

Инструкция по работе с программой

1.1. Ввод исходных данных

Запуск программы: на первый запрос нужно ввести цифру «1» и нажать клавишу «enter». После этого на экране появится таблица ввода исходных данных (рис. 1). В таблице указаны строки, отвечающие за ввод параметров и значения параметров.

Ввод исходных данных. Для ввода исходных данных необходимо вызвать строку и задать нужный параметр.

Рис. 1. Таблица ввода исходных данных в программу.

Вызов строки. Для того чтобы вызвать строку, нужно набрать ее номер и нажать клавишу «enter». После этого вызываемая строка появляется внизу под таблицей. Задание параметра. В появившейся строке нужно указать значение параметра, поставить после него точку и нажать клавишу «enter». После этой операции появляется новая таблица данных, в которой стоит новый параметр.

Запуск на счет. После замены всех необходимых строк (в соответствии с таблицей исходных данных к лабораторным работам) необходимо запустить программу на счет. Для этого нужно ввести цифру <0» и нажать клавишу <enter».

После завершения расчетов на мониторе вновь появится заставка программы. Для выполнения второй и последующих серий расчетов, нужно набрать «1» и нажать клавишу «enter», чтобы еще раз войти в программу. На экране появится таблица с параметрами, которые были заданы в первом расчете. Далее нужно вызвать требуемую строку и заменить значение исследуемого параметра на новое, затем снова запустить программу на счет.

Закрытие программы. После завершения всех расчетов в заставке программы набирается цифра «0» и клавиша «enter».

1.2. Расшифровка файлов результатов

Моделирование конвективного переноса с током теплоносителя. Расчет гидравлических характеристик в контуре

Типы файлов результатов. Вывод результатов расчета осуществляется в программе автоматически в специальные файлы с расширением .REZ (табл. 1).

Таблица 1

ИМЯ ФАЙЛА	ТИП ДАННЫХ, СОДЕРЖАЩИХСЯ В ФАЙЛЕ
LU_3m_R.REZ	распределение крови (R) по тканям для мужского (m) организма
LU_4g_R.REZ	распределение крови (R) по тканям для женского (g) организма
LU_5m_A.REZ	потери давления в артериолах (А) по тканям для мужского (т) организма
LU_6g_A.REZ	потери давления в артериолах (А) по тканям для женского (g) организма
LU_5m_K.REZ	остаточное давление в капиллярах (К) по тканям для мужского (т) организма
LU 6g K.REZ	остаточное давление в капиллярах (К) по тканям для женского (g) организма

В данные файлы заносятся все выполненные в программе варианты расчетов в той последовательности, в какой они задавались на экране. В каждом файле результатов содержатся данные для пяти возрастов: 10 лет, 20 лет, 30 лет, 40 лет, 50 лет. После выхода из программы данные файлы можно найти в каталоге, из которого осуществлялся запуск программы.

В соответствии с описанными файлами результатов необходимо построить графики распределения крови и давления по тканям кровеносной системы.

Для построения необходимо выбрать в соответствии с вариантом задания:

- файлы результатов для мужского либо женского организма;
- внутри файла данные для соответствующего возраста

Названия графиков соответствует названию следующих подпунктов.

Распределение крови по тканям (файлы LU_3M_R.REZ, LU_4G_R.REZ). В файлах собрана информация о распределения крови (R) по тканям для мужского (LU_3m_R.REZ) и женского (LU_4g_R.REZ) организма для пяти возрастных групп.

Задание осей координат графиков. При построении графиков по оси X изменяются различные параметры в зависимости от исследуемой задачи (табл. 2).

Таблица 2

№ Л. Р.	ЗНАЧЕНИЯ ПО ОСИ Х
Л. Р. №1	сила гравитации (от 0 до 1 в долях от g)
Л. Р. №2	перегрузоки п (от 5 до 10)
Л. Р. №3	диаметр капилляров (d_k)
Л. Р. №4	диаметр артериол (da)
Л. Р. №5	степень гиподинамии
Л. Р. №6	интенсивность физической нагрузки (от -10 до +10)
Л. Р. №7	интенсивность физической нагрузки (от -10 до +10)
Л. Р. №8	интенсивность физической нагрузки (от -10 до +10)

По оси Y изменяется - минутный объем крови (МОК, %) для каждой ткани в процентах от суммарного расхода (выбрасываемого сердцем за минуту работы).

Формирование легенды графиков в excel. В файле результатов выходные данные представлены в виде следующей таблицы:

Колонки означают: № 1 - сила гравитации; № 2 - перегрузки; № 3 - диаметр артериол; № 4 - диаметр капилляров; № 5 - избыточный вес; № 6 - интенсивность физической нагрузки; № 7 ... № 11 - название тканей организма; № 12 - суммарный расход крови.

В работах для построения графиков используются разные колонки в зависимости от исследуемой задачи (табл. 3).

