
Тема 1. Расчет разветвленных электрических цепей при постоянных токах и напряжениях

Задача 1.1. Определить эквивалентное сопротивление электрической цепи, представленной на рис. 1.1, относительно зажимов 1 и 2, в которой сопротивления $R_1 - R_9$ равны 20 Ом.

O т в е т: $R_{\text{экв}} = 51,43 \text{ Ом}$.

Задача 1.2. Определить эквивалентное сопротивление цепи (рис. 1.2) между входными зажимами 1 и 2 при разомкнутом и замкнутом положениях ключа (Кл), если $R_1 = 18 \,\mathrm{Om}$, $R_2 = 21 \,\mathrm{Om}$, $R_3 = 24 \,\mathrm{Om}$, $R_4 = 12 \,\mathrm{Om}$, $R_5 = 16 \,\mathrm{Om}$, $R_6 = 34 \,\mathrm{Om}$.

Ответ: при разомкнутом ключе $R_{_{9 \text{KB}}12} = 49,04 \, \text{Ом}$; при замкнутом ключе $R_{_{9 \text{KB}}12} = 21,28 \, \text{Ом}$.

Задача 1.3. Определить токи в ветвях цепи (рис. 1.3), если задано $U = 160 \,\mathrm{B}$, $R_1 = 4 \,\mathrm{Om}$, $R_2 = 6 \,\mathrm{Om}$, $R_3 = 2 \,\mathrm{Om}$, $R_4 = 12 \,\mathrm{Om}$, $R_5 = 9 \,\mathrm{Om}$.

O т в е т: I_1 =15,03 A , I_2 =3,76 A , I_3 =11,27 A , I_4 =6,44 A , I_5 =8,59 A , I_6 =2,68 A .

Задача 1.4. В схеме (рис. 1.23) определить токи во всех ветвях, если $E = 60\,\mathrm{B}$, $R_1 = 20\,\mathrm{Om}$, $R_2 = 40\,\mathrm{Om}$, $R_3 = 10\,\mathrm{Om}$, $R_4 = 80\,\mathrm{Om}$, $R_5 = 250\,\mathrm{Om}$.

Ответ: I_1 = 3,14 A , I_2 = 1,48 A , I_3 = 0,35 A , I_4 = 1,13A , I_5 = 3,49 A , I_6 = 4,62 A .

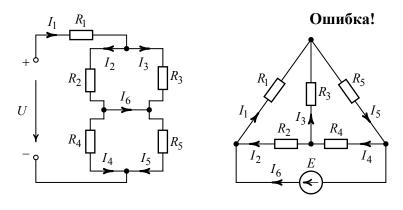


Рис. 1.3

Рис. 1.4

Задача 1.5. Определить токи во всех ветвях схемы (рис. 1.5), если задано $E = 12 \, \text{B}$, $R_1 = 0.6 \text{ OM}$, $R_2 = 0.5 \text{ OM}$, $R_3 = 0.2 \text{ OM}$.

Otbet: $I_1 = 16,1 \text{ A}$, $I_2 = 4,6 \text{ A}$, $I_3 = 11,5 \text{ A}$, $I_4 = 2,2 \text{ A}$, $I_5 = 6,8 \text{ A}$, $I_6 = 9,3 \text{ A}$.

Задача 1.6. В электрической схеме рис. 1.6 определить токи во всех ветвях, если задано $E=46~{\rm B}$, $R_1=250~{\rm Om}$, $R_2=150~{\rm Om}$, $R_3=300~{\rm Om}$, $R_4=100~{\rm Om}$.

O т в е т: $I_1 = 102 \text{ мA}$, $I_2 = 170 \text{ мA}$, $I_3 = 68 \text{ мA}$, $I_4 = 204 \text{ мA}$, $I_5 = 34 \text{ мA}$, $I_6 = 273 \text{ мA}$.

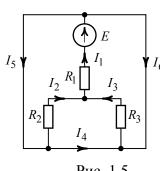


Рис. 1.5

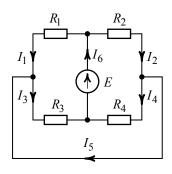


Рис. 1.6

Задача 1.7. Определить показание амперметра для схемы рис. 1.7, если $E = 60 \, \mathrm{B}$, $R_1=20~{
m Om}$, $R_2=30~{
m Om}$, $R_3=10~{
m Om}$, $R_4=40~{
m Om}$. Принять $r_A=0$.

