8. ОКСИПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ (СПИРТЫ И ФЕНОЛЫ)

Оксисоединениями называются производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на гидроксильную (окси) группу ОН, являющуюся функциональной для двух классов органических соединений – спиртов и фенолов.

Классифицируют оксисоединения:

- по количеству гидроксилов (атомности):
- (a) одноатомные C_2H_5OH ; $\langle O \rangle$ —OH ;
- (б) двухатомные

$$CH_2 - CH_2$$
 $OH - OH$

(в) трехатомные

- по виду углеродного скелета, с которым непосредственно связан гидроксил:
 - (а) алифатические спирты

$$CH_3 - CH_2 - OH$$
, $CH_2 = CH - CH_2 - OH$;

(б) циклические спирты $\langle \ \rangle$ — OH;

(г) ароматические спирты

$$\langle O \rangle - (CH_2)_n - OH = 0$$

- по типу углеродного атома, с которым связан гидроксил, спирты делятся:
 - (a) на первичные $R CH_2 OH$;
 - (б) вторичные R CH R ; OH

$$(\Gamma)$$
 третичные $R - C - R$;

8.1. СПИРТЫ ОДНОАТОМНЫЕ (АЛКОГОЛИ)

Спирты R–OH могут рассматриваться как производные воды, в молекуле которой один атом водорода замещен на алкил, или как производные углеводородов $C_nH_{2n+1}OH$ — продукт замещения в молекуле алкана C_nH_{2n+2} одного атома водорода на гидроксил.

8.1.1. Изомерия и номенклатура

Изомерия спиртов связана со строением радикала (изомерия Сскелета) и с положением гидроксила в С-цепи. Возможна также стерео-изомерия спиртов (различное пространственное расположение атомов).

По правилам ИЮПАК (м.н.) наличие гидроксила указывается окончанием "ол", добавляемым к полному названию углеводорода длинной цепи с указанием номера углерода, с которым связана оксигруппа. Нумерация цепи – со стороны гидроксила.

По рациональной номенклатуре (р.н.) спирты рассматриваются как производные простейшего спирта CH₃OH – карбинола, в радикале которого атомы водорода замещены на алкилы.

Допускаются также названия спиртов, образованные от названия радикалов:

$$\begin{array}{c} CH_3 \\ CH_3 \\ | \\ CH_3 - CH - CH_2 - OH \\ \\ Uзобутиловый спирт \\ (Изопропилкарбинол) \\ 2-метилпропанол-1 \\ \end{array} \qquad \begin{array}{c} CH_3 \\ | \\ H_3C - C - CH_3 \\ | \\ OH \\ \\ Tрет-бутиловый спирт \\ (триметилкарбинол) \\ 2-метилпропанол-2 \\ \end{array}$$

8.1.2. Физические свойства

Спирты нормального строения с числом углеродов до C_{11} – жидкости, с C_{12} – твердые вещества. Легче воды. До C_3 с резким "спиртовым" запахом, хорошо растворимы в воде; $C_4 \div C_6$ имеют резкий неприятный "сивушный" запах, ограниченно растворимы в воде.

Низшие спирты значительно менее летучи, имеют более высокие температуры кипения и плавления и лучше растворимы в воде, чем близкие по молекулярной массе углеводороды или их галогенопроизводные

По мере увеличения молекулярной массы различия в свойствах уменьшаются (табл.12).

Определяются эти отличия спиртов высокой полярностью оксигруппы: молекулы спирта ассоциированы водородными связями

Многие спирты ядовиты, 10-20 мл метилового спирта вызывают слепоту; большие количества – смерть.

