10. АЛЬДЕГИДЫ И КЕТОНЫ – ОКСОПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ

Альдегиды и кетоны — производные углеводородов, в молекулах которых содержится одна или несколько карбонильных (оксо-) групп \geq C=O.

Для альдегидов функциональной является группа ${}_{-C} \buildrel {C}^O_H$, связанная с углеводородным радикалом (карбонильный кислород соединен с первичным углеродом — а л ь д о г р у п п а).

Для кетонов функциональной является группа >C=O, связанная с двумя углеводородными радикалами (карбонильный кислород соединен со вторичным углеродом – к е т о г р у п п а).

Классифицировать оксосоединения можно: а) **по видам ради- калов**, которые связаны с карбонильной группой, — предельные, непредельные, ароматические, карбоциклические, гетероциклические; б) **по числу оксогрупп в молекуле**, — моно-, дикарбонильные и т.д.

10.1. ПРЕДЕЛЬНЫЕ АЛЬДЕГИДЫ И КЕТОНЫ

Общая формула гомологических рядов предельных алифатических оксосоединений $C_nH_{2n}O$. Изомерия их обусловлена различием строения углеродного скелета. Кроме того, для кетонов возможно различие положения карбонильного кислорода в C-цепи.

Низшие оксосоединения имеют широко используемые тривиальные названия (табл.14). Названия альдегидов – производные от названий кислот, до которых альдегиды окисляются (уксусный, кротоновый, бензойный и т.д.).

Для р.н. альдегидов они представляются как производные уксусного, в молекуле которого атомы водорода в метильной группе замещены на радикалы. Кетоны по р.н. называют перечислением радикалов, связанных с кетогруппой с добавлением термина "кетон".

Для м.н. название альдегидной группы — "аль"; кетогруппы — "он" с указанием ее "адреса". Названия обеих групп добавляются к

полному названию углеродной цепи, которая нумеруется со стороны оксогруппы, поэтому "адрес" альдогруппы не указывается

Формулы и названия некоторых альдегидов и кетонов см. в табл.14.

10.1.1. Физические свойства

Муравьиный альдегид — газ, остальные альдегиды и кетоны — жидкости или твердые вещества. Низшие — хорошо растворимы в воде, с увеличением молекулярной массы их растворимость в воде ухудшается. В органических растворителях все оксосоединения растворяются хорошо. Кипят альдегиды и кетоны при гораздо более низких температурах, чем спирты и кислоты с соответствующим числом углеродов, при этом кетоны — при более высоких температурах, чем альдегиды.

Низшие имеют резкий специфический запах (особенно альдегиды).

Таблица 14 Физические свойства альдегидов и кетонов

Название	Формула	Т. пл., °С	Т. кип.,	Плотность,
			°C	г/см ³
Альдегиды: Муравьиный (формальдегид)	H – C (H	-92	-19,2	0,815
Уксусный (ацетальдегид)	CH ₃ – C H	-122,6	+20,8	0,781
Пропионовый (пропаналь)	$CH_3 - CH_2 - C $ H	-81	+49,1	0,807
Масляный (бутаналь)	$CH_3 - (CH_2)_2 - C $ H	-97	+75	0,817
Бензальдегид	$\langle O \rangle - C \langle H \rangle$	-56	178,1	1,045
Акролеин (пропеналь)	$H_2C = CH - C $ H	-88	+52,5	0,041
Кротоновый (бутен-2-аль)	$CH_3 - CH = CH - C $ H	-76,5	+104	0,859
Глиоксаль	O H $C - C$ H	+15	50,4	1,14
Кетоны: Ацетон	O CH ₃ – C – CH ₃	-95,3	+56,1	0,781
(пропанон) Ацетофенон (метилфенилкетон)	$CH_3 - C - O$	+19,8	202	1,028
Бензофенон (дифенилкетон)	(O)- C -(O)	+48	306	1,10
Циклогексанон	= O	-31,2	155,4	0,946

10.1.2. Химические свойства

Альдегиды и кетоны принадлежат к числу наиболее реакционноспособных органических соединений, причем альдегиды актив-

