Тема 1. Разложение периодических несинусоидальных кривых напряжений и токов в тригонометрический ряд Фурье

При расчете цепей с несинусоидальными источниками исходят из того, что любая периодическая функция может быть представлена как сумма конечного ряда простых гармонических (синусоидальных) составляющих с соответствующей амплитудой и начальной фазой. В случае, если функция не выражается аналитически, то для определения гармонических составляющих тригонометрического ряда применяются приближенные методы гармонического анализа.

При анализе несинусоидальных кривых, как правило, интересуют величины, связанные с определением максимального, действующего и среднего за период значения функции. Для характеристики периодических кривых используют коэффициенты амплитуды, формы и искажения.

Задача 1.1

Разложить в тригонометрический ряд периодическую кривую напряжения постоянной амплитуды $U_m = 100$ В, выражаемую кривой (рис. 1.1). По результатам разложения, учитывая три первых члена ряда Фурье, построить в масштабе результирующую кривую заданного напряжения.

Рис. 1.1

Рис. 1.2

Решение

1. Разложение в тригонометрический ряд Фурье кривой *u*(ω*t*) получим в следующей форме:

$$f(\omega t) = A_0 + \sum_{k=1}^{\infty} (a_{km} \cos k\omega t + b_{km} \sin k\omega t).$$

Учитывая симметрию кривой (рис. 1.1), можно заключить, что в тригонометрическом ряде будут отсутствовать синусоидальные $(b_{km} = 0)$ составляющие, так как функция $u(\omega t)$ четная.

В пределах заданного периода закон изменения напряжения удовлетворяет условию

$$u(\omega t) = \begin{cases} \frac{U_m}{\pi} \omega t & \text{при } 0 < \omega t < \pi, \\ U_m \left(2 - \frac{\omega t}{\pi} \right) & \text{при } \pi < \omega t < 2\pi. \end{cases}$$

2. Расчет коэффициентов ряда.

С учетом симметрии заданного треугольника напряжений, который делится на два равных по площади участка, интегрирование ведется в пределах одной второй периода, а перед знаком интеграла ставится множитель 2.

Постоянная составляющая:

Т

$$A_{0} = \frac{2}{T} \int_{0}^{\frac{1}{2}} u(t) dt = \frac{1}{\pi} \int_{0}^{\pi} u(\omega t) d\omega t = \frac{1}{\pi} \int_{0}^{\pi} \frac{U_{m}}{\pi} \omega t d\omega t = \frac{U_{m}}{2\pi^{2}} (\omega t)^{2} \Big|_{0}^{\pi} = \frac{U_{m}}{2}.$$

Амплитуда синусной составляющей к-й гармоники:

$$b_{km} = \frac{4}{T} \int_{0}^{\frac{1}{2}} u(t) \sin k\omega t dt = \frac{2}{\pi} \int_{0}^{\pi} u(\omega t) \sin k\omega t d\omega t = 0.$$

Амплитуда косинусной составляющей k-й гармоники:

$$a_{km} = \frac{4}{T} \int_{0}^{\frac{T}{2}} u(t) \cos k\omega t dt = \frac{2}{\pi} \int_{0}^{\pi} \frac{U_m}{\pi} \omega t \cos k\omega t d\omega t =$$
$$= \frac{2U_m}{\pi^2} \left(\frac{\omega t}{k} \sin k\omega t + \frac{1}{k^2} \cos k\omega t \right) \Big|_{0}^{\pi} =$$
$$= \frac{2U_m}{\pi^2 k^2} (\cos k\pi - 1) = \frac{2U_m}{\pi^2 k^2} [(-1^k) - 1].$$

3. Тригонометрический ряд Фурье будет иметь вид

$$u(\omega t) = \frac{U_m}{2} + \sum_{k=1}^{\infty} \frac{2U_m}{\pi^2 k^2} \Big[(-1^k) - 1 \Big] \cos k \omega t \; .$$

По результатам разложения, учитывая только три первых члена ряда, получим

$$u(\omega t) = \frac{U_m}{2} - \frac{4U_m}{\pi^2} \cos \omega t - \frac{4U_m}{9\pi^2} \cos 3\omega t =$$

= 50 - 40,57 \cos \omega t - 4,51 \cos 3\omega t B.

4. Результирующая кривая заданного напряжения, построенная в масштабе по первым трем членам тригонометрического ряда, изображена на рис. 1.2.

Задача 1.2

Разложить в тригонометрический ряд периодическую кривую напряжения с амплитудой $U_m = 200$ В, указанную на рис. 1.3, а. Рассчитать действующее значение напряжения путем непосредственного интегрирования заданной функции $u(\omega t)$. Ограничиваясь первыми тремя членами тригонометрического ряда, оценить влияние отброшенных гармоник на величину действующего значения напряжения. Оценить влияние неучтенных гармоник тригонометрического ряда на изображение временной диаграммы напряжения.

Решение

1. Периодическая кривая (рис. 1.3, а) симметрична относительно начала координат, следовательно, можно заключить, что тригонометрический ряд этой функции не содержит постоянной составляющей ($A_0 = 0$) и косинусоидальных гармоник ($a_{km} = 0$).