Физические свойства спиртов

Таблица 12

Физические своиства спиртов									
Название	Формула	Т.пл., °С	Т.кип.,°С	d, г/см ³					
Метиловый	CH ₃ OH	-97,8	+64,7	0,793					
Этиловый	CH ₃ CH ₂ OH	-117,3	+78,3	0,790					
Пропиловый	CH ₃ CH ₂ CH ₂ OH	-127	+97,2	0,804					
Изопропиловый	CH ₃ CH(OH)CH ₃	-88	+82,2	0,785					
н-Бутиловый	CH ₃ (CH ₂) ₃ -OH	-80	+117,7	0,809					
изо-Бутиловый	(CH ₃) ₂ CH–CHOH	-108	+108,4	0,801					
Третбутиловый	(CH ₃) ₃ COH	+25	82,9	0,789					
Амиловый	CH ₃ (CH ₂) ₄ -OH	-78,5	+138	0,814					
Изоамиловый	(CH ₃) ₂ CHCH ₂ CH ₂ OH	-117,2	132,2	0,812					
Гептиловый	CH ₃ (CH ₂) ₆ -OH	-34,1	+176	0,822					
Дециловый	CH ₃ (CH ₂) ₉ -OH	+7,6	+228	0,830					
Этиленгликоль	CH ₂ (OH)– CH ₂ (OH)	-12,3	+197,6	1,113					
Глицерин	CH ₂ – CH– CH ₂	+17,9	+290	1,264					
	ОН ОН ОН								

8.1.3. Химические свойства

Химические свойства спиртов можно классифицировать по видам разрывающихся в их молекуле связей

$$\begin{array}{ccc}
H \\
R - C \\
\downarrow \\
(\acute{e}) H (\acute{o}) (a)
\end{array}$$

на три группы: (а), (б) и (в).

А. Реакции, протекающие с разрывом связи О-Н.

1. Образование алкоголятов

$$2C_2H_5OH + 2Na$$
 \longrightarrow $2C_2H_5ONa\downarrow + H_2\uparrow$. этиловый спирт этилат натрия

Спирты — кислоты более слабые, чем даже вода ($pK_{(cп.)} \approx 18$; $pK_{(H_2O)} \approx 16$), однако активные металлы (K, Na, Ca и др.) способны вытеснять из них водород и образовывать алкоголяты — твердые вещества белого цвета, используемые в разнообразных синтезах для введения в органические молекулы алкоксигрупп —OR.

Акоголяты легко гидролизуются водой с образованием спиртов и щелочей

$$C_2H_5ONa + HOH \longrightarrow C_2H_5OH + NaOH.$$

Щелочная среда после гидролиза алкоголята — качественная реакция на спиртовую группу.

2. Взаимодействие спиртов с магнийорганическими соединениями (Л.А. Чугаев, Ф.В. Церевитинов)

$$C_2H_5OH + CH_3 + Mg - I \longrightarrow CH_4 \uparrow + C_2H_5OMgI$$
 .
 этиловый метилмагний этоксимагний иодид иодид

Эта реакция с реактивом Гриньяра используется для определения количества гидроксилов в молекуле спирта (по объему образовавшегося углеводорода).

3. Образование сложных эфиров

Взаимодействие спиртов с кислотами (органическими и неорганическими) — реакции этерификации — приводит к образованию производных кислот, — сложных эфиров

Методом меченых атомов было доказано, что в состав сложного эфира входит кислород спирта (O^* – изотоп кислорода ¹⁸O).

$$\begin{array}{c} CH_3OH + HO \\ HO \end{array} S \stackrel{O}{\longleftarrow} O \xrightarrow{\stackrel{(холод)}{\longleftarrow} O} H_3C \stackrel{O}{\longrightarrow} S \stackrel{O}{\longleftarrow} O + H_2O \\ \\ \text{метиловый} \\ \text{спирт} \\ \end{array}$$

Реакция, обратная этерификации, – гидролиз сложного эфира (в присутствии щелочей – омыление).

Б. Реакции, протекающие с разрывом связи С-ОН

4. **Образование простых эфиров** (межмолекулярная дегидратация спиртов)

$$C_2H_5 - OH + H - OC_2H_5 \xrightarrow[(t \circ C)]{} C_2H_5 - O - C_2H_5 + H_2O \ .$$

диэтиловый эфир

Дегидратация идет при нагревании под действием водоотнимающих средств (серная или ортофосфорная кислоты, силикагель, хлорид цинка и др.).

5. Замещение гидроксила на галоген

Эти реакции уже рассматривались (получение галогенидов). Для замещения гидроксила на галоген используются галогеноводороды, галогениды и оксигалогениды фосфора (PCl_5 , PI_3 , $POCl_3$) или тионил-хлорид ($SOCl_2$).