нее кетонов. Высокая активность оксосоединений обусловлена особенностями строения карбонильной группы (рис. 14). Двойная связь C=O (σ -связь и π -связь), в отличие от связи C=C, сильно поляризована. В результате этого π – электронная плотность смещена в сторону атома кислорода, чем определяется направление присоединения полярных молекул по двойной (C=O) связи

$$A - X + O = C$$
 $R ($ или $H)$
 $A - X + O = C$
 $R ($ или $H)$

где АХ это:

$$\overset{+}{H} - \overset{-}{C}N; \overset{+}{H} - \overset{-}{O}R; \overset{+}{H} - \overset{-}{S}O_3Na; \overset{+}{H} - \overset{-}{C} \equiv CR; \overset{-}{R} - \overset{+}{Mg}Br.$$

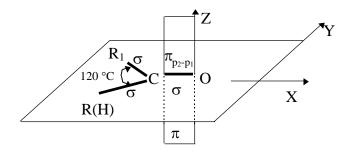


Рис. 14. Схема образования связей в карбонильной группе

Многочисленные реакции карбонильных соединений можно разделить на пять групп.

І. Реакция присоединения

1. С цианистым водородом

$$R_1$$
 $C = O + H - C \equiv N$ R_1 $C = O + H - C \equiv N$ R_1 $C = O + H - C \equiv N$ R_1 R_2 R_3 R_4 R_4 R_5 R_6 R_7 R_8 R_8 R_8 R_9 R_9

Оксинитрилы используются как промежуточные продукты для последующего синтеза α-окси- или α-аминокислот. Реакции легко идут и с альдегидами, и с кетонами.

2. Со спиртами (образование полуацеталей, ацеталей и кеталей):

$$R-C$$
 $\stackrel{\circ}{\stackrel{}{\stackrel{}}}$ $\stackrel{\circ}{\stackrel{}{\stackrel{}}}$ $\stackrel{\circ}{\stackrel{}{\stackrel{}}}$ $R-CH-OC_2H_5$ $\stackrel{\circ}{\stackrel{}{\stackrel{}}}$ $\stackrel{\circ}{\stackrel{}{\stackrel{}}}$ $R-CH$ $\stackrel{\circ}{\stackrel{}{\stackrel{}}}$ $\stackrel{\circ}{\stackrel{}{\stackrel{}}}$ $\stackrel{\circ}{\stackrel{}}$ $\stackrel{\stackrel{\circ}{\stackrel{}}{\stackrel{}}}$ $\stackrel{\stackrel{\circ}{\stackrel{}}$ $\stackrel{\circ}{\stackrel{}}$ $\stackrel{\circ}{\stackrel{}}$ $\stackrel{\stackrel{\circ}{\stackrel{}}}$

Полуацеталь (эфироспирт) и ацеталь (диэфир), в отличие от простых эфиров, легко гидролизуются водными растворами кислот на исходные содинения.

Для получения аналогичных производных кетонов — полукеталей и кеталей — применяются специальные методы (в обычных условиях кетали не образуются). Ацетали — приятно пахнущие жидкости, участвуют в формировании запаха ряда пищевых продуктов.

3. С бисульфитом натрия (NaHSO₃)

$$R-C$$
 H HSO_3Na $R-CH-SO_3Na$ $+HCl_{(aq)}$ $R-CH$ HSO_3Na $R-CH$ $R-$

оисульфитное производное

Бисульфитные соединения хорошо кристаллизуются, легко гидролизуются с образованием исходных альдегидов.

Такого типа соединения образуют также метилкетоны и некоторые циклические кетоны. Реакция используется для выделения оксосоединений из смесей (в частности, очистка алкоголей от альдегидов).

4. Присоединение аммиака

$$3CH_3 - C \searrow_H^O + 3NH_3 \longrightarrow 3 \begin{bmatrix} CH_3 - CH - NH_2 \\ OH \end{bmatrix} \xrightarrow{(-3H_2O)} [3CH_3 - CH = NH] \longrightarrow$$

$$CH_3$$
 CH
 CH
 NH
 $H_3C - CH$
 $CH - CH_3$
 $CH - CH_3$
 $CH_3 - CH_4$
 $CH_4 - CH_5$
 $CH_4 - CH_5$
 $CH_5 - CH_6$
 $CH_6 - CH_7$
 $CH_7 - CH_7$
 $CH_8 - CH_8$
 $CH_8 - CH_8$

Альдегидаммиаки (как и бисульфитные производные) легко регенерируют исходный альдегид.