На интервале 0... л закон изменения напряжения удовлетворяет условию

$$u(\omega t) = \begin{cases} \frac{2U_m}{\pi} \omega t & \text{при } 0 < \omega t < \frac{\pi}{2}, \\ U_m & \text{при } \frac{\pi}{2} < \omega t < \pi. \end{cases}$$

2. Расчет коэффициентов ряда. Постоянная составляющая:

$$A_0 = \frac{1}{T} \int_0^T u(t) dt = \frac{1}{2\pi} \int_0^{2\pi} u(\omega t) d\omega t = 0.$$

С учетом симметрии заданной формы напряжения (рис. 1.3, а), которая делится на две равных по площади трапеции, интегрирование выполним в пределах одной второй периода, а интегральную сумму домножим на два.

Амплитуда синусной составляющей к-й гармоники:

$$b_{km} = \frac{4}{T} \int_{0}^{\frac{T}{2}} u(t) \sin k\omega t dt = \frac{2}{\pi} \int_{0}^{\pi} u(\omega t) \sin k\omega t d\omega t =$$
$$= \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{2U_m}{\pi} \omega t \sin k\omega t d\omega t + \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} U_m \sin k\omega t d\omega t =$$

$$= \frac{4U_m}{\pi^2} \left(-\frac{\omega t}{k} \cos k\omega t + \frac{1}{k^2} \sin k\omega t \right) \Big|_0^{\frac{\pi}{2}} - \frac{2U_m}{\pi k} \cos k\omega t \Big|_{\frac{\pi}{2}}^{\frac{\pi}{2}} =$$
$$= \frac{4U_m}{\pi^2 k^2} \sin \frac{k\pi}{2} - \frac{2U_m}{\pi k} \cos k\pi = \frac{2U_m}{\pi k} \left(\frac{2}{\pi k} \sin \frac{k\pi}{2} - \cos k\pi \right).$$

Амплитуда косинусной составляющей к-й гармоники:

$$a_{km} = \frac{4}{T} \int_{0}^{\frac{T}{2}} u(t) \cos k \omega t dt = \frac{2}{\pi} \int_{0}^{\pi} u(\omega t) \cos k \omega t d\omega t = 0.$$

3. Тригонометрический ряд Фурье окончательно будет иметь вид

$$u(\omega t) = \sum_{k=1}^{\infty} \frac{2U_m}{\pi k} \left(\frac{2}{\pi k} \sin \frac{k\pi}{2} - \cos k\pi \right) \sin k\omega t .$$

По результатам разложения, учитывая только три первых члена тригонометрического ряда, получим

$$u(\omega t) = \frac{2U_m}{\pi} \left(\frac{2}{\pi} + 1\right) \sin \omega t - \frac{U_m}{\pi} \sin 2\omega t + \frac{2U_m}{3\pi} \left(-\frac{2}{3\pi} + 1\right) \sin 3\omega t =$$

 $= 208,38\sin\omega t - 63,66\sin 2\omega t + 33,43\sin 3\omega t B.$

Результирующая кривая несинусоидального напряжения с учтенным составом первых трех членов ряда приведена на рис. 1.3, б.

Действующее значение напряжения:

$$U = \sqrt{\left[\frac{U_m^{(1)}}{\sqrt{2}}\right]^2 + \left[\frac{U_m^{(2)}}{\sqrt{2}}\right]^2 + \left[\frac{U_m^{(3)}}{\sqrt{2}}\right]^2} = \sqrt{\left[\frac{203,38}{\sqrt{2}}\right]^2 + \left[\frac{63,66}{\sqrt{2}}\right]^2 + \left[\frac{33,43}{\sqrt{2}}\right]^2} = 155,87 \text{ B}.$$

4. Действующее значение напряжения путем непосредственного интегрирования заданной функции *u*(ω*t*):

$$U^{I} = \sqrt{\frac{2}{T} \int_{0}^{\frac{T}{2}} u^{2}(t) dt} = \sqrt{\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{4U_{m}^{2}}{\pi^{2}} (\omega t)^{2} d\omega t} + \frac{1}{\pi} \int_{\frac{\pi}{2}}^{\pi} U_{m}^{2} d\omega t} = \sqrt{\frac{4U_{m}^{2}}{\pi^{3} \cdot 3} (\omega t)^{3}} \Big|_{0}^{\frac{\pi}{2}} + \frac{U_{m}^{2}}{\pi} \omega t \Big|_{\frac{\pi}{2}}^{\frac{\pi}{2}} = \sqrt{\frac{2}{3}} \cdot U_{m} = \sqrt{\frac{2}{3}} \cdot 200 = 163, 3 \text{ B}.$$

5. Оценка влияния неучтенных гармоник на величину действующего напряжения:

.

$$\delta_U \% = \frac{U^I - U}{U^I} 100 \% = \frac{163, 3 - 155, 87}{163, 3} 100 \% = 4,55 \%.$$

6. Изображения временных диаграмм напряжений с учтенным составом гармоник более высокого порядка k = 10 и k = 20 приведены на рис. 1.3, в, г.

Задача 1.3

Разложить в тригонометрический ряд функцию, выражаемую кривой периодических импульсов напряжения (рис. 1.4) амплитудой $U_m = 120 \text{ B}$. Ограничиваясь первыми четырьмя членами тригонометрического ряда, вычислить коэффициенты амплитуды формы и искажения. Построить амплитудно-частотный спектр заданного напряжения.