6. Аминирование спиртов

$$R = OH + H NH_2 \xrightarrow{(t \, ^{\circ}C)} R - NH_2 + H_2O.$$

В. Реакции спиртов с участием их радикалов

7. Внутримолекулярная дегидратация

$$\begin{array}{c} \text{CH}_{3}\text{-CH-CH-CH}_{3} \xrightarrow[t^{\circ}(-\text{H}_{2}\text{O})]{} \text{CH}_{3}\text{--CH=CH-CH}_{3}. \end{array}$$

Бутанол-2 Бутен-2

Этот вариант дегидратации спиртов (в отличие от межмолекулярного) требует более высокой температуры (170 °C и 140 °C соответственно) и большего количества водоотнимающего средства.

8. Дегидрирование спиртов происходит при пропускании их паров над катализатором (Cu, Fe, Ni). Из первичных спиртов при этом получаются альдегиды, а из вторичных — кетоны; третичные спирты дегидрируются с разрушением углеродного скелета при их окислении.

$$CH_3 - C - H \xrightarrow{t {}^{\circ}C} CH_3 - C \xrightarrow{O} H + H_2 ;$$
 H

этанол ацетальдегид

 $CH_3 - CH - CH_3 \xrightarrow{t {}^{\circ}C} CH_3 - C - CH_3 + H_2 .$

9. Окисление спиртов легко проходит при действии на них при высокой температуре оксида меди или других окислителей (KMnO₄; $K_2Cr_2O_7$ и др.).

Продукты окисления первичных (а), вторичных (б) и третичных (в) спиртов различны.

(a)
$$R - C - H + CuD \atop t \circ C R - C \stackrel{\bigcirc}{\setminus} H + Cu + H_2O;$$

альдегид

(6)
$$R - CH + R_1 \xrightarrow{+CuD} Cu + R - C - R_1 + H_2O;$$

$$O - H \qquad O$$

(в) при окислении третичного спирта (С–С) – связи углерода, связанного с гидроксилом, рвутся с одинаковой вероятностью; получается смесь различных продуктов окисления

8

$$\begin{array}{c|c} CH_3CH_3 \\ CH_2 + C + CH \\ CH_3 & OH \ CH_3 \end{array} \xrightarrow{\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \end{array}} CH_3 - C \xrightarrow{\begin{array}{c} O \\ CH_3 \\ CH_3 \end{array}} + 2 \ H - C \xrightarrow{\begin{array}{c} O \\ OH \\ CH_3 \end{array}}$$

2,3-диметилпентанол-3 уксусная кислота ацетон *муравьиная кислота

* Муравьиная кислота здесь, как правило, окисляется до СО2.

8.1.4. Получение спиртов

В природе одноатомные спирты встречаются в очень небольших количествах, но их производные, главным образом сложные и простые эфиры, чрезвычайно широко распространены и используются для получения спиртов

1. Гидролиз эфиров

$$R - C - O - R_1 \xrightarrow{+HOH} R - C \xrightarrow{O} + R_1 - OH$$
 (сложный эфир) (кислота) (спирт)

Простые эфиры очень трудно гидролизуются.

2. Гидратация алкенов

$$CH_3 - CH = CH_2 + HOH \xrightarrow{(H^+)} CH_3 - CH - CH_3$$
.

В промышленности гидратация олефинов осуществляется или при участии H_2SO_4 или каталитически (H_3PO_4 , Al_2O_3).

3. Восстановление альдегидов и кетонов

$$R-C$$
 H $H-H$ $R-CH_2-OH$; (альдегид) (первичный спирт) $R-CH-R_1$. O OH (вторичный спирт)

Осуществляется восстановление альдегидов и кетонов в присутствии катализаторов (Ni, Pt, Pd, Co).