5. С реактивами В.Гриньяра (синтезы первичных, вторичных и третичных спиртов).

II. Замещение карбонильного кислорода

6. Для альдегидов и кетонов характерны реакции с соединениями, содержащими в молекуле группу (–NH₂)

Образующиеся производные – хорошо кристаллизующиеся вещества – имеют характерные температуры плавления (справочные данные), позволяющие идентифицировать исходные карбонильные соединения, которые кроме того легко регенерируются гидролизом производных.

Названия последних зависят от используемых реагентов

Pea	Производное		
формула	название	альдегида или кетона	
$H_2N - OH$	гидроксиламин	оксим	
H_2N-NH_2	гидразин	гидразон	
$H_2N - NH - O$	фенилгидразин	фенилгидразон	
H ₂ N O NH – C– NH ₂	семикарбазид	семикарбазон	

7. Замещение карбонильного кислорода хлором

Действием на карбонильные соединения сильных галогенирующих агентов (PCl_5 или $SOCl_2$) получают геминальные дигалогениды

$$CH_2 - CH_2$$
 $C = O$ $\xrightarrow{+PCl_5}$ $CH_2 - CH_2$ $CH_2 -$

III. Реакции с участием атомов водорода в α-положении

Атомы водорода в молекулах альдегидов и кетонов, находящиеся в α-положении к карбонильной группе, обладают повышенной подвижностью из-за электроноакцепторного влияния последней.

8. Галогенирование радикалов оксосоединений

$$CH_3 - CH_2 - C \xrightarrow{(A)} O \xrightarrow{+Cl_2} CH_3 - CH - C \xrightarrow{(A)} CH_3 - C$$

пропаналь

α-хлорпропаналь

$$\begin{array}{cccc} CH_{3}-C-CH_{2}-CH_{3} & \xrightarrow{+Br_{2}} & CH_{3}-C-CH-CH_{3} \\ O & O & Br \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\$$

9. Альдольно-кротоновая конденсация

а) под действием щелочей альдегиды способны вступать в реакции присоединения друг с другом. При этом в реакции участвует карбонил одной молекулы (карбонильная компонента) и α-водород метиленовой группы другой молекулы (метиленовая компонента).

$$C_2H_5-C \underbrace{\begin{matrix} CH_3 \\ \mid (\alpha) \end{matrix} }_{H} CH-C \underbrace{\begin{matrix} OH \\ \mid (\alpha) \end{matrix} }_{H} C_2H_5-CH-CH-C \underbrace{\begin{matrix} OH \\ \mid (\alpha) \end{matrix} }_{H} C_2H_5$$

пропаналь

пропаналь

альдоль пропаналя

Образующийся на первой стадии димер называется альдоль (сокращение от альдегидо-алкоголь). При нагревании альдоль на второй стадии теряет воду (отщепляются второй α -водород и гидроксил)

$$C_{2}H_{5}-CH-C-C \xrightarrow{C}_{H} \xrightarrow{t^{\circ}} C_{2}H_{5}-CH=C-C \xrightarrow{C}_{H}$$

[3-окси-2-метилпентаналь]

[2-метилпентен-2-аль]

Вторая стадия процесса (дегидратация альдоля с образованием непредельного альдегида) называется кротоновой конденсацией (по названию кротонового альдегида CH₃–CH=CH–CHO, образующегося при конденсации этаналя);

б) ароматические альдегиды не могут конденсироваться между собой, если у них нет α-H. Но в реакцию могут вступать между собой молекулы разных альдегидов, один из которых – карбонильная компонента, а другой – метиленовая компонента:

$$O$$
 — O — O

в) конденсация альдегидов с кетонами происходит за счет α-H кетона, карбонильная группа которого менее активна чем у альдегида

$$H - C \xrightarrow{H} + CH_2 - C - CH_3 \xrightarrow{(OH^-)} CH_2 - C - C + G \xrightarrow{(-H_2O)} CH_2 \xrightarrow{(-H_2O)} CH_2 - C - C + G$$