Решение

1. Периодическая кривая (рис. 1.4) симметрична относительно оси ординат. В этом случае тригонометрический ряд не содержит синусоидальных гармоник ($b_{km} = 0$).

Постоянная составляющая:

$$A_{0} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} u(t)dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(\omega t)d\omega t =$$
$$= \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} U_{m}d\omega t = \frac{U_{m}}{2\pi} \omega t \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{U_{m}}{2}.$$

Амплитуда косинусной составляющей k-й гармоники:

$$a_{km} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} u(t) \cos k\omega t dt = \frac{1}{\pi} \int_{-\pi}^{\pi} u(\omega t) \cos k\omega t d\omega t =$$
$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} U_m \cos k\omega t d\omega t = \frac{U_m}{\pi k} \sin k\omega t \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} =$$
$$= \frac{U_m}{\pi k} \left(\sin \frac{k\pi}{2} - \sin \left(-\frac{k\pi}{2} \right) \right) = \frac{2U_m}{\pi k} \sin \frac{k\pi}{2} .$$

2. Тригонометрический ряд Фурье будет иметь вид

$$u(\omega t) = \frac{U_m}{2} + \sum_{k=1}^{\infty} \frac{2U_m}{\pi k} \sin \frac{k\pi}{2} \cos k\omega t .$$

Ограничиваясь первыми четырьмя членами тригонометрического ряда, по результатам разложения получим

$$u(\omega t) = \frac{U_m}{2} + \frac{2U_m}{\pi} \left(\cos \omega t - \frac{1}{3} \cos 3\omega t + \frac{1}{5} \cos 5\omega t \right) =$$

 $= 60 + 76,4\cos\omega t - 25,5\cos 3\omega t + 15,3\cos 5\omega t B$.

3. Для определения коэффициентов, характеризующих напряжение, вычислим предварительно среднее и действующее значения напряжения.

Среднее значение напряжения:

$$U^{(0)} = \frac{U_m}{2} = \frac{120}{2} = 60 \text{ B}.$$

Действующее значение напряжения:

$$U = \sqrt{\left[U^{(0)}\right]^2 + \left[\frac{U_m^{(1)}}{\sqrt{2}}\right]^2 + \left[\frac{U_m^{(3)}}{\sqrt{2}}\right]^2 + \left[\frac{U_m^{(5)}}{\sqrt{2}}\right]^2} = \sqrt{60^2 + \left[\frac{76,4}{\sqrt{2}}\right]^2 + \left[\frac{25,5}{\sqrt{2}}\right]^2 + \left[\frac{15,3}{\sqrt{2}}\right]^2} = 83,4 \text{ B}.$$

Коэффициент амплитуды (отношение максимального значения к действующему значению напряжения):

$$k_{\rm a} = \frac{U_m}{U} = \frac{120}{83,4} = 1,44.$$

Коэффициент формы (отношение действующего значения к среднему значению напряжения):

$$k_{\rm p} = \frac{U}{U^{(0)}} = \frac{83,4}{60} = 1,39$$
.

Коэффициент искажения (отношение действующего значения основной гармоники напряжения к действующему значению напряжения):

$$k_{\rm H} = \frac{U^{(1)}}{U} = \frac{54}{83,4} = 0,65$$

где $U^{(1)} = \frac{U_m^{(1)}}{\sqrt{2}} = \frac{76,4}{\sqrt{2}} = 54 \text{ B}.$

П р и м е ч а н и е. Точность получаемых коэффициентов зависит от учтенного состава гармоник высокого порядка при вычислении действующего значения напряжения. Точные значения коэффициентов можно получить при вычислении

действующего значения напряжения путем непосредственного интегрирования заданной функции *u*(ω*t*):

$$U = \sqrt{\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} u^{2}(t) dt} = \sqrt{\frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} U_{m}^{2} d\omega t} = \sqrt{\frac{U_{m}^{2}}{2\pi} \omega t} \left|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{U_{m}}{\sqrt{2}} = \frac{120}{\sqrt{2}} = 84,9 \text{ B}.$$

Из чего следует:

$$k_{a} = \frac{U_{m}}{U} = \frac{120}{84,9} = 1,41 ,$$

$$k_{\phi} = \frac{U}{U^{(0)}} = \frac{84,9}{60} = 1,42 ,$$

$$k_{\mu} = \frac{U^{(1)}}{U} = \frac{54}{84,9} = 0,64 .$$

4. График амплитудно-частотного спектра напряжения в зависимости от номера гармоники приведен на рис. 1.5.

Задача 1.4

Разложить в тригонометрический ряд периодическую кривую напряжения (рис. 1.6) с амплитудой $U_m = 200$ В. Построить амплитудно-частотный и фазочастотный спектры напряжения в зависимости от номера гармоники.

Решение

1. Периодическая кривая (рис. 1.6) не обладает ни одним из видов симметрии, следовательно, тригонометрический ряд содержит постоянную составляющую, синусоидальные и косинусоидальные гармоники.

