Тема 2. Расчет сложных цепей с помощью прямого применения законов Кирхгофа

Задача 2.1. В цепи (рис. 2.1) $E_1 = 24 \,\mathrm{B}$, $E_2 = 12 \,\mathrm{B}$, $R_1 = 4 \,\mathrm{Om}$, $R_2 = 8 \,\mathrm{Om}$. Определить показания приборов, если $r_A = 0$, $r_V \to \infty$.

O т в е т: I_A =1 A , U_V =16 В.

Задача 2.2. Определить показание вольтметра в цепи рис. 2.2. Параметры цепи заданы: $E_1 = 120 \,\mathrm{B}$, $E_2 = 30 \,\mathrm{B}$, $R = 500 \,\mathrm{Om}$.

O т в е т: $U_V = 100 \,\mathrm{B}$.

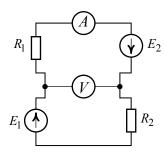


Рис. 2.1

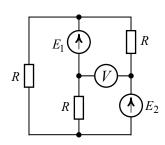


Рис. 2.2

Задача 2.3. Для схемы на рис. 2.3, пользуясь законами Кирхгофа, найти все токи, если $E_1 = 120 \,\mathrm{B}$, $E_2 = 240 \,\mathrm{B}$, $R_1 = 20 \,\mathrm{Om}$, $R_2 = 60 \,\mathrm{Om}$, $R_3 = 120 \,\mathrm{Om}$, $R_4 = 80 \,\mathrm{Om}$, $R_5 = 40 \,\mathrm{Om}$.

Ответ:
$$I_1 = 4,48 \,\mathrm{A}$$
 , $I_2 = -2,51 \,\mathrm{A}$, $I_3 = 0,41 \,\mathrm{A}$, $I_4 = -2,39 \,\mathrm{A}$, $I_5 = 1,98 \,\mathrm{A}$, $I_6 = 4,89 \,\mathrm{A}$.

Задача 2.4. Для схемы рис. 2.4, пользуясь законами Кирхгофа, определить токи в ветвях с резистивными сопротивлениями, если $I_{k1} = 1,2 \text{ A}$, $I_{k2} = 0,4 \text{ A}$, $R_1 = R_3 = 2 \text{ Om}$, $R_2 = R_4 = 4 \text{ Om }.$

O т в е т: $I_{R1} = 0.85 \text{ A}$, $I_{R2} = 0.45 \text{ A}$, $I_{R3} = 0.35 \text{ A}$, $I_{R4} = 0.75 \text{ A}$.

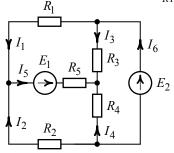


Рис. 2.3

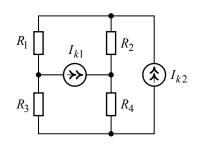
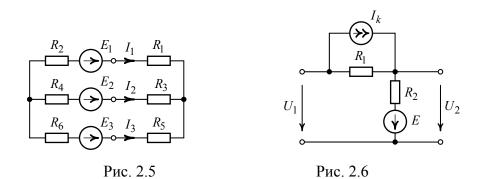


Рис. 2.4

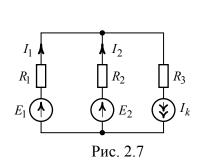

Задача 2.5. Для схемы рис. 2.5, пользуясь законами Кирхгофа, определить все токи, если $E_1 = 36 \,\mathrm{B}$, $E_2 = 12 \,\mathrm{B}$, $E_3 = 110 \,\mathrm{B}$, $R_1 = 24 \,\mathrm{Om}$, $R_2 = 32 \,\mathrm{Om}$, $R_3 = 11 \,\mathrm{Om}$, $R_4 = 21 \,\mathrm{Om}$, $R_5 = 15 \text{ OM}$, $R_6 = 12 \text{ OM}$.

O T B e T:
$$I_1 = -0.42 \text{ A}$$
, $I_2 = -1.47 \text{ A}$, $I_3 = 1.89 \text{ A}$.

Нейман В.Ю., Морозов П.В. Теоретические основы электротехники: методы и примеры решения задач. Часть 1, НГТУ, 2016

Задача 2.6. Напряжение на входе цепи (рис. 2.6) составляет U_1 = 75 В . Определить напряжение U_2 на выходе цепи, если E = 50 В , I_k = 0,1 А , R_1 = 150 Ом , R_2 = 130 Ом .