Oтвет: $I_A = 0.6 \text{ A}$.

Задача 1.8. Определить показание амперметра для схемы рис. 1.8, если $I_k = 10 \,\mathrm{A}$, $R_1 = 100 \,\mathrm{OM}$, $R_2 = 200 \,\mathrm{OM}$, $R_3 = 900 \,\mathrm{OM}$, $R_4 = 600 \,\mathrm{OM}$. Принять $r_A = 0$.

O т в е т: $I_A = 1,5 \text{ A}$.

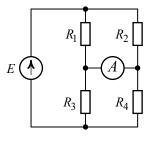


Рис. 1.7

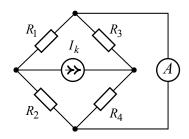
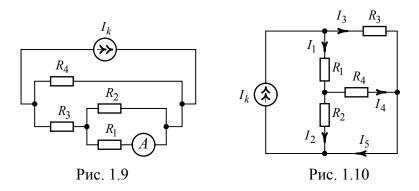


Рис. 1.8


Задача 1.9. Показание амперметра (рис. 1.9), установленного в разветвленной части схемы, составляет $I_A = 0.5 \,\mathrm{A}$. Найти величину источника тока I_k , если $R_1 = 20 \,\mathrm{Om}$, $R_2 = 100 \ {
m Om} \ , \quad R_3 = 10 \ {
m Om} \ , \quad R_4 = 40 \ {
m Om} \ . \quad$ Сопротивление источника считать $r_k = \infty \ ,$ амперметра $r_A = 0$.

Oтвет: $I_k = 1$ A.

Нейман В.Ю., Морозов П.В. Теоретические основы электротехники: методы и примеры решения задач. Часть 1, НГТУ, 2016

Задача 1.10. Найти все токи в ветвях цепи, схема которой приведена на рис. 1.10, если $I_k = 2 \text{ A}$, $R_1 = 0.2 \text{ OM}$, $R_2 = 0.6 \text{ OM}$, $R_3 = 0.5 \text{ OM}$, $R_4 = 0.4 \text{ OM}$. Принять сопротивление источника $r_k = \infty$.

O т в е т: I_1 = 1,06 A , I_2 = 0,42 A , I_3 = 0,94 A , I_4 = 0,64 A , $I_5 = 1,58 \text{ A}$.

Задача 1.11. Определить показание амперметра в схеме (рис. 1.11), если $E = 120 \,\mathrm{B}$, $R_1 = R_2 = 3~{
m Om}$, $R_3 = R_8 = 7~{
m Om}$, $R_4 = R_6 = 5~{
m Om}$, $R_5 = R_7 = 2~{
m Om}$. Принять $r_A = 0$.

Oтвет: $I_A = 26,65 \,\mathrm{A}$.

Задача 1.12. Методом пропорционального пересчета найти все токи в схеме рис. 1.12, если $U_{\rm BX}=18\,{\rm B}$, $R_1=250\,{\rm OM}$, $R_2=300\,{\rm OM}$, $R_3=600\,{\rm OM}$, $R_4=150\,{\rm OM}$, $R_5=400\,{\rm OM}$, $R_6 = 200 \, \mathrm{Om} \, , \, \, R_7 = 120 \, \mathrm{Om} \, . \, \, \mathrm{B} \, \, \mathrm{pacчetax} \, \, \mathrm{принять} \, \, \mathrm{tok} \, \, \mathrm{B} \, \, \mathrm{coпротивлении} \, \, R_6 \, \, \mathrm{paвным} \, \, 1 \, \mathrm{A} \, .$

Ответ: $k_{\rm nep} = 10,37 \cdot 10^{-3}$, $I_1 = 46,91\,{\rm mA}$, $I_2 = 20,91\,{\rm mA}$, $I_3 = 10,45\,{\rm mA}$, $I_4 = 15,55\,{\rm mA}$, $I_5 = 5,18 \text{ MA}$, $I_6 = 10,37 \text{ MA}$.

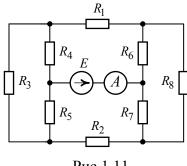


Рис.1.11

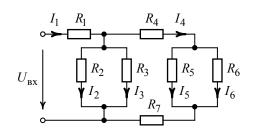


Рис.1.12