В пределах периода закон изменения напряжения удовлетворяет условию

$$u(\omega t) = \begin{cases} \frac{U_m}{\pi} \omega t & \text{при } 0 < \omega t < \pi, \\ 0 & \text{при } \pi < \omega t < 2\pi \end{cases}$$

2. Расчет коэффициентов ряда.

Постоянная составляющая:

$$A_0 = \frac{1}{T} \int_0^T u(t) dt = \frac{1}{2\pi} \int_0^{\pi} \frac{U_m}{\pi} \omega t d\omega t = \frac{U_m}{4\pi^2} (\omega t)^2 \Big|_0^{\pi} = \frac{U_m}{4}.$$

Амплитуда косинусной составляющей к-й гармоники:

$$a_{km} = \frac{2}{T} \int_{0}^{T} u(t) \cos k\omega t dt = \frac{1}{\pi} \int_{0}^{\pi} \frac{U_m}{\pi} \omega t \cos k\omega t d\omega t =$$
$$= \frac{U_m}{\pi k} \left(\omega t \sin k\omega t - \frac{1}{k} \cos k\omega t \right) \Big|_{0}^{\pi} = \frac{U_m}{\pi^2 k^2} (\cos k\pi - 1).$$

Амплитуда синусной составляющей к-й гармоники:

$$b_{km} = \frac{2}{T} \int_{0}^{T} u(t) \sin k\omega t dt = \frac{1}{\pi} \int_{0}^{\pi} \frac{U_m}{\pi} \omega t \sin k\omega t d\omega t =$$
$$= \frac{U_m}{\pi^2 k} \left(-\omega t \cos k\omega t + \frac{1}{k} \sin k\omega t \right) \Big|_{0}^{\pi} = -\frac{U_m}{\pi k} \cos k\pi.$$

3. Тригонометрический ряд Фурье будет иметь вид

$$u(\omega t) = \frac{U_m}{4} + \sum_{k=1}^{\infty} \frac{U_m}{\pi^2 k^2} (\cos k\pi - 1) \cos k\omega t + \sum_{k=1}^{\infty} \left(-\frac{U_m}{\pi k} \cos k\pi \right) \sin k\omega t ,$$

если

$$k = 1$$
, то $a_{1m} = -\frac{2U_m}{\pi^2}$, $b_{1m} = \frac{U_m}{\pi}$;
 $k = 2$, то $a_{2m} = 0$, $b_{2m} = -\frac{U_m}{2\pi}$;
 $k = 3$, то $a_{3m} = -\frac{2U_m}{9\pi^2}$, $b_{3m} = \frac{U_m}{3\pi}$ и т.д.

Следовательно, по результатам разложения тригонометрический ряд имеет вид

$$u(\omega t) = \frac{U_m}{4} - \frac{2U_m}{\pi^2} \cos \omega t + \frac{U_m}{\pi} \sin \omega t - \frac{U_m}{2\pi} \sin 2\omega t - \frac{2U_m}{9\pi^2} \cos 3\omega t + \frac{U_m}{3\pi} \sin 3\omega t + \dots$$

4. Амплитудно-частотный спектр напряжения:

$$U_{km} = \sqrt{a_{km}^2 + b_{km}^2} = U_m \sqrt{\frac{\left(\cos k\pi - 1\right)^2}{\pi^4 k^4}} + \frac{\cos^2 k\pi}{\pi^2 k^2} \,.$$

График амплитудно-частотного спектра напряжения в зависимости от номера гармоники изображен на рис. 1.7.

5. Фазочастотный спектр напряжения:

$$\Psi_k = \operatorname{arctg} \frac{a_{km}}{b_{km}} = \operatorname{arctg} \left(-\frac{\cos k\pi - 1}{\pi k \cdot \cos k\pi} \right).$$

График фазочастотного спектра напряжения в зависимости от номера гармоники изображен на рис. 1.8.

Задача 1.5

Требуется разложить в ряд Фурье периодическую кривую тока источника тока (рис. 1.9). Составить схему замещения данного источника, учитывающую постоянную составляющую и три первые гармоники тока.

Решение

1. Используя график типовой несинусоидальной функции и его разложение в тригонометрический ряд (см. приложение, рис. П11), кривая тока (рис. 1.9) получается при переносе начала координат (точка 0) вправо на отрезок $\alpha = \frac{\pi}{2}$.

Следовательно, в соответствии с известным разложением, ограничиваясь постоянной составляющей и тремя первыми гармониками тригонометрического ряда, получим

$$i_{k}(\omega t) = \frac{I_{mk}}{2} - \frac{I_{mk}}{\pi} \sin(\omega t + \alpha) - \frac{I_{mk}}{2\pi} \sin 2(\omega t + \alpha) - \frac{I_{mk}}{3\pi} \sin 3(\omega t + \alpha) =$$

= 1,0-0,64 sin (\omega t + 90°) - 0,32 sin 2 (\omega t + 90°) - 0,21 sin 3 (\omega t + 90°) A,

где $I_{mk} = 2$ A, $\alpha = \frac{\pi}{2} = 90^{\circ}$.

2. Схема замещения источника тока представлена на рис. 1.10, где $I_k^{(0)} = 1,0$ А, $i_k^{(1)} = -0,64\sin\left(\omega t + 90^{\circ}\right)$ А, $i_k^{(2)} = -0,32\sin 2\left(\omega t + 90^{\circ}\right)$ А, $i_k^{(3)} = -0,21\sin 3\left(\omega t + 90^{\circ}\right)$ А.