4. Синтезы Гриньяра. При взаимодействии реактивов Гриньяра R_1MgCl с альдегидами и кетонами осуществляется присоединение алкила R_1 к углероду C=O группы (a)

$$H-C\underset{H}{\overset{\longleftarrow}}+R_1-MgCl\underset{\longrightarrow}{\longrightarrow}R_1-CH_2-OMgCl\underset{\longrightarrow}{\overset{+HCl}{\longleftrightarrow}}R_1-CH_2-OH+MgCl_2;$$

(формальдегид)

(первичный спирт)

(б)
$$R-C$$
 $+R_1-MgC1$ $\longrightarrow R-CH-OMgC1$ $\xrightarrow{+HC1}$ R_1 $+HC1$ $\xrightarrow{-CH}$ CH OH OH $(альдегид)$ $(вторичный спирт)$

$$(B)$$
 $R-C-R_2+R_1-MgCl\longrightarrow R-C-R_2$ \xrightarrow{HCl} \xrightarrow{HCl} $R-C-R_2$ $\xrightarrow{(-MgCl_2)}$ $R-C-R_2$; $OMgCl$ OH (третичный спирт)

5. Щелочный гидролиз галогенидов

$$R - Br + KOH (водн.) \longrightarrow R - OH + KBr.$$

6. **Восстановление сложных эфиров.** Специальными восстановителями (литийалюминийгидрид LiAlH₄) могут быть синтезированы высокомолекулярные спирты из сложных эфиров

$$R-C \stackrel{O}{\swarrow} \underbrace{CIAIH_4} R-CH_2-OH+R_1-OH$$
.

7. В промышленности широко используется получение этилового спирта брожением крахмалосодержащего сырья (спиртректификат) или гидролизом целлюлозы (спирт - гидролизат). Последний содержит большое количество метанола в качестве примеси. Для предотвращения применения гидролизата в пищевых целях

его денатурируют (добавляют вещества, придающие цвет и резко неприятный запах) – получают спирт-денатурат.

При ацетонобутиловом брожении углеводов получают (вместе с ацетоном) бутанол-1, применяемый в качестве растворителя лаков и красок, для синтеза масляной кислоты и сложных эфиров.

8.1.5. Использование спиртов

В наибольших объемах в пищевой промышленности используется этанол (спирт-ректификат) – для изготовления различных спиртных напитков.

Бензиловый спирт (C_6H_5 — CH_2OH) — компонент ароматообразующих веществ пшеничного хлеба. Изоамиловый спирт (3-метилбутанол-1) является исходным для получения уксусноизоамилового эфира ("грушевая эссенция)", используемого в приготовлении конфет, фруктовых вод.

Все спирты как высоко реакционноспособные вещества являются исходными для получения самых разнообразных химических продуктов: альдегидов, кетонов и карбоновых кислот; галогенопроизводных и непредельных углеводородов; каучуков и пластмасс и др. Являются хорошими растворителями многих органических веществ. Широко используются в парфюмерной промышленности. Так, 2-фенилэтанол (C_6H_5 – CH_2 – CH_2 –OH) является главной составной частью "розового масла" – стабилизатора запахов, непременного компонента духов.

8.2. МНОГОАТОМНЫЕ СПИРТЫ (ПОЛИОЛЫ)

Многоатомными называются спирты, содержащие в молекуле больше одной оксигруппы. С одним атомом углерода может быть связана не более чем одна оксигруппа. Геминальные полиолы неустойчивы. В момент образования они, за редким исключением*, отщепляют воду, превращаясь в альдегиды (а), кетоны (б) или карбоновые кислоты (в)

$${}_{*}$$
Cl₃C- C ${}_{H}^{\nearrow O}$ + HOH \longrightarrow Cl₃C- CH ${}_{OH}^{\nearrow OH}$ (Кристаллич. вещество) хлораль хлораль (Т.пл. = 51,7°)

8.2.1. Изомерия и номенклатура

Изомерия многоатомных спиртов обусловлена изменениями структуры С-скелета и различным положением оксигрупп.

Некоторые полиолы имеют тривиальные названия (этиленгликоль, глицерин, инозит и др.). Двухатомные спирты называются гликолями. Гликоли с оксигруппами у соседних углеродов называют α -гликолями; в β -гликолях эти углероды разделены одной метиленовой группой, в γ -гликолях — двумя метиленовыми группами:

$${
m CH_3-CH-CH_1}$$
 ${
m CH_2-CH_2-CH_2-CH_2}$ ${
m CH_2-CH-CH_2}$ ${
m CH_2-CH-CH_2}$ ${
m CH_2-CH-CH_2}$ ${
m OH}$ ${
m OH}$ ${
m OH}$ ${
m CH}_3$ ${
m OH}$ ${
m Eytahduon-2,3}$ ${
m Eytahduon-1,4}$ ${
m 2-метилпропандиол-1,3}$ ${
m (α -гликоль)} ${
m (β -гликоль)}

Диолы различных структур являются основой диольных липидов. Хлоральгидрат – один из немногих примеров устойчивой структуры такого типа.

