

$$\sin x = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\sin^2\frac{x}{2} + \cos^2\frac{x}{2}} = \frac{2\tan\frac{x}{2}}{1 + \tan^2\frac{x}{2}} = \frac{2t}{1 + t^2}$$

$$\cos x = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{1 - tg^2 \frac{x}{2}}{1 + tg^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2}$$

$$x = 2\operatorname{arctg} t$$

$$dx = \frac{2dt}{1+t^2}.$$

Тогда
$$\int R(\sin x, \cos x) dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2dt}{1+t^2}$$
.

Удобно вычислять интегралы вида $\int \frac{dx}{a\cos x + b\sin x + c}$.

Пример 138.

$$\int \frac{dx}{9 + 8\cos x + \sin x} = \left| t = \operatorname{tg} \frac{x}{2} \right| = \int \frac{2dt}{(1 + t^2) \left(9 + \frac{8(1 - t^2)}{1 + t^2} + \frac{2t}{1 + t^2} \right)} =$$

$$=2\int \frac{dt}{t^2+2t+17}=2\int \frac{d(t+1)}{(t+1)^2+16}=\frac{1}{2}\arctan \frac{t+1}{4}+C=\frac{1}{2}\arctan \frac{tg\frac{x}{2}+1}{4}+C.$$

Универсальная подстановка часто приводит к громоздким вычислениям. Можно использовать частные подстановки.

1) $R(-\sin x,\cos x) = -R(\sin x,\cos x)$ - нечетная относительно $\sin x$. Подстановка $\cos x = t$.

Пример 139.
$$\int \frac{\sin x + \sin^3 x}{\cos 2x} dx = \begin{vmatrix} \cos x = t, \cos 2x = 2\cos^2 x - 1 = 2t^2 - 1 \\ \sin^2 x = 1 - t^2, dt = -\sin x dx \end{vmatrix} =$$

$$= \int \frac{(2 - t^2)(-dt)}{2t^2 - 1} = \int \frac{t^2 - 2}{2t^2 - 1} dt = \frac{1}{2} \int \frac{2t^2 - 4}{2t^2 - 1} = \frac{1}{2} \int dt - \frac{3}{2} \int \frac{dt}{2t^2 - 1} =$$

$$= \frac{t}{2} - \frac{3}{2\sqrt{2}} \int \frac{d(\sqrt{2}t)}{2t^2 - 1} = \frac{t}{2} - \frac{3}{2\sqrt{2}} \ln \left| \frac{\sqrt{2}\cos x - 1}{\sqrt{2}\cos x + 1} \right| + C.$$

2) $R(\sin x, -\cos x) = -R(\sin x, \cos x)$ - нечетная относительно $\cos x$. Подстановка $\sin x = t$.

Пример 140.
$$\int \frac{\cos^3 x + \cos^5 x}{\sin^2 x + \sin^4 x} dx = \begin{vmatrix} \sin x = t \\ \cos^2 x = 1 - t^2 \\ \cos x dx = dt \end{vmatrix} =$$

$$= \int \frac{\cos^2 x (1 + \cos^2 x) \cos x dx}{\sin^2 x + \sin^4 x} = \int \frac{(1 - t^2)(2 - t^2)dt}{t^2 + t^4} =$$

$$= \int \left(1 + \frac{2}{t^2} - \frac{6}{1 + t^2}\right) dt = t - \frac{2}{t} - 6 \arctan t + C = \sin x - \frac{2}{\sin x} - 6 \arctan (\sin x) + C.$$

3) $R(\sin x, \cos x) = R(-\sin x, -\cos x)$ - четная относительно $\sin x$ и $\cos x$. Подстановка $\log x = t$.