П р и м е ч а н и е. С целью упрощения расчетов в приложении (рис. П1–П39) приведены графики некоторых типовых несинусоидальных функций и их разложение в тригонометрический ряд Фурье.

Задача 1.6

Ограничившись первыми тремя гармониками ряда, разложить с использованием графоаналитического метода кривую тока $i(\omega t)$, заданную на рис. 1.11.

Решение

1. Кривая тока (рис. 1.11) симметрична относительно оси абсцисс при совмещении полупериодов $i(\omega t) = -i\left(\omega t + \frac{T}{2}\right)$. В этом случае постоянная составляющая тока $A_0 = 0$, и ряд будет состоять только из нечетных гармоник. Симметрия графика относительно оси абсцисс позволяет заключить, что сумма $\sum f_p(\omega t)\sin k\omega t$ за первый полупериод равна сумме $\sum f_p(\omega t)\sin k\omega t$ за второй полупериод, а сумма $\sum f_p(\omega t)\cos k\omega t$ за первый полупериод вана сумме $\sum f_p(\omega t)\cos k\omega t$ за второй полупериод. Поэтому в рассмотрении достаточно ограничиться одним, например первым, полупериодом.

Период $T = 2\pi$ кривой $i(\omega t)$ делим на n = 12 равных участков. Значения ординат функций $f_p(\omega t)$ в точках деления представим в удобной для анализа табличной форме (табл. 1.1).

Таблица 1.1

$p\frac{2\pi}{n} = p\frac{\pi}{6}$	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π
$f_p(\omega t), \mathbf{A}$	9,6	9,2	15,6	20,0	13,4	0

2. Коэффициенты тригонометрического ряда определяем по формулам Эйлера путем замены интегралов приближенными суммами.

Амплитуда косинусной составляющей к-й гармоники:

$$a_{km} \approx \frac{2}{n} \sum_{p=1}^{n} f_p(\omega t) \cos\left(kp \frac{2\pi}{n}\right) \approx \frac{4}{12} \sum_{p=1}^{6} f_p(\omega t) \cos\left(kp \frac{\pi}{6}\right).$$

Амплитуда синусной составляющей к-й гармоники:

$$b_{km} \approx \frac{2}{n} \sum_{p=1}^{n} f_p(\omega t) \sin\left(kp \frac{2\pi}{n}\right) \approx \frac{4}{12} \sum_{p=1}^{6} f_p(\omega t) \sin\left(kp \frac{\pi}{6}\right).$$

3. Амплитуды косинусной и синусной составляющей первой гармоники (k = 1):

$$a_{1m} \approx \frac{1}{3} \sum_{p=1}^{6} \left[9,6\cos\left(\frac{\pi}{6}\right) + 9,2\cos\left(\frac{\pi}{2}\right) + 15,6\cos\left(\frac{\pi}{2}\right) + 20\cos\left(\frac{2\pi}{3}\right) + 13,4\cos\left(\frac{5\pi}{6}\right) + 0\cdot\cos\left(\pi\right) \right] = \frac{1}{3}(-8,67) = -2,89 \text{ A};$$

$$b_{1m} \approx \frac{1}{3} \sum_{p=1}^{6} \left[9,6\sin\left(\frac{\pi}{6}\right) + 9,2\sin\left(\frac{\pi}{3}\right) + 15,6\sin\left(\frac{\pi}{2}\right) + 20\sin\left(\frac{2\pi}{3}\right) + 13,4\sin\left(\frac{5\pi}{6}\right) + 0\cdot\sin(\pi) \right]$$
$$\frac{1}{3} \cdot 52,38 = 17,46 \text{ A.}$$

Амплитуда и фазный угол смещения первой гармоники:

$$I_{1m} = \sqrt{a_{1m}^2 + b_{1m}^2} = \sqrt{(-2,89)^2 + 17,46^2} = 17,6 \text{ A},$$

$$\psi_1 = \operatorname{arctg} \frac{a_{1m}}{b_{1m}} = \operatorname{arctg} \frac{(-2,89)}{17,46} = -9,4^{\circ}.$$

4. Амплитуды косинусной и синусной составляющей третьей гармоники (*k* = 3):

$$a_{3m} \approx \frac{1}{3} \sum_{p=1}^{6} \left[9,6\cos\left(3\frac{\pi}{6}\right) + 9,2\cos\left(3\frac{\pi}{3}\right) + 15,6\cos\left(3\frac{\pi}{2}\right) + 20\cos\left(3\frac{2\pi}{3}\right) + 13,4\cos\left(3\frac{5\pi}{6}\right) + 0\cdot\cos(3\pi) \right] = \frac{1}{3} \cdot 10,8 = 3,6 \text{ A};$$
$$b_{3m} \approx \frac{1}{3} \sum_{p=1}^{6} \left[9,6\sin\left(3\frac{\pi}{6}\right) + 9,2\sin\left(3\frac{\pi}{3}\right) + 15,6\sin\left(3\frac{\pi}{2}\right) + 20\sin\left(3\frac{2\pi}{3}\right) + 13,4\sin\left(3\frac{5\pi}{6}\right) + 0\cdot\sin(3\pi) \right] = \frac{1}{3} \cdot 7,39 = 2,46 \text{ A}.$$