формальдегид

ацетон

4-оксибутанон-2

метилвинилкетон

г) конденсация кетонов с кетонами возможна для активных кетонов

$$CH_3$$
 — H — O — CH_3 — O — CH_3 — O — CH_3 — O — O

10. Конденсация с алкинами-1 (синтезы Фаворского)

Реакции протекают в присутствии твердых щелочей или алкоголятов щелочных металлов.

Получающиеся ацетиленовые спирты служат исходными веществами в различных синтезах.

11. Конденсация формальдегида с фенолами

Далее образуется сетчатой структуры полимер фенолформальдегидной смолы (бакелита)

$$\begin{array}{c|cccc} OH & OH & OH \\ - CH_2 - \bigodot - OH \\ \hline CH_2 & OH & CH_2 \\ HO - \bigodot - CH_2 - \bigodot - CH_2 - \bigodot - OH \\ \hline CH_2 & CH_2 & CH_2 \\ \hline \end{array}$$

IV. ВОССТАНОВЛЕНИЕ И ОКИСЛЕНИЕ

12. Восстанавливаются оксосоединения до спиртов

а)
$$R - C \xrightarrow{O} \xrightarrow{H_2} R - CH_2 - OH$$
альдегид первичный спирт
$$R - C - R_1 \xrightarrow{H_2} R - CH - R$$

$$O OH$$
кетон вторичный спирт

В качестве восстановителя часто применяют литийалюминийгидрид LiAlH₄. Удобство этого реагента в его избирательном действии: в непредельных альдегидах и кетонах восстанавливается только карбонильная группа и не затрагивается двойная (C=C) связь.

13. Восстановление гидразином оксогруппы альдегидов и кетонов до метиленовой по Кижнеру-Вольфу

$$R_1$$
—С $\stackrel{\longrightarrow}{=}$ О + H_2 N — NH2 R_1 —С $\stackrel{\longrightarrow}{=}$ N — NH2 R_2 (H) R_2 (H) R_2 (H) R_2 (H) R_2 (H) R_2 (H) алкан

14. К окислению альдегиды и кетоны относятся по-разному

Альдегиды окисляются очень легко. Продукты их окисления – карбоновые кислоты с тем же количеством атомов углерода в молекуле

$$R - C \stackrel{O}{\longleftarrow} R - C \stackrel{O}{\longleftarrow} R - C \stackrel{O}{\longleftarrow}$$

В качестве окислителей могут использоваться даже такие слабые окислители, как гидроксид аммиаката серебра [Ag $(NH_3)_2$]OH (реактив Толленса) или свежеосажденный $Cu(OH)_2$

$$R - C \searrow_{H}^{O} \xrightarrow{t^{\circ}} R - COOH + Ag \downarrow +2NH_{3}$$

$$+ (CuSO_{4} + NaOH) \longrightarrow R - COOH + Cu_{2}O \downarrow$$

Обе реакции — "серебряного зеркала" и "медного зеркала" — являются качественными на альдегидную группу. В первом случае на стенках пробирки образуется блестящий слой металлического серебра, во втором — красный осадок оксида меди (I) (при реакции с формальдегидом медь восстанавливается до металла и может образовать "медное зеркало"). Качественной же на альдегиды является и их реакция с фелинговой жидкостью.