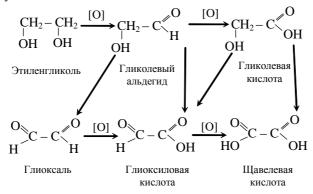
8.2.2. Свойства полиолов

Важнейшими из многоатомных спиртов являются этиленгликоль и глицерин. Это – вязкие, сладкие на вкус жидкости, тяжелее воды, хорошо растворимые в воде, в низших спиртах, в ацетоне, но не растворимые в жирах, бензоле, бензине. Кипят при гораздо более высоких температурах, чем одноатомные спирты с соответствующим числом атомов углерода, за счет дополнительных водородных связей (табл.12).

Высшие полиолы (тетриты, пентиты, гекситы и др.) – бесцветные кристаллы сладкого вкуса, хорошо растворимые в воде.

По химическим свойствам гликоли и глицерины похожи на одноатомные спирты. Отличия: повышенная подвижность атомов водорода оксигрупп и возможность участия в реакциях как одной, так и нескольких оксигрупп.

1. **Алкоголяты образуются** при взаимодействии не только со щелочными металлами, но и со щелочами и даже с гидроксидами тяжелых металлов


гликолят меди (внутрикомплексное соединение)

Реакция растворения осадка гидроксида меди (II) сопровождается ярким внешним эффектом (образуется синий раствор) и является качественной на многоатомные спирты.

2. Сложные эфиры легко образуются и с органическими, и с неорганическими кислотами

$$\begin{array}{c} \text{CH}_2-\text{OH} \\ \text{CH}_2-\text{OH} \\ \text{CH}_2-\text{OH} \end{array} \xrightarrow{\begin{array}{c} 3 \text{ HO-NO}_2 \\ (-3\text{H}_2\text{O}) \end{array}} \begin{array}{c} \text{CH}_2-\text{O}-\text{NO}_2 \\ \text{CH}_2-\text{O}-\text{NO}_2 \\ \text{CH}_2-\text{O}-\text{NO}_2 \end{array}$$

3. Окисление протекает легко. Могут образовываться различные продукты

- 4. **Дегидратация** протекает по-разному в зависимости от условий реакции и строения исходного спирта:
 - (а) из α-гликолей получаются эпоксиды

$$-\overset{|}{\overset{|}{\text{C}}} \overset{|}{\overset{|}{\text{C}}} \overset{|}{\text{C}}} \overset{|}{\overset{|}{\text{C}}} \overset{|}{\text{C}}} \overset{|}{\overset{|}{\text{C}}} \overset{|}{\overset{|}{\text{C}}} \overset{|}{\overset{|}{\text{C}}} \overset{|}{\overset{|}{\text{C$$

(б) из β-гликолей – непредельные спирты

$$HO - CH_2 - CH_2 - CH_2 - OH$$
 $(-H_2O)$ $CH_2 = CH - CH_2 - OH$; пропандиол-1.3

(в) у-гликоли образуют циклические эфиры

$$CH_2 - CH_2 - CH_2 - CH_2$$
 — $H_2C - CH_2$ — $H_2C - CH_2$

8.2.3. Получение и применение полиолов

Получают многоатомные спирты теми же способами, что и одноатомные, только вводится несколько гидроксилов

$$CH_2 - CH - CH_3 + 2KOH(aq.)$$
 $CH_2 - CH - CH_3$ Cl Cl Cl Cl Cl OH OH OH пропандиол – 1,2

Есть и специфические способы:

(а) реакция Вагнера (мягкое окисление алкенов)

$$CH_2 = CH_2$$
 $\xrightarrow{+KMnO_4}$ $CH_2 - CH_2$ OH OH OH

(б) гидролиз α-оксидов (эпоксидов)

$$\begin{array}{c} \text{CH}_3\text{-CH}\text{-CH}_2 & \xrightarrow{+\text{HOH}} & \text{CH}_3\text{-CH}\text{-CH}_2 \\ \text{O} & \text{OH} & \text{OH} \end{array}$$