Амплитуда и фазный угол смещения третьей гармоники:

$$I_{3m} = \sqrt{a_{3m}^2 + b_{3m}^2} = \sqrt{3,6^2 + 2,46^2} = 4,36 \text{ A},$$

$$\psi_3 = \operatorname{arctg} \frac{a_{3m}}{b_{3m}} = \operatorname{arctg} \frac{3,6}{2,46} = 55,6^{\circ}.$$

5. Амплитуды косинусной и синусной составляющей пятой гармоники (*k* = 5):

$$a_{5m} \approx \frac{1}{3} \sum_{p=1}^{6} \left[9,6\cos\left(5\frac{\pi}{6}\right) + 9,2\cos\left(5\frac{\pi}{3}\right) + 15,6\cos\left(5\frac{\pi}{2}\right) + 20\cos\left(5\frac{2\pi}{3}\right) + 13,4\cos\left(5\frac{5\pi}{6}\right) + 0\cdot\cos(5\pi) \right] = \frac{1}{3}(-2,1) = -0,7 \text{ A};$$
$$b_{5m} \approx \frac{1}{3} \sum_{p=1}^{6} \left[9,6\sin\left(5\frac{\pi}{6}\right) + 9,2\sin\left(5\frac{\pi}{3}\right) + 15,6\sin\left(5\frac{\pi}{2}\right) + 20\sin\left(5\frac{2\pi}{3}\right) + 13,4\sin\left(5\frac{5\pi}{6}\right) + 0\cdot\sin(5\pi) \right] = \frac{1}{3} \cdot 1,81 = 0,6 \text{ A}.$$

Амплитуда и фазный угол смещения пятой гармоники:

$$I_{5m} = \sqrt{a_{5m}^2 + b_{5m}^2} = \sqrt{(-0,7)^2 + 0,6^2} = 0,92 \text{ A},$$

$$\psi_5 = \operatorname{arctg} \frac{a_{5m}}{b_{5m}} = \operatorname{arctg} \frac{(-0,7)}{0,6} = -49, 4^{\circ}.$$

6. Таким образом, заданная кривая тока (рис. 1.11) окончательно выражается тригонометрическим рядом:

$$i(\omega t) \approx 17,6\sin(\omega t - 9,4^{\circ}) + 4,36\sin(3\omega t + 55,6^{\circ}) + 0,92\sin(5\omega t - 49,4^{\circ}) \text{ A}.$$

П р и м е ч а н и е. При делении периода следует учитывать порядковый номер гармоники, с точностью до которой делается разложение в ряд. Достаточное количество участков определяется простым соотношением $\frac{n}{2} > k$, где k – порядковый номер гармоники, с точностью до которой делается разложение в ряд; n – количество равных участков. Например, при ограничениях в точности разложения до десятой гармоники (k = 10) минимальное количество равных участков должно составлять не менее n = 22.

Задача 1.7

Графоаналитическим методом разложить в тригонометрический ряд Фурье кривую напряжения (рис. 1.12). При разложении ограничиться постоянной составляющей и тремя гармониками ряда.

Решение

1. Период $T = 2\pi$ кривой $u(\omega t)$ делим на n = 12 равных участков (рис. 1.12). Значения ненулевых ординат функции $f_p(\omega t)$ в точках деления запишем в удобной для анализа табличной форме (табл. 1.2).

Таблица 1.2

$p\frac{2\pi}{n} = p\frac{\pi}{6}$	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π2π
$f_p(\omega t), \mathbf{B}$	60	120	120	120	60	0

2. Коэффициенты тригонометрического ряда определяем по формуле Эйлера путем замены интегралов приближенными суммами:

$$A_{0} \approx \frac{1}{n} \sum_{p=1}^{n} f_{p} = \frac{1}{12} \sum_{p=1}^{12} f_{p} (\omega t);$$

$$a_{km} \approx \frac{2}{n} \sum_{p=1}^{n} f_{p} (\omega t) \cos\left(kp \frac{2\pi}{n}\right) \approx \frac{2}{12} \sum_{p=1}^{12} f_{p} (\omega t) \cos\left(kp \frac{\pi}{6}\right);$$

$$b_{km} \approx \frac{2}{n} \sum_{p=1}^{n} f_{p} (\omega t) \sin\left(kp \frac{2\pi}{n}\right) \approx \frac{2}{12} \sum_{p=1}^{12} f_{p} (\omega t) \sin\left(kp \frac{\pi}{6}\right).$$

3. Постоянная составляющая ряда

$$A_0 \approx \frac{1}{12} \sum_{p=1}^{12} (60 + 120 + 120 + 120 + 60) = 40 \text{ B}.$$