Кетоны гораздо **более устойчивы к слабым окислителям** и к кислороду воздуха. При действии сильных окислителей происходит разрыв С-цепи около кетогруппы и образуются "маленькие" карбоновые кислоты, вид которых зависит от места разрыва связей

$$CH_3 - (CH_2)_2 - CH_2$$
 (a) $O = C$ (b) $O = C$ (c) $O = C$ (c) $O = C$ (d) $O = C$ (e) $O = C$ (e) $O = C$ (f) $O = C$ (f)

При наличии в С-цепи окисляемого кетона ответвлений в αположении могут образовываться "меленькие" кетоны

15. Диспропорционирование альдегидов

В водно-щелочном растворе альдегиды подвергаются самоокислению-самовосстановлению: одна молекула восстанавливается до спирта, а вторая окисляется до кислоты

а) реакция Канницаро (ароматические):

б) реакция Тищенко (алифатические):

V. РЕАКЦИИ ОЛИГО- И ПОЛИМЕРИЗАЦИИ

Эти реакции идут за счет разрыва карбонильной связи (C=O). В результате могут образовываться циклические продукты

$$H_3C$$
 H_3C CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8

И формальдегид, и ацетальдегид весьма склонны к полимеризации. Их циклические олигомеры, приведенные выше, широко ис-

пользуются, так, например, паральдегид – в медицине как снотворное средство, метальдегид ("сухой спирт") – как твердое горючее.

Могут образовываться и линейные полимеры, особенно из формальдегида. Так, еще в 1881 г. А.М.Бутлеров осуществил синтез сахаристого вещества полимеризацией формальдегида под действием баритовой воды (альдольная конденсация)

Полиформальдегид высокой степени полимеризации ($-CH_2-O-$)_n или полиоксиметилен – простейший гетероцепной полиэфир, обладающий ценными техническими свойствами. Из полиформальдегида изготавливают волокна, пленку, конструкционные детали.

10.2. НЕПРЕДЕЛЬНЫЕ ОКСОСОЕДИНЕНИЯ

Наличие в молекуле карбонильного соединения связи (C=C), близко расположенной к группе (C=0), придает соединению особые свойства вследствие взаимного влияния этих групп. Наиболее важными являются сопряженные и кумулированные системы этих двойных связей. Если эти связи изолированы друг от друга, то каждая группа сохраняет свою индивидуальность и проявляет присущие ей свойства.

10.2.1. Сопряженные (а, β-ненасыщенные) альдегиды и кетоны

Широко применимыми являются

$$H_2C = CH - C$$
 $H_2C = CH - C$
 H_3
 $CH_3 - C = CH - C - CH_3$
окись мезитила

$$CH_3 - CH = CH - C H$$

$$O - C H = CH - C H$$

кротоновый альдегид

бензальдагид

коричный альдегид

1. Присоединение галогеноводородов здесь происходит не по правилу Марковникова из-за (-М)-эффекта

$$(\delta^{+})$$
 (δ^{-}) ($\delta^$

2. **α**, **β** -ненасыщенные оксосоединения являются хорошими диенофилами в синтезах Дильса-Альдера

$$CH = CH_2$$
 CH_2 C

[формилциклогексен-3]

3. Ароматические альдегиды не вступают в реакцию альдольной конденсации между собой (отсутствует α-водород). Для них характерно диспропорционирование; с формальдегидом идет "перекрестная" реакция Канницаро

$$\langle O \rangle - C \langle H \rangle + H - C \langle H \rangle \xrightarrow{\text{NaOH}} \langle O \rangle - CH_2OH + H - C \langle ONa \rangle$$

бензальдегид формальдегид бензиловый спирт формиат натрия

В этой реакции ароматический альдегид восстанавливается до спирта, а формальдегид окисляется до кислоты (дает соль в присутствии щелочи).

4. Оксид серебра окисляет только альдегидную группу

$$CH_2 = CH - C$$
 H
 Ag_2O
 $(NH_3), t^\circ$
 $2Ag \downarrow + CH_2 = CH - C$
 ONH_4
акролеин
 Ag_2O
 ONH_4

16

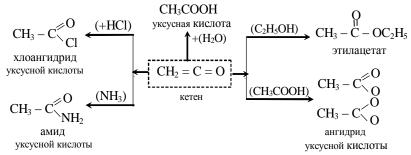
5. Галогены присоединяются по месту С=С связи

$$CH_2 = CH - C H + Br_2 \longrightarrow CH_2 - CH - C H H$$
 Br Br Br
 $2,3$ -дибромпропаналь

