ФОТОХИМИЧЕСКИЕ РЕАКЦИИ

1. Энергия активации фотохимической реакции равна 30 ккал·моль⁻¹. Какова должна быть минимальная длина волны света для того, чтобы инициировать эту реакцию? Чему равна частота этого света?

Ответ:
$$\lambda = 953$$
 нм, $\nu = 3.15 \cdot 10^{14}$ с⁻¹.

2. Энергия связи С–I в молекуле CH_3I составляет 50 ккал·моль⁻¹. Чему равна кинетическая энергия продуктов реакции

$$CH_3I + hv \rightarrow CH_3 + I$$

при действии на CH_3I УФ света с длиной волны 253,7 нм? *Ответ*: $E_{\text{кин}} = 63$ ккал·моль⁻¹.

3. Определите квантовый выход фотолиза иодоводорода, который протекает по механизму:

$$HI + hv \rightarrow H' + I',$$

 $H' + HI \rightarrow H_2 + I',$
 $I' + I' \rightarrow I_2.$

Ответ: $\varphi = 2$.

4. Рассчитайте квантовый выход фотохимической реакции

$$(CH_3)_2CO \rightarrow C_2H_6 + CO$$
,

протекающей под действием УФ света с длиной волны 313 нм. Исходные данные: объем реакционного сосуда 59 мл; среднее количество поглощенной энергии $4,40\cdot10^{-3}$ Дж·с⁻¹; время облучения 7 ч; температура реакции 56,7 °C; начальное давление 766,3 Торр; конечное давление 783,2 Торр.

Omsem: $\varphi = 0.167$.

- **5.** Молекулы в сетчатке глаза человека способны передавать сигнал в зрительный нерв, если скорость поступления излучения равна $2 \cdot 10^{-16}$ Вт. Найдите минимальное число фотонов, которое должно за 1 с попадать на сетчатку глаза, чтобы создать зрительное ощущение. Среднюю длину волны света можно принять равной 550 нм. *Ответ*: 553 фотона.
- **6.** Морские водоросли поглощали свет со средней длиной волны 550 нм и мощностью 10 Вт в течение 100 с. За это время образовалось $5,75 \cdot 10^{-4}$ моль O_2 . Рассчитайте квантовый выход образования кислорода. *Ответ*: $\varphi = 0,125$.

- 7. Вычислите максимально возможный выход углеводов с 1 га зеленых насаждений в течение лета. Исходные данные: солнечная энергия $1,0 \text{ кал} \cdot \text{см}^{-2} \cdot \text{мин}^{-1}$; летний день 8 ч; в область поглощения хлорофилла (400–650 нм, средняя длина волны 550 нм) попадает 1/3 излучения; квантовый выход 0,12 единиц H_2 CO на фотон. *Ответ*: 100 т.
- **8.** Аммиак разлагается УФ светом (длина волны 200 нм) с квантовым выходом 0,14. Рассчитайте энергию света (кал), необходимую для разложения 1 г аммиака? *Ответ*: 60 ккал.
- **9.** В фотохимической реакции $A \rightarrow 2B + C$ квантовый выход равен 210. В результате реакции из 0,300 моль вещества A образовалось 2,28·10⁻³ моль вещества B. Сколько фотонов поглотило вещество A? *Ответ*: 3,27·10¹⁸.
- **10.** В фотохимической реакции $H_2 + Cl_2 \rightarrow 2HCl$ квантовый выход равен 15000. В результате реакции из 0,240 моль Cl_2 образовалось 2,98·10⁻² моль HCl. Сколько фотонов поглотил хлор? *Ответ*: 5,98·10¹⁷.
- **11.** Фотохимическое окисление фосгена под действием УФ излучения описывается уравнением:

$$2COCl_2 + O2 \rightarrow 2CO_2 + Cl_2$$
.

Поглощение $4,4\cdot10^{18}$ квантов света ($\lambda=253,7$ нм) вызвало превращение $1,31\cdot10^{-5}$ моль фосгена. Рассчитайте квантовый выход реакции. *Ответ:* $\varphi=1,79$.