Окись пропилена

пропандиол -1,2

(в) глицерин в промышленности получают гидролизом (омылением) жиров

$$CH_2 - O - C(O)R_1$$
 $CH_2 - OH$ $R_1 - COOK$ $CH_2 - O - C(O)R_2$ $CH_2 - OH$ $R_2 - COOK$ $CH_2 - O - C(O)R_3$ $CH_2 - OH$ $R_3 - COOK$ $CH_2 - OH$ $R_3 - COOK$

Многоатомные спирты – важные продукты химической промышленности, широко применяются как сами, так и их различные производные.

Этиленгликоль используется для приготовления антифризов (его водные растворы замерзают при очень низких температурах) и являет-

ся промпродуктом получения пластмасс и искусственных волокон; используется в текстильной, парфюмерной, табачной и др. отраслях промышленности.

Диоксан – простой циклический эфир этиленгликоля – хороший органический растворитель

Глицерин широко используется в пищевой промышленности (для приготовления ликеров и безалкогольных напитков), в бумажной и кожевенной (для предохранения материала от высыхания), в парфюмерии (входит в состав различных кремов и мазей).

Важнейшие производные глицерина — нитроглицерины (взрывчатка и сердечное лекарство) и глифталевые смолы - полиэфиры глицерина и фталевой кислоты, применяемые для изготовления лаков.

8.3. ФЕНОЛЫ И НАФТОЛЫ

Фенолы – оксипроизводные бензола и его гомологов, в молекулах которых гидроксил непосредственно связан с бензольным ядром. Нафтолы – оксипроизводные нафталина.

Как и спирты, фенолы бывают одно- и многоатомными. Важнейшие их представители:

пирогаллол флороглюцин оксигидрохинон
$$1,2,3$$
-; $1,3,5$ - $1,2,4$ - триоксибензолы OH OH ОН ООО α -нафтол β -нафтол γ -антрол

8.3.1. Физические свойства

Фенолы — кристаллические вещества или высококипящие жидкости, обладающие сильным характерным запахом. Ядовиты. Плотность фенолов около 1 г/см³. По сравнению с соответствующими циклическими спиртами, фенолы имеют более высокие температуры кипения и лучше растворяются в воде. С увеличением числа гидроксилов растворимость фенолов улучшается.

Таблица 13 Физические свойства фенолов

Вещество	Цикло-	Фенол	Кре	золы	Пирока-	Пиро-	α-Нафтол
Свойство	гексанол		орто-	мета-	техин	галлол	
Т.пл., °С	25,5	41	30,8	12,0	104	134	99
Т.кип.,°С	161	181	191	203	246	309	289
Растворимость г/100 г H ₂ O	3,6	9,3	3,1	2,35	31,2	62,5	-

8.3.2. Химические свойства

Свойства фенолов значительно отличаются от свойств алифатических и ароматических спиртов. Это обусловлено значительным взаимным влиянием друг на друга гидроксила и бензольного ядра. Неподеленная электронная пара кислорода оксигруппы находится в сопряжении с π -электронной системой бензольного ядра, что приводит к смещению электронной плотности в сторону кольца. В результате связь О-Н настолько ослаблена, что водород гидроксила может отщепляться в виде протона с образованием фенолят-иона.

В свою очередь, гидроксил оказывает влияние на распределение электронной плотности в бензольном ядре (орто-, пара- ориентант 1 рода).

