$$f(x) = \sqrt{2\pi}$$

$$f(x$$

Степенные ряды: $^{n} + ^{n} = ^{n}$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

[\fs\ ≤\\!

Определение. Степеч **Определение.**Степенным рядом называют функциональный ряд

$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
. (*)
Если $x_0=0$, то имеем ряд

$$\sum_{n=0}^{\infty} a_n x^n. \quad (**)$$

 $\sum_{n=0}^{\infty} a_n x^n$. (**)
В дальнейшем будем рассматривать ряды вида (**), т. к. они сводятся к рядам вида (*) подстановкой $x - x_0 = x'$. F(z) = 1/21

MF. Ids = MVEW

Для простоты, степенным рядом будем называеть функциональный ряд вида

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \overline{Ax}$

$$\sum_{n=0}^{\infty} a_n x^n.$$

ряд вида $\sum_{n=0}^{\infty} a_n x^n.$ где a_n ...— постоянные вещественные числа, называемые коэффициентами ряда. Carn-1 = 1-1

Постараемся выяснить, как устроена область сходимости любого степенного ряда. Заметим, что всякий степенной ряд сходится в точке x=0, причем существуют степенные ряды, сходящиеся только в этой точке

$$\sum_{n=1}^{\infty} n!x$$

[[百] 五45 - []]

Сходимость степенных рядов.

Составим с помощью коэффициентов a_n ряда следующую числовую последовательность:

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

$$\{\sqrt[n]{|a_n|}\}$$
 $(n=1, 2, \ldots).$

Могут представиться два случая:

- 1) последовательность является неограниченной;
- 2) последовательность является ограниченной.

В случае 2) у последовательности существует конечный верхний предел, который мы обозначим через L. Этот верхний предел L заведомо неотрицателен (так как все элементы последовательности неотрицательны, а следовательно, и любая предельная точка этой последовательности неотрицательна).

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

Другими словами могут представиться следующие три случая:

- I) последовательность является неограниченной;
- II) последовательность является ограниченной и имеет конечный предел L>0;
- III) последовательность является ограниченной и имеет предел L=0.

$$\frac{a}{1-r}$$

$$= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

|\fs\ ≤\\!

$$f(x) = \sqrt{2\pi}$$
 $f(x(x)) = dx$ $x^n + x^n = x^n$ $x^n + x^n = x^n$ $x^n + x^n = x^n$ $x^n + x^n = x^n$ I. Если последовательность $\{\sqrt[n]{|a_n|}\}$ $(n = 1, 2, ...)$.

$$\{\sqrt[n]{|a_n|}\}$$
 $(n=1, 2, ...).$

 $\{\sqrt[n]{|a_n|}\}$ $(n=1,\ 2,\ \ldots).$ не ограничена, то степенной ряд

$$\sum_{n=0}^{\infty} a_n x^n.$$

не ограничена, то степенной ряд
$$\sum_{n=0}^{\infty} a_n x^n.$$
 сходится лишь при $x=0$.

HF. EdS = IIIVEN

$$x^n + y^n = x^n$$

ai¶ ≃

f (8)

[\fg|≤\\!

$$av = a^n + y^n = a^n$$

$$av = a^n + y^n = a^n$$

$$av = a^n + y^n = a^n$$

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^$

II. Если последовательность ограничена и имеет верхний предел L>0, то ряд абсолютно сходится для значений x, удовлетворяющих неравенству |x|<1/L и расходится для значений x, удовлетворяющих неравенству |x|>1/L.

III. Если последовательность ограничена и ее верхний предел L=0, то ряд абсолютно сходится для всех значений x.

 $\frac{1-r}{1-r} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

NET TAS = III VEW

n (n) an-hah

 $f = f(t(u(x))) \Rightarrow \bar{a}x$ $x^n + y^n = z^n$ HOFW

Gradamary)

II F I B as = III V F av

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ $P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$ $A \prod A n = \sum_{k=0}^n \binom{n}{k} p^x (1-p)^{n-x}$ [\fs\≤\\!

АДАМАР Жак Hadamard Jacques Salomon: французский математик, (08.12.1865 - 17.10.1963).иностранный почетный член (1929) АН СССР, член Парижской АН (1912).

"Исследование психологии процесса

изобретения в области математики"

Теорема

Для каждого степенного ряда, если он не является рядом, сходящимся лишь в точке x=0, существует положительное число R (возможно, равное бесконечности) такое, что этот ряд абсолютно сходится при $\begin{vmatrix} x \end{vmatrix} < R$ и расходится при $\begin{vmatrix} x \end{vmatrix} > R$ Это число R называется радиусом сходимости рассматриваемого степенного ряда, а интервал (-R, R) называется промежутком сходимости этого ряда. Для вычисления радиуса сходимости справедлива формула

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $x^n + y^n = z^n$

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}.$$

в случае, когда

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = 0 \quad R = \infty.$$

 $f(x) = \int_{-\infty}^{\infty} \int_$

Замечание . На концах промежутка сходимости, т. е. в точках x=— R u x=R, cmeneнной pяд может быть как cходящимся, так u pаcходящимся.

ein =

$$|f(g)| \leq ||f||_2 + ||g||_2$$

$$|f(g)| = ||f||_2 + ||g||_2$$

$$|f(g)| = ||f||_2 + ||g||_2$$

$$|f|| = ||f$$

 $x^n + y^n = z^n$

ein =

[\fs\ ≤\\!