4. Амплитуды косинусной и синусной составляющих первой гармоники ряда (k = 1):

$$a_{1m} \approx \frac{1}{6} \sum_{p=1}^{12} \left[60 \cos\left(\frac{\pi}{6}\right) + 120 \cos\left(\frac{\pi}{3}\right) + 120 \cos\left(\frac{\pi}{2}\right) + 120 \cos\left(\frac{\pi}{2}\right) + 120 \cos\left(\frac{2\pi}{3}\right) + 60 \cos\left(\frac{5\pi}{6}\right) \right] = 0;$$

$$b_{1m} \approx \frac{1}{6} \sum_{p=1}^{12} \left[60 \sin\left(\frac{\pi}{6}\right) + 120 \sin\left(\frac{\pi}{3}\right) + 120 \sin\left(\frac{\pi}{2}\right) + 120 \sin\left(\frac{\pi}{2}\right) + 120 \sin\left(\frac{2\pi}{3}\right) + 60 \sin\left(\frac{5\pi}{6}\right) \right] = 64, 6 \text{ B}.$$

5. Амплитуды косинусной и синусной составляющих второй гармоники ряда (*k* = 2):

$$\begin{split} a_{2m} &\approx \frac{1}{6} \sum_{p=1}^{12} \left[60 \cos\left(2\frac{\pi}{6}\right) + 120 \cos\left(2\frac{\pi}{3}\right) + 120 \cos\left(2\frac{\pi}{2}\right) + \\ &+ 120 \cos\left(2\frac{2\pi}{3}\right) + 60 \cos\left(2\frac{5\pi}{6}\right) \right] = -30 \text{ B }; \\ b_{2m} &\approx \frac{1}{6} \sum_{p=1}^{12} \left[60 \sin\left(2\frac{\pi}{6}\right) + 120 \sin\left(2\frac{\pi}{3}\right) + 120 \sin\left(2\frac{\pi}{2}\right) + \\ &+ 120 \sin\left(2\frac{2\pi}{3}\right) + 60 \sin\left(2\frac{5\pi}{6}\right) \right] = 0. \end{split}$$

6. Амплитуды косинусной и синусной составляющих третьей гармоники ряда (*k* = 3):

$$a_{3m} \approx \frac{1}{6} \sum_{p=1}^{12} \left[60 \cos\left(3\frac{\pi}{6}\right) + 120 \cos\left(3\frac{\pi}{3}\right) + 120 \cos\left(3\frac{\pi}{2}\right) + 120 \cos\left(3\frac{\pi}{2}\right) + 120 \cos\left(3\frac{\pi}{2}\right) \right]$$

$$+ 120\cos\left(3\frac{2\pi}{3}\right) + 60\cos\left(3\frac{5\pi}{6}\right) = 0;$$

$$b_{3m} \approx \frac{1}{6} \sum_{p=1}^{12} \left[60\sin\left(3\frac{\pi}{6}\right) + 120\sin\left(3\frac{\pi}{3}\right) + 120\sin\left(3\frac{\pi}{2}\right) + 120\sin\left(3\frac{2\pi}{3}\right) + 60\sin\left(3\frac{5\pi}{6}\right) \right] = 0.$$

7. Амплитуды косинусной и синусной составляющих четвертой гармоники ряда (*k* = 4) :

$$\begin{split} a_{4m} &\approx \frac{1}{6} \sum_{p=1}^{12} \left[60 \cos\left(4\frac{\pi}{6}\right) + 120 \cos\left(4\frac{\pi}{3}\right) + 120 \cos\left(4\frac{\pi}{2}\right) + +120 \cos\left(4\frac{2\pi}{3}\right) + 60 \cos\left(4\frac{5\pi}{6}\right) \right] = -10 \text{ B}; \\ b_{4m} &\approx \frac{1}{6} \sum_{p=1}^{12} \left[60 \sin\left(4\frac{\pi}{6}\right) + 120 \sin\left(4\frac{\pi}{3}\right) + 120 \sin\left(4\frac{\pi}{2}\right) + \\ &+ 120 \sin\left(4\frac{2\pi}{3}\right) + 60 \sin\left(4\frac{5\pi}{6}\right) \right] = 0 \end{split}$$

8. Заданная кривая напряжения (см. рис. 1.12) выражается тригонометрическим рядом:

 $u(\omega t) \approx 40 + 64, 6\sin \omega t - 30\cos 2\omega t - 10\cos 4\omega t$ B.

9. По результатам разложения на рис. 1.13 построена результирующая кривая напряжения $u(\omega t)$ с учтенным составом гармоник.

Задача 1.8

Кривую тока *i*(ω*t*), изображенную на рис. 1.11 (задача 1.6), разложить в ряд Фурье методом Чебышева до 5-й гармоники включительно и выполнить графическое построение найденного разложения.

Решение

1. Так как приведенная кривая $i(\omega t)$ не содержит четных гармоник, то для разложения кривой (рис. 1.14) в ряд Фурье методом Чебышева не существует ограничений.

Разложение кривой $i(\omega t)$ до 5-й гармоники приводит к необходимости составления системы из k+1=6 уравнений для определения постоянных a_{km} и b_{km} . Примем точку 0 на оси абсцисс (рис. 1.14) за начало и через нее проведем основную ось ординат. Определяем ординату в точке 0, ее величина согласно рис. 1.14 равна f(0)=0.

