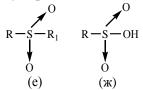
СЕРОСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ


Сера – аналог кислорода и один из биогенных элементов. Многие органические соединения, содержащие серу, близки к аналогичным кислородсодержащим соединениям.

Однако есть существенные отличия в свойствах серы по сравнению с кислородом: сера - элемент переменной валентности и менее электроотрицательна. Эти особенности серы определяют специфику серосодержащих органических соединений.

В органических соединениях сера проявляет валентность, равную двум (\bar{S}^{2-} – восстановленная), четырем (\bar{S}^{4+} – промежуточная степень окисления) и шести (S^{6+} – окисленная). Соответственно имеются три группы серосодержащих органических соединений:

1)
$$S^{2-}$$
 – тиоспирты (а), тиоэфиры (б) и тиокетоны (в)
 $R-SH$ $R-S-R$ $R-C-R$ \parallel S

3) S^{6+} – сульфоны (e) и сульфоновые кислоты (сульфокислоты) (ж)

ТИОСПИРТЫ. ТИОЭФИРЫ

Тиоспирты (тиолы, меркаптаны) и тиоэфиры можно рассматривать как производные H-S-H, соответственно, одно- и двуалкилзамещенный сероводород.

Для [м.н.] название функциональной меркаптогруппы (SH) — «тиол». По (р.н.) тиоспирты называют, добавляя к названию радикала «меркаптан». Для наименования тиоэфиров к названиям радикалов, связанных с серой, добавляют «сульфид»:

 CH_3SH – (метилмеркаптан), [метантиол];

$$C_2H_5 - S - C_2H_5 - (диэтилсульфид).$$

Тиолы, подобно H_2S , обладают характерным, очень навязчивым запахом, более сильным и неприятным, чем запах сероводорода. Запах низших тиолов ощущается при концентрации 1ч. на 400 млн.ч. воздуха. Добавкой к природному газу ничтожных количеств изоамилмеркаптана пользуются для лучшего обнаружения по запаху утечки бытового газа в помещениях.

Тиолы и их производные встречаются в растительном и животном мире, например, пропантиол C_3H_7SH- в свеженарезанном луке, бутантиол C_4H_9SH- в выделениях скунса. Меркаптогруппа SH входит в состав некоторых аминокислот, ферментов и антибиотиков.

В отличие от воды и спиртов тиолы и H_2S неассоциированы, так как сера не образует водородных связей. Поэтому тиолы значительно хуже растворимы в воде, чем спирты, и кипят при гораздо более низких температурах ($CH_3OH\ 78\ ^\circ C$; $CH_3SH\ 7,6\ ^\circ C$).

Тиоэфиры – нейтральные жидкости, кипят при более высоких температурах, трудно растворимы в воде.

Получают тиолы и тиоэфиры:

1) взаимодействием галогеналкилов и спиртов с сероводородом и сульфидами

2) взаимодействием алкенов с сероводородом в кислой среде

$$CH_3$$
— C — CH_2 H — SH (H_2SO_4) CH_3 — C — CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

3) из тиомочевины и галогеналкилов в щелочной среде

$$R - C1 + S = \begin{matrix} NH_2 \\ C \\ NH_2 \end{matrix} + 3 NaOH \longrightarrow R - SH + 2 NH_3 + Na_2CO_3 + NaCl$$

$$NH_2$$

4) действием серы на реактивы Гриньяра

$$R-MgBr + S \rightarrow R-S-MgBr \xrightarrow{\quad (H^+),\, H_2O \quad} R-SH + MgOHBr$$

По химическим свойствам тиолы имеют сходство с H_2S . Они обладают более выраженными кислотными свойствами, чем спирты; растворяются в водных растворах щелочей, образуя соли — меркаптиды RSNa. С тяжелыми металлами образуют нерастворимые меркаптиды. Характерными являются меркаптиды ртути, что и послужило причиной названия солей (лат. mercurum captans — «забирающие ртуть»)

$$2 \text{ CH}_3\text{SH} + \text{Hg}_2\text{O} \rightarrow (\text{CH}_3\text{S})_2\text{Hg}\downarrow + \text{H}_2\text{O}$$

Аналогично спиртам тиолы реагируют с хлористыми ацилами, образуя тиоаналоги сложных эфиров

$$CH_3 - C$$
 + C_2H_5SH - $CH_3 - C$ + C_2H_5 + $CH_3 - C$ - C_2H_5 + $CH_3 - C$ - $CH_3 -$

Тиолы и спирты по-разному относятся к окислению. При окислении спиртов окисляется углерод, при окислении тиолов — сера. При мягком окислении тиолов образуются дисульфиды (а), при жестком — сульфокислоты (б):

