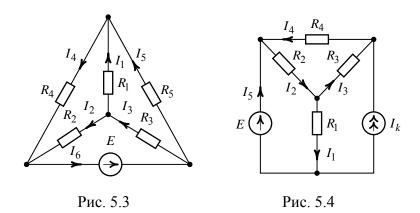

Тема 5. Метод узловых потенциалов (узловых напряжений)

Задача 5.1. Методом узловых потенциалов рассчитать напряжения узловых точек, указанных на схеме (рис. 5.1), и рассчитать все токи, если E_1 = 120 B, E_2 = 240 B, I_k = 5 A, R_1 = 24 Ом, R_2 = 40 Ом, R_3 = 26 Ом, R_4 = 32 Ом, R_5 = 36 Ом. Потенциал узловой точки 1 принять равным нулю (φ_1 = 0).

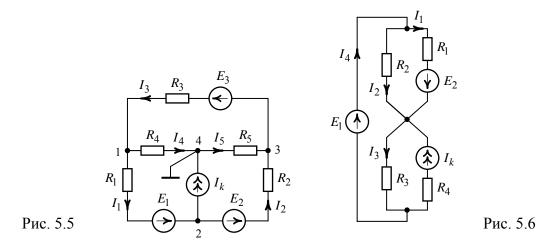
Ответ: потенциалы узлов $\varphi_1=0$ В, $\varphi_2=109,51$ В, $\varphi_3=57,12$ В; токи $I_1=0,44$ А, $I_2=4,57$ А, $I_3=2,02$ А, $I_4=-3,42$ А, $I_5=1,59$ А, $I_6=-2,98$ А.

Задача 5.2. Для схемы (рис. 5.2), пользуясь методом узловых потенциалов, определить все токи. Дано $I_k=1,2~{\rm A}$, $R_1=80~{\rm Om}$, $R_2=120~{\rm Om}$, $R_3=240~{\rm Om}$, $R_4=30~{\rm Om}$, $R_5=60~{\rm Om}$.


O T B e T: $I_1 = 0$ A, $I_2 = 0.8$ A, $I_3 = 0.4$ A, $I_4 = 0.8$ A, $I_5 = 0.4$ A.

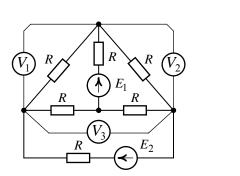
Задача 5.3. Методом узловых потенциалов найти токи в цепи, схема которой изображена на рис. 5.3, если $E=200\,\mathrm{B}$, $R_1=100\,\mathrm{Om}$, $R_2=160\,\mathrm{Om}$, $R_3=180\,\mathrm{Om}$, $R_4=60\,\mathrm{Om}$, $R_5=200\,\mathrm{Om}$.

Ответ: $I_1 = 0,208\,\mathrm{A}$, $I_2 = 0,47\,8\,\mathrm{A}$, $I_3 = 0,686\,\mathrm{A}$, $I_4 = 0,929\,\mathrm{A}$, $I_5 = 0,721\,\mathrm{A}$, $I_6 = 1,407\,\mathrm{A}$.


Задача 5.4. Для схемы, приведенной на рис. 5.4, пользуясь методом узловых потенциалов, определить все токи. Дано: $E=15~\mathrm{B}$, $I_k=0.03~\mathrm{A}$, $R_1=200~\mathrm{Om}$, $R_2=250~\mathrm{Om}$, $R_3=500~\mathrm{Om}$, $R_4=100~\mathrm{Om}$.

O т в е т: $I_1 = 42 \text{ мA}$, $I_2 = 26 \text{ мA}$, $I_3 = -16 \text{ мA}$, $I_4 = 14 \text{ мA}$.

Задача 5.5. Методом узловых потенциалов найти токи в схеме цепи (рис. 5.5), если $E_1=100~\mathrm{B}$, $E_2=200~\mathrm{B}$, $E_3=30~\mathrm{B}$, $I_k=0.8~\mathrm{A}$, $R_1=20~\mathrm{Om}$, $R_2=10~\mathrm{Om}$, $R_3=50~\mathrm{Om}$, $R_4=100~\mathrm{Om}$, $R_5=25~\mathrm{Om}$. Потенциал узловой точки 4 принять равным нулю ($\phi_4=0$).


Otbet: $\phi_1 = -140 \,\mathrm{B}$, $\phi_2 = -142 \,\mathrm{B}$, $\phi_3 = 15 \,\mathrm{B}$; $I_1 = 5,1 \,\mathrm{A}$, $I_2 = 4,3 \,\mathrm{A}$, $I_3 = 3,7 \,\mathrm{A}$, $I_4 = -1,4 \,\mathrm{A}$, $I_5 = -0,6 \,\mathrm{A}$.

Задача 5.6. Методом узловых потенциалов найти токи в схеме (рис. 5.6). Дано $E_1=120~\mathrm{B}$, $E_2=30~\mathrm{B}$, $I_k=10~\mathrm{A}$, $R_1=2~\mathrm{Om}$, $R_2=5~\mathrm{Om}$, $R_3=1~\mathrm{Om}$, $R_4=10~\mathrm{Om}$.

Ответ: $I_1 = 42,94$ А, $I_2 = 11,18$ А, $I_3 = 64,12$ А, $I_4 = 54,11$ А.

Нейман В.Ю., Морозов П.В. Теоретические основы электротехники: методы и примеры решения задач. Часть 1, НГТУ, 2016

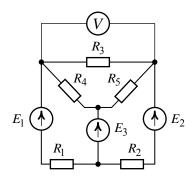


Рис. 5.7

Рис. 5.8

Задача 5.7. Определить показания вольтметров, включенных в схеме рис. 5.7, если $E_1 = 360 \, \mathrm{B}$, $E_2 = 240 \, \mathrm{B}$, все $R = 100 \, \mathrm{Om}$. Расчет выполнить методом узловых потенциалов.

O т в е т: U_{V1} = 30 В , U_{V2} = 150 В , U_{V3} = 120 В .

Задача 5.8. Определить показание вольтметра в схеме цепи рис. 5.8, используя метод узловых потенциалов. Дано: $E_1=28~{\rm B}$, $E_2=36~{\rm B}$, $E_3=6~{\rm B}$, $R_1=25~{\rm Om}$, $R_2=50~{\rm Om}$, $R_3=100~{\rm Om}$, $R_4=20~{\rm Om}$, $R_5=10~{\rm Om}$.

O т в е т: $U_V = 4 \, \mathrm{B}$.