O т в е т: $U_2 = 15 \text{ B}$.



Задача 2.7. Определить токи в схеме рис. 2.7, если E_1 = 240 B, E_2 = 60 B, I_k = 1,5 A, R_1 = 300 Ом, R_2 = 600 Ом, R_3 = 250 Ом. Проверить баланс мощностей.

O T B e T: $I_1 = 1,2 \text{ A}$, $I_2 = 0,3 \text{ A}$, P = 1048,5 BT.

Задача 2.8. Для схемы рис. 2.8, пользуясь законами Кирхгофа, определить показания приборов, если $E=25~\mathrm{B}$, $I_k=0.15~\mathrm{A}$, $R_1=12~\mathrm{OM}$, $R_2=24~\mathrm{OM}$, $R_3=22~\mathrm{OM}$, $R_4=18~\mathrm{OM}$. Принять внутренние сопротивления приборов: $r_V=\infty$, $r_A=0$.

O т в е т: $I_A = 0,54 \,\mathrm{A}$, $U_V = 14,9 \,\mathrm{B}$.

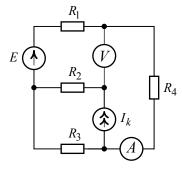
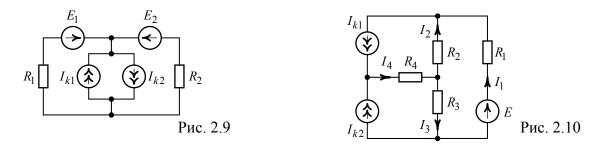


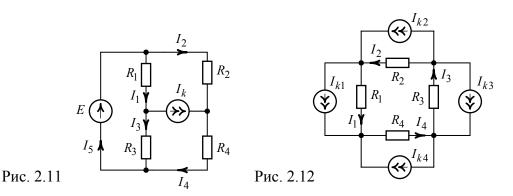
Рис. 2.8

Задача 2.9. Для схемы рис. 2.9, пользуясь законами Кирхгофа, определить все токи. Дано $E_1=200~\mathrm{B}$, $E_2=1600~\mathrm{B}$ $I_{k1}=12~\mathrm{A}$, $I_{k2}=26~\mathrm{A}$, $R_1=200~\mathrm{Om}$, $R_2=500~\mathrm{Om}$.


O т в е т: $I_{R1} = 8 \text{ A}$, $I_{R2} = 6 \text{ A}$.

Задача 2.10. Рассчитать с использованием законов Кирхгофа токи в схеме рис. 2.10, если $E=10\,\mathrm{B}$, $I_{k1}=1,4\,\mathrm{A}$, $I_{k2}=0,6\,\mathrm{A}$, $R_1=40\,\mathrm{Om}$, $R_2=60\,\mathrm{Om}$, $R_3=10\,\mathrm{Om}$, $R_4=30\,\mathrm{Om}$.

O т в е т: $I_1 = 0.8 \text{ A}$, $I_2 = 0.6 \text{ A}$, $I_3 = 1.4 \text{ A}$, $I_4 = 2 \text{ A}$.


Задача 2.11. Для схемы рис. 2.11, пользуясь законами Кирхгофа, определить все токи, если $E=18~\mathrm{B}$, $I_k=1~\mathrm{A}$, $R_1=5~\mathrm{Om}$, $R_2=7~\mathrm{Om}$, $R_3=2~\mathrm{Om}$, $R_4=4~\mathrm{Om}$.

O т в е т: I_1 = 2,86 A , I_2 = 1,27 A , I_3 = 1,86 A , I_4 = 2,27 A , I_5 = 4,13 A .

Задача 2.12. Для схемы рис. 2.12, пользуясь законами Кирхгофа, определить все токи. Дано I_{k1} = 1,8 A , I_{k2} = 2,7 A , I_{k3} = 0,6 A , I_{k4} = 1,2 A , R_1 = 120 Ом , R_2 = 180 Ом , R_3 = 270 Ом , R_4 = 150 Ом .

Ответ: $I_1 = -1.3$ А, $I_2 = -2.2$ А, $I_3 = 1.1$ А, $I_4 = 1.7$ А.