Соответственно все химические свойства фенола можно разделить на четыре группы:

(a) кислотные свойства. Водный раствор фенола называют карболовой кислотой (используется для дезинфекции, обладает сильным бактерицидным действием). Нейтрализуется растворами щелочей

$$C_6H_5OH + KOH \longrightarrow C_6H_5OK + H_2O.$$

Фенол – кислота (pKa=10) более слабая, чем, например, угольная (pKa = 6,37), поэтому феноляты легко разлагаются последней с образованием свободного фенола

$$C_6H_5OK + CO_2 + H_2O \longrightarrow C_6H_5OH + KHCO_3.$$

В образовании эфиров фенол участвует только водородом гидроксила

$$C_6H_5OH + HO-R \longrightarrow C_6H_5-O-R + H_2O;$$
 (алкилфениловый эфир)

$$R-C \stackrel{O}{\underset{OH}{\longleftarrow}} HO - C_6H_5 \xrightarrow{(-H_2O)} R-C \stackrel{O}{\underset{O-C_6H_5}{\longleftarrow}}$$

(фениловый эфир карбоновой кислоты)

Простые и сложные эфиры фенолов значительно легче образуются через феноляты

$$C_6H_5ONa + Br - C_6H_5 \longrightarrow C_6H_5 - O - C_6H_5 + NaBr$$
; (фенолят Na) (бромбензол) (дифениловый эфир) ; $CH_3 - C \stackrel{O}{\longleftarrow} NaO - C_6H_5 \stackrel{C}{\longleftarrow} CH_3 - C \stackrel{O}{\longleftarrow} O - C_6H_5$; хлорангидрид фенолят фениловый эфир уксусной кислоты натрия уксусной кислоты

Кислотные свойства фенола значительно усиливаются введением в бензольное ядро электроноакцепторных заместителей (нитрогрупп,

галогенов и др.). Так, 2,4,6-тринитрофенол (пикриновая кислота) по силе приближается к соляной (pKa=0,4);

(б) замещение гидроксила. Связь C_6H_5 —О гораздо более прочна, чем связь O–H, поэтому гидроксил фенола замещается с большим трудом. Галогеноводородные кислоты не действуют на фенол, как на спирты. Заменить гидроксил фенола на галоген можно только действием PCl_5 . Реакция идет с небольшим выходом и осложняется побочными процессами. Облегчается процесс замещения наличием, например, нитрогрупп в орто- и параположении

$$O_2N$$
 — OH + PCl₅ — O₂N — OCl + POCl₃ + HCl п-нитрофенол п-нитрохлорбензол

При перегонке фенола с цинковой пылью гидроксил восстанавливается и образуется углеводород

$$C_6H_5OH + Zn \xrightarrow{t \circ C} C_6H_6 + ZnO;$$

(в) **реакции бензольного ядра**. При каталитическом (Ni) гидрировании фенола образуется циклогексанол

$$\bigcirc$$
OH $\xrightarrow{+3H_2; 170^{\circ}}$ \bigcirc OH

Циклогексанол окисляется в циклогексанон или в адипиновую кислоту, которые применяются в производстве капрона и нейлона.

Гидроксил – ориентант I рода и значительно облегчает замещение в орто- и параположениях бензольного ядра.

Галогенирование идет в мягких условиях: фенол, в отличие от бензола, обесцвечивает бромную воду с образованием осадка 2,4,6-трибромфенола (качественная реакция на фенол); а с хлором образует о- и п-хлорфенолы:

$$\begin{array}{c|c} \text{Br} & \text{OH} \\ \text{O} & +3\text{Br}_2 \\ \hline \text{O} & (-3\text{HBr}) \end{array} \begin{array}{c} \text{OH} \\ \text{OH} \\ \text{(-HCl)} \end{array} \begin{array}{c} \text{OH} \\ \text{O} \\ \text{Cl} \end{array} + \begin{array}{c} \text{OH} \\ \text{O} \\ \text{Cl} \end{array}$$

Сульфирование фенола при комнатной температуре дает о-фенолсульфокислоту, а при нагреве – парафенолсульфокислоту:

$$\begin{array}{c} OH \\ O \\ \hline O \\ SO_3H \end{array} \\ \begin{array}{c} OH \\ \hline SO_3H \\ \hline O \\ \hline OH \\ \hline OO^{\circ}C (-H_2O) \\ \hline O \\ \hline OH \\ \hline OO^{\circ}SO_3H \\ \hline OO^{\circ}C (-H_2O) \\ \hline OO^{\circ}C (-H_2O)$$