Таблица 3

№ Л. Р.	ИСПОЛЬЗУЕМЫЕ КОЛОНКИ
Л. Р. №1	№ 1, № 7№ 11 – для распределения крови по тканям
	№ 1, № 7№ 14 – для потерь давления
Л. Р. №2	№ 2, № 7№ 11 – для распределения крови по тканям
	№ 2, № 7№ 14 – для потерь давления
Л. Р. №3	№ 1, №2, № 7№ 11 – для распределения крови по тканям
	№ 1, №2, № 7№ 14 – для потерь давления
Л. Р. №4	№ 2, № 3, № 7№ 11 – для распределения крови по тканям
	№ 2, № 3, № 7№ 14 – для потерь давления
Л. Р. №5	№ 1, № 4, № 6, № 7№ 11 – для распределения крови по тканям
	№ 1, № 4, № 6, № 7№ 14 – для потерь давления
Л. Р. №6.1	№ 4, № 6, № 7№ 11 – для распределения крови по тканям
	№ 4, № 6, № 7№ 14 – для потерь давления
Л. Р. №6.2	№ 1, № 4, № 6, № 7№ 11 – для распределения крови по тканям
	№ 1, № 4, № 6, № 7№ 14 – для потерь давления
Л. Р. №6.3	№ 2, № 4, № 6, № 7№ 11 – для распределения крови по тканям
	№ 2, № 4, № 6, № 7№ 14 — для потерь давления

Колонки, которые в работе не используются, удаляются из таблицы.

Потери давления в артериолах (файлы LU_5M_A.REZ, LU_6G_A.REZ). В файлах собрана информация о потерях давления в артериолах (A) по тканям для мужского (LU 5m A.REZ) и женского (LU 6g A.REZ) организма для пяти возрастных групп.

Задание осей координат графиков. При построении графиков по оси X изменяются различные параметры в зависимости от исследуемой задачи (табл. 2). По оси Y изменяется сопротивление артериол для каждой ткани в мм.рт.ст.

Формирование легенды графиков в excel. В файле результатов выходные данные представлены в виде следующей таблицы:

Колонки означают: № 1 - сила гравитации; № 2 - перегрузки; № 3 - диаметр артериол; № 4 - диаметр капилляров; № 5 - избыточный вес; № 6 - интенсивность физической нагрузки; № 7 ... № 14 - название тканей организма.

В работах для построения графиков используются разные колонки в зависимости от исследуемой задачи (табл. 3).

Колонки, которые в работе не используются, удаляются из таблицы.

Моделирование тепловых процессов в системе «человек – окружающая среда»

Запуск программы: на первый запрос нужно ввести цифру «1» и нажать клавишу «enter». После этого на экране появится таблица ввода исходных данных (рис. 2). В таблице указаны строки, отвечающие за ввод параметров и значения параметров.

Ввод исходных данных. Для ввода исходных данных необходимо вызвать строку и задать нужный параметр.

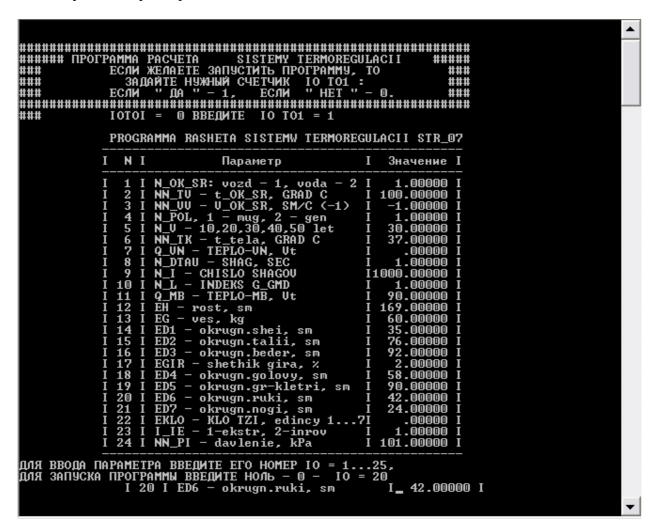


Рис. 2. Таблица ввода исходных данных в программу.

Вывод результатов расчета осуществляется в программе автоматически в специальные файлы с расширением «DAT» (табл. 4).

Таблица 4

Имя файла	Тип данных, содержащихся в файлах
	тепловые потоки
STR_Q.DAT	тепловые потери тканей абсолютные Q , Вт
STR_QI.DAT	составляющие тепловых потерь для руки абсолютные Q , Ват
STR_QU.DAT	тепловые потери тканей относительные Q , Ват
STR_TFSA.DAT	коэффициент теплоотдачи отдельных тканей α, Вт/м²К
	температуры
STR_KG.DAT	среднемассовая температура кожи t, °C
STR_TK.DAT	среднемассовая температура тканей t, °C
STR_DT.DAT	перепад температуры в подкожном слое капилляров Δt , °C
STR_GA.DAT	температуры на стыке слоев в руке t , °С
	температуры на стыке слоев тканей (сечения между слоями)
STR_GK.DAT	кожи («кожа – подкожные капилляры») t, °C
STR_GT.DAT	за слоем СТР («подкожные капилляры – жир») t, °C
STR_GG.DAT	за слоем жира («жир – мышца») <i>t</i> , °C
STR_GV.DAT	за слоем мышц («мышца – кость (внутренности)») Δt , °C
	теплофизические параметры
STR_TT.DAT	безразмерные температуры тканей Θ
STR_LA.DAT	коэффициент теплопроводности λ для подкожного слоя капилляров
STR_BI.DAT	число Ві для подкожного слоя сети капилляров
STR TFS.DAT	теплофизические свойства среды

В данные файлы заносятся все выполненные в программе варианты расчетов в той последовательности, в какой они задавались на экране. После выхода из программы данные файлы можно найти в каталоге, из которого осуществлялся запуск программы.