Рис. 1.14

2. При разбиении периода на n = 1 частей получим

$$f(0) = a_{1m} + a_{3m} + a_{5m} = 0 \; .$$

Разделив период на три равные части (*n* = 3), определим ординаты в точках деления (точки 1, 2 и 3) и их сумму с учетом знаков:

$$\frac{1}{3}\left[f\left(\frac{T}{3}\right) + f\left(\frac{2T}{3}\right) + f(T)\right] = \frac{1}{3}(20 - 9, 2 + 0) = \frac{10,8}{3} = a_{3m}.$$

Разделив период на пять равных частей (n = 5), найдем ординаты в точках деления (точки 4, 5, 6, 7, 8) и определим их сумму:

$$\frac{1}{5} \left[f\left(\frac{T}{5}\right) + f\left(\frac{2T}{5}\right) + f\left(\frac{3T}{5}\right) + f\left(\frac{4T}{5}\right) + f\left(T\right) \right] = \frac{1}{5} (9,8+15,2-9,6-19,6+0) = -\frac{4,2}{5} = a_{5m}.$$

3. Аналогичные операции деления периода на n = 1, 3, 5 частей проводим, перенеся начало отсчета на четверть периода $t = \frac{T}{4}$ в точку 0^{*I*} (рис. 1.14).

Ордината в точке 0^{*I*} равна $f\left(\frac{T}{4}\right) = 15,2$ А. При разбиении периода на n = 1 частей получим

$$f\left(\frac{T}{4}\right) = b_{1m} - b_{3m} + b_{5m} = 15, 2.$$

Ординаты точек деления периода на три части (n=3), точки 1^{I} , 2^{I} , 3^{I} и их алгебраическая сумма в точках деления:

$$\frac{1}{3}\left[f\left(\frac{T}{4} + \frac{T}{3}\right) + f\left(\frac{T}{4} + \frac{2T}{3}\right) + f\left(\frac{T}{4} + T\right)\right] =$$

$$=\frac{1}{3}\left[-9,6-13,4+15,2\right]=-\frac{7,8}{3}=-b_{3m}.$$

Ординаты точек деления периода на пять частей (n = 5), точки 4^{I} , 5^{I} , 6^{I} , 7^{I} , 8^{I} и их алгебраическая сумма в точках деления:

$$\frac{1}{5} \left[f\left(\frac{T}{4} + \frac{T}{5}\right) + f\left(\frac{T}{4} + \frac{2T}{5}\right) + f\left(\frac{T}{4} + \frac{3T}{5}\right) + f\left(\frac{T}{4} + \frac{4T}{5}\right) + f\left(\frac{T}{4} + \frac{4T}{5}\right) + f\left(\frac{T}{4} + T\right) \right] = (7, 6 - 9, 2 - 18, 6 + 8, 2 + 15, 2) = \frac{3, 2}{5} = b_{5m}.$$

4. На основании найденных алгебраических сумм в точках деления получим систему уравнений, которая определяет коэффициенты разложения *i*(ω*t*) в тригонометрический ряд:

$$\begin{cases} a_{1m} + a_{3m} + a_{5m} = 0, \\ 3a_{3m} = 10, 8, \\ 5a_{5m} = -4, 2, \\ b_{1m} - b_{3m} + b_{5m} = 15, 2, \\ 3(-b_{3m}) = -7, 8, \\ 5b_{5m} = 3, 2. \end{cases}$$

Решение системы дает: $a_{1m} = -2,76$ A; $a_{3m} = 3,6$ A; $a_{5m} = -0,84$ A; $b_{1m} = 17,2$ A; $b_{3m} = 2,6$ A; $b_{5m} = 0,64$ A.

5. Определяем амплитуды и фазные углы смещения гармоник тока:

$$I_{1m} = \sqrt{a_{1m}^2 + b_{1m}^2} = \sqrt{(-2,76)^2 + 17,2^2} = 17,4 \text{ A};$$

$$\psi_1 = \arctan \frac{a_{1m}}{b_{1m}} = \arctan \frac{(-2,76)}{17,2} = -9,1^{\circ};$$

$$I_{3m} = \sqrt{a_{3m}^2 + b_{3m}^2} = \sqrt{3,6^2 + 2,6^2} = 4,4 \text{ A};$$

$$\psi_3 = \arctan \frac{a_{3m}}{b_{3m}} = \operatorname{arctg} \frac{3,6}{2,6} = 54,2^{\circ};$$

$$I_{5m} = \sqrt{a_{5m}^2 + b_{5m}^2} = \sqrt{(-0,84)^2 + 0,64^2} = 1,0 \text{ A};$$

$$\psi_5 = \operatorname{arctg} \frac{a_{5m}}{b_{5m}} = \operatorname{arctg} \frac{(-0,84)}{0,64} = -52,7^{\circ}.$$

6. Заданная кривая тока (рис. 1.11) выражается тригонометрическим рядом:

$$i(\omega t) \approx 17, 4\sin(\omega t - 9, 1^{\circ}) + 4, 4\sin(3\omega t + 54, 2^{\circ}) +$$

+1,0sin(5 ωt - 52,7°) A.

По результатам разложения на рис. 1.15 построены гармоники тока и результирующая кривая тока *i*(ω*t*).

Сравнение результатов разложения кривой тока *i*(ω*t*), представленной на рис. 1.15, выполненных двумя различными методами гармонического анализа (см. задачу 1.6), показывает их полную иден-

Рис. 1.15

тичность между собой. Некоторые отклонения для отдельных гармоник вызваны точностью графического определения ординат тока f(t).