а)
$$C_2H_5S_1H_1 + [O]_1 + H_1SC_2H_5 \longrightarrow C_2H_5 - S - S - C_2H_5 + H_2O$$

б) 3 $CH_3SH_1 + 8$ $HNO_3 \rightarrow 3$ $CH_3-SO_2-OH_1 + 8$ $NO_1 + 4$ H_2O_2
[метантиол] [сульфометан]

Эфиры весьма устойчивы к окислению. Тиоэфиры легко окисляются с образованием сульфоксидов и сульфонов

$$H_3C-S-CH_3$$
 $\xrightarrow{O_2}$ $H_3C-S-CH_3$ $\xrightarrow{+H_2O_2}$ $H_3C-S-CH_3$ диметилсульфоксид $\xrightarrow{}$ диметилсульфон

Представителем диалкилсульфидов является В, В'-дихлордиэтилсульфид – иприт, - ОВ кожно-нарывного действия, применявшийся в

первую мировую войну ($ClCH_2CH_2 - S - CH_2CH_2Cl$).

К числу соединений с восстановленной серой относятся важные в практическом отношении вещества: сероуглерод и тиомочевина

$$CH_4 + 4S \rightarrow S = C = S + 2H_2$$
 сероуглерод

 CS_2 – жидкость с неприятным запахом, $T_{\text{кип}} = 46.3^{\circ}C$; очень горюч и токсичен, нерастворим в воде. Хороший органический растворитель. Применяется в производстве вискозного шелка и каучука. Является фунгицидом.

Тиомочевина или тиокарбамид

Тиомочевина или тиокарбамид
— белое кристаллическое вещество, хорошо $H_2N - C - NH_2$ растворимое в воде, токсичное для растений, мало токсичное для животных. Применяется в синтезе различных органических соединений, в том числе лекарственных препаратов и пластмасс и в качестве ростового вещества.

1СУЛЬФОКСИДЫ И СУЛЬФИНОВЫЕ КИСЛОТЫ

Эти соединения содержат серу в промежуточной степени окисления и могут как окисляться (до сульфонов и сульфокислот), так и восстанавливаться (до тиоэфиров и тиолов)

авливаться (до тиоэфиров и тиолов)
$$H_{3}C-S-CH_{3} \xrightarrow{[H]} H_{3}C-S-CH_{3} \xrightarrow{[O]} H_{3}C-S-CH_{3}$$
диметилсульфид диметилсульфоксид О диметилсульфон

Сравнительно нестойкие соединения. Сульфоксиды встречаются в природе. Так, в чесноке содержится аллиин

в семенах редьки – сульфофарен
$$H_3C-S-CH=CH-CH_2-CH_2-NCS$$

Из чеснока готовят антибиотик аллицин, – моносульфоксид диаллилдисульфида

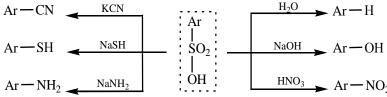
$$H_2C = CH - CH_2 - S - S - CH_2 - CH = CH_2$$

СУЛЬФОКИСЛОТЫ И СУЛЬФОНЫ

Сульфокислоты (R– SO_2 –OH) — наиболее важные соединения окисленной серы. Атом серы сульфогруппы непосредственно связан с углеродом. Они получаются или энергичным окислением тиолов, или по реакции галогеналкилов с сульфитом натрия

$$R - SH + 3 O_3 \rightarrow R - SO_2OH + 3 O_2$$

$$RI \xrightarrow{Na_2SO_3} R - SO_2ONa \xrightarrow{HCl} R - SO_2OH$$
 алкилиодид алкилсульфонат натрия алкилсульфокислота


Ароматические сульфокислоты получают сульфированием аренов. Они представляют собой бесцветные кристаллические вещества, хорошо растворимые в воде, являются сильными кислотами.

Для ароматических сульфокислот характерны три группы реакций:

(а) реакции сульфогруппы

(б) <u>реакции в бензольном ядре</u>, –SO₃H является метаориентантом;

(в) реакции замены сульфогруппы

Сульфокислоты, их соли и сульфохлориды — весьма реакционноспособные вещества и очень широко используются как промежуточные продукты для получения самых различных важных соединений: фенола, красителей, синтетических моющих средств (СМС), многочисленных лекарственных препаратов и т.д. Наиболее ценными являются сульфамидные препараты (сульфаниламиды) — производные амида сульфаниловой кислоты H_2N — SO_2NH-R , где R — это H (стрептоцид) или различные гетероциклические радикалы, например

Синтезировано и изучено более 6000 соединений этой группы, в медицинской практике используется около 20. Обладают мощным бактерицидным действием и наряду с антибиотиками являются главными средствами борьбы с инфекциями.