Алкилирование по Фриделю-Крафтсу, а также алкенами и спиртами в присутствии $AlCl_3$, H_3PO_4 и др., в зависимости от условий, может давать как пара-, так и орто-изомеры:

$$HO - \overbrace{O} - H + H_2 \stackrel{\longleftarrow}{C} = \stackrel{\longleftarrow}{C} - CH_3 \xrightarrow[]{(H_3PO_4)} HO - \stackrel{\longleftarrow}{O} - \stackrel{\longleftarrow}{C} - CH_3 ;$$

(г) **реакции окисления.** Фенолы (особенно алкилзамещенные, многоатомные и нафтолы) легко окисляются, что позволяет использовать их в качестве антиоксидантов, замедляющих окисление кислородом углеводородов, альдегидов и кетонов, липидов. Продуктами окисления фенолов являются хиноны

Хиноны – неароматические соединения. Имея системы сопряженных связей, хиноидные группировки являются важными составными частями природных хромофоров (красящих веществ – пигментов).

С $FeCl_3$ (в разбавленных водных или спиртовых растворах) фенол образует комплексную соль фиолетового цвета — это качественная реакция на фенол:

FeCl₃
$$\xrightarrow{6C_6H_5OH}$$
 $\xrightarrow{C_6H_5-O}$ $\xrightarrow{C_6H_5-O}$ \xrightarrow{Fe} $\xrightarrow{O-C_6H_5}$ $\xrightarrow{O-C_6H_5}$ $\xrightarrow{H-O-C_6H_5}$

Многоатомные фенолы тоже дают с $FeCl_3$ окрашивание различных оттенков.

Нафтолы по химическим свойствам похожи на фенолы: растворяются в щелочах, дают окрашивание с FeCl₃, (α -нафтол – фиолетовое, β -нафтол – зеленое); при окислении образуют нафтохиноны:

В ароматических спиртах $C_6H_5-(CH_2)_n-OH$ электроны кислорода не сопряжены с π -электронной системой бензольного ядра, поэтому их спиртовые свойства аналогичны свойствам алифатических спиртов. В дополнение к этому, ароматические спирты обладают свойствами обычных гомологов бензола, т.е. это бифункциональные соединения.

8.3.3. Получение и применение

Фенол, крезолы и нафтолы содержатся в значительных количествах в каменноугольной смоле. Есть и синтетические способы их получения:

щелочное сплавление солей бензолсульфокислот

$$\underbrace{ O^{SO_3Na} \xrightarrow{+2 \; NaOH} O^{Na} \xrightarrow{+CO_2 \; +H_2O} O^{OH} }_{(T.\Pi I.) \; (-Na_2SO_3)} \underbrace{ O^{Na} \xrightarrow{+CO_2 \; +H_2O} O^{OH} ;$$

- щелочной гидролиз арен- галогенидов

$$C_6H_5 - Cl + NaOH \xrightarrow{T. III.} C_6H_5OH + NaCl;$$

– способ Ф.Рашига (1920) – сначала окислительное хлорирование бензола хлороводородом, затем хлорбензол гидролизуется водяным паром, а HCl регенерируется. И не нужна щелочь

$$C_6H_6 \xrightarrow{+HCl; 200^{\circ}} C_6H_6Cl \xrightarrow{+H_2O \text{ (пар)}} C_6H_6OH + HCl;$$

кумольный способ (П.Г. Сергеев и др., 1949) совместного получения фенола и ацетона. Исходное сырье – бензол и пропилен

изопропилбензол

ООН
$$C - CH_3$$
 CH_3 $OH - CH_3$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Фенолы и нафтолы – ценное химическое сырье для различных органических синтезов.

Фенол используется для производства полимеров (фенолформальдегидные смолы), красителей, лекарственных препаратов, взрывчатки (соли пикриновой кислоты – пикраты) и т.п.

Нафтолы – для получения синтетических красителей.

Фенол и крезолы – сильные антисептики и используются для дезинфекции. Водные эмульсии крезолов с раствором мыла (лизол, креолин) – в ветеринарии.

Гидрохинон и пирокатехин – в фотографии (проявители). Пирогаллол – для определения содержания кислорода в газовых смесях.

Антиоксиданты фенольной природы широко применяются для стабилизации бензинов, замедления старения каучуков. В пищевой промышленности — для сохранения жиров и масел, сухого молока, кондитерских изделий, рыбных и мясных продуктов, пищеконцентратов.