6. Гидрирование может проходить как по связи С=С, так и C=0

$$CH_2 = CH - C \xrightarrow{O} H \xrightarrow{+H_2 \\ (Ni)} CH_3 - CH_2 - C \xrightarrow{O} H \xrightarrow{CH_3CH_2CH_2} CH_3 - CH_2 - CH_2OH \xrightarrow{CH_3CH_2CH_2} CH_3 + CH_3CH_2CH_2$$

10. 2. 2. Кетены (карбонилы с кумулированными связями C=C=O


Простейшим и важнейшим их представителем $H_2C=C=O$, — собственно к е т е н . Это ядовитый газ (Т.кип.= – 41°C; Т.пл.= -135°C) получается пиролизом ацетона (a) или уксусной кислоты (б):

a)
$$CH_3 - C - CH_3 \xrightarrow{t^{\circ}} CH_2 = C = O + CH_4;$$

$$O = CH_3 - C - OH \xrightarrow{t^{\circ}} CH_2 = C = O + H_2O.$$

$$\begin{array}{ccc}
\text{O} & \text{CH}_3 - \overset{\text{"}}{\text{C}} - \text{OH} & \xrightarrow{\text{t}^\circ} & \text{CH}_2 = \text{C} = \text{O} & + \text{H}_2\text{O}.
\end{array}$$

Кетен чрезвычайно реакционноспособен и широко используется в разнообразных органических синтезах

10.3. ДИКАРБОНИЛЬНЫЕ СОЕДИНЕНИЯ

Важнейшими из них являются:

α-дикарбонилы обладают повышенной реакционной способностью.

1. Способы к внутримолекулярному диспропорционированию

$$C - C > O \\ H > C - C > O \\ H > OH > ONa$$

глиоксаль натриевая соль гликолевой кислоты

 $CH_3 - C - C > O \\ OH > OH > OH$
 $CH_3 - C - C > O \\ OH > OH > OH$

метилглиоксаль натриевая соль молочной кислоты

Ценным для аналитической химии является диметилглиоксим (реактив Чугаева)

$$CH_3-C-C-CH_3 + 2 H_2N-OH$$
 — HO-N N-OH $H_3C-C-C-CH_3$ диацетил гидроксиламин диметилглиоксим

Это соединение является реактивом на Ni, Co, Fe(II), Pt, Pd, Rh, Re, V, Bi, Sn, Cu для их качественного и количественного определения.

β-дикарбонилы имеют свою специфику: атомы водорода метиленовой группы, находящейся между оксогруппами, обладают резко повышенной подвижностью ("дважды - α " – водороды).

Один из этих водородов мигрирует к карбонильному кислороду, в результате чего образуется изомер енольной формы, стабилизируемый внутримолекулярной водородной связью

$$CH_3 - C - C - C - CH_3$$
 $CH_3 - C = CH - C - CH_3$ $CH_3 - C -$

Енольная форма ацетилацетона способна образовывать устойчивые еноляты с многовалентными металлами (Cu, Ni, Be, Al, Fe, Cr и др.) – хелатной структуры внутрикомплексные соединения (от греч. хелат = клешня)

$$H_3C - C = 0$$
 $O - C - CH_3$ $H_3C - C - O$ $O = C - CH_3$

ацетилацетонат металла

Образование хелатов металлов используется в аналитической химии и для получения металлов высокой степени чистоты.

10.4. ПОЛУЧЕНИЕ ОКСОСОЕДИНЕНИЙ

Окисление спиртов (первичных – до альдегидов, а вторичных – до кетонов).

Восстановление хлорангидридов карбоновых кислот идет сравнительно легко (сами кислоты восстанавливаются трудно).

$$R-C \stackrel{\bigcirc O}{\stackrel{\longleftarrow}{Cl}} \xrightarrow{+H_2} R-C \stackrel{\bigcirc O}{\stackrel{\longleftarrow}{\stackrel}{H}} +HCl$$
.

Гидролиз геминальных дигалогенидов.

Гидролиз ацетиленовых углеводородов (реакция Кучерова).

Декарбоксилирование. ("сухая перегонка") солей двухвалентных металлов карбоновых кислот.

$$CH_3-C-O-Ca-O-C-CH_3$$
 $\xrightarrow{T. пл.}$ CH_3-C-CH_3 уксуснокислый кальций ацетон

Если перегоняется смесь солей двух кислот, получаются несимметричные кетоны; в случае, когда один из компонентов смеси – соль муравьиной кислоты, получается альдегид

$$\begin{array}{c} CH_3-CH_2-C \nearrow O \\ O \searrow Mn \\ H-C \searrow O \end{array} \xrightarrow[(-MnCO_3)]{} CH_3-CH_2-C \nearrow O \\ H \end{array}$$

При декарбоксилировании солей дикарбоновых кислот получаются циклические кетоны

$$CH_2 - CH_2 - C$$
 O CA $CH_2 - CH_2 - CH_2$ $CH_2 - CH_2 - CH_2$ $CH_2 - CH_2$

С таким же результатом (в присутствии МпО) декарбоксилируются сами двухосновные кислоты

Ацилирование ароматических углеводородов по Фриделю-О Крафтсу. Ацилом называется группа $-\overset{O}{\mathbb{C}}_{-R}$. Введение такой группы в органическую молекулу и называют ацилированием.

Оксосинтез (гидроформилирование алкенов). Альдегиды получают присоединением к олефинам синтез-газа (смеси $CO+H_2$) в присутствии $[Co(CO)_4]_2$ при 140 °C и 200 атм:

$$CH_2 = CH_2 + CO + H_2 \longrightarrow CH_3 - CH_2 - C \stackrel{O}{\vdash}_H$$

Из гомологов этилена образуются альдегиды с нормальной и разветвленной цепью

$$H_3C-C=CH_2$$
 — CH_2 — CH_3 — CH

Реализуется также введение альдегидной группы в бензольное ядро

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \end{array}$$
 $\begin{array}{c} \text{CH} - \bigcirc \bigcirc \end{array}$ $\begin{array}{c} \xrightarrow{+(\text{CO} + \text{H}_2)} \end{array}$ $\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \end{array}$ $\begin{array}{c} \text{CH} - \bigcirc \bigcirc - \bigcirc \end{array}$ $\begin{array}{c} \text{C} \\ \text{H} \end{array}$

10.5. ПРИМЕНЕНИЕ ОКСОСОЕДИНЕНИЙ

Альдегиды и кетоны широко распространены в природе и играют большую роль в процессах биосинтеза сложных органических соединений; содержатся во многих эфирных маслах.

А. Альдегиды и некоторые кетоны участвуют в формировании вкуса и аромата хлеба, вина и ряда других пищевых продуктов. Состав ацеталей вина существенно влияет на его букет.

Следы формальдегида образуются при неполном сгорании многих органических веществ. Дезинфицирующее действие дыма, который используют при копчении продуктов, обусловлено, в основном, формальдегидом. Формалин (40 % водный раствор формальдегида) широко используется как консервант биопрепаратов, в дублении кож и в дезинфекции.

Ацетальдегид (CH_3CHO) — промежуточный продукт спиртового брожения. Акролеин ($CH_2=CH-CHO$) образуется, в частности, при подгорании жиров и мяса. Самых известные "кондитерских" альдегиды — коричный, ванилин и ванилаль:

Метиламилкетон и метилгептилкетон содержатся в сыре "рокфор", где образуются в результате бактериального разложения жирных кислот. Они же образуются при прогоркании жиров. Диацетил является главным душистым веществом сливочного масла (и добавляется в маргарин при его производстве).

- **Б.** Являясь высокореакционноспособными веществами, альдегиды и кетоны являются сырьем для многочисленных органических синтезов самых разных химических продуктов:
- пластмассы (фенол- и мочевиноформальдегидные смолы);
- клеи (ацетиленовые спирты и виниловые эфиры);
- спирты, карбоновые кислоты и их производные;
- галогенопроизводные;
- красители (производные бензо-, нафта- и антрахинонов);
- сырье для парфюмерной и фармацевтической промышленности;
- восстановители в производстве зеркал;
- реактивы аналитической химии.