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $\sum_{n=0}^{\infty}a_nx^n$ Теорема (Абеля). Если степенной ряд сходится в точке $x_0\neq 0$, то он сходится абсолютно в интервале $(-|x_0|,|x_0|)$.

Доказательство. Пусть ряд $\sum_{n=0}^{\infty} a_n x_0^n$ сходится, тогда $\lim_{n \to \infty} a_n x_0^n = 0$. Следовательно $\exists M: \ \forall n \ \left| a_n x_0^n \right| < M$.

 $f(t)^{ab} = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$

Запишем равенство: $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x_0^n \left(\frac{x}{x_0}\right)^n.$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

Ряд из абсолютных величин сходится т. к.

Ряд из абсолютных величин сходится т. к.
$$\sum_{n=0}^{\infty} \left| a_n x_0^n \right| \left| \frac{x}{x_0} \right|^n < \sum_{n=0}^{\infty} M \left| \frac{x}{x_0} \right|^n,$$

$$\left| \frac{x}{x_0} \right| < 1.$$

$$\frac{|x|}{|x_0|} < 1$$
.

Значит ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится абсолютно $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty}$

Значит ряд

$$\sum_{n=0}^{\infty} a_n x^n$$
 сходится абсо

$$f(z) = \sqrt{2\pi}e^{-z^2}$$

$$x^n + y^n = x^n$$

ein =

[\fs\ ≤\\!

$$x^{n} + y^{n} = x^{n}$$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $2^n+3^n=2^n$ (F. TOS =)

Следствие. Если ряд $\sum_{n=0}^{\infty} a_n x^n$ расходится при $x=x_0$, то он расходится $\forall x: |x|>|x_0|$.

京三〇一分子了。下三〇 $||fg|| \le ||f||_2 + ||g||_q$ Действительно, если допустить сходимость ряда в точке x_1 , для которой $|x_1|, > |x_0|$, то по теореме Абеля ряд сходится при всех x для которых $|x| < |\mathbf{x}_1|$, , и, в частности, в точке x_0 , что $f = f(t(u(x))) \Rightarrow \frac{dx}{dx} = \frac{1}{dt} \frac{1}{du} \frac{dx}{dx}$ противоречит условию

 $V = \frac{n}{2^n + y^n} = \frac{2^n}{2^n}$ $= \frac{n}{2^n} \left(\frac{n}{n}\right) a^{n-k} b^k$ MF TAS = MVEW

[\fs\ ≤\\!

f(z)

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$ Область сходимости.

Возможны три случая:

1) Область сходимости состоит только из одной точки
$$x = 0$$
.

ein =

[/fa/ </!

Пример. $\sum_{n=1}^{\infty} n^n x^n = 0$

Пример.
$$\sum_{n=1}^{\infty} n^n x^n$$
. Действительно $\forall x \; \exists N : \; \forall n > N \; \left| n^n x^n \right| > 1$. Радиус сходимости $R = 0$

 $f(z) = \sqrt{2\pi}$

содимости
$$R = 0$$
 $\mathbb{R}^n + y^n = y^n$
 $\mathbb{R}^n + y^n = y^n$
 $\mathbb{R}^n + y^n = y^n$

2) Область сходимости
$$D = (-\infty, \infty)$$
.

Пример. $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$.

Действительно $\forall x \ \exists N : \ \forall n > N \ \frac{x}{n} < 1$ и для $n > N$ члены ряда ме

Пример.
$$\sum_{n=1}^{\infty} \frac{x^n}{n^n}$$
.

Действительно $\forall x \; \exists N : \; \forall n > N \; \left| \frac{x}{n} \right| < 1 \;$ и для $n > N \;$ члены ряда меньше сходящейся геометрической прогрессии.

Радиус сходимости R =∞

MF. TAS = MVEW

$$\frac{x^n + y^n = x^n}{x^n + y^n = x^n}$$

ein =

|\fs\ \le \|!

$$f(t)^{00} = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$$

$$f = f(t(u(x))) \Rightarrow \overline{dx}$$

$$x^n + y^n = z^n$$

$$\mathbf{3}$$
) Область D ограничена.

3) Область
$$D$$
 ограничена.

Пример. $\sum_{n=1}^{\infty} x^n$
 $D = (-1,1)$.

$$D = (-1,1).$$

Радиус сходимости
$$R=1$$

$$f(z) = \sqrt{2\pi}e^{-\frac{z^2}{2}}$$

e^{iπ} ≈

f (8)

[\fs\ ≤\\!

$$a^{n} + y^{n} = a^{n}$$

$$a^{n} + y^{n} = a^{n}$$

$$a^{n} + a^{n} + a^{n}$$

$$\frac{a}{1-r}$$

$$= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial u}$$

Для определения радиуса сходимости нужно исследовать $P(X=x) = \binom{n}{x} p^{2} (1-p)^{n-x}$ ряд из модулей:

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $2^n+3^n=2^n$

[\fs\ ≤\\!

$$\sum_{n=0}^{\infty} \left| a_n x^n \right|^{x} = 0$$

Применим признак Даламбера. Пусть существует предел

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| = |x| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \neq 0$$

По признаку Даламбера для сходимости необходимо выполнение условия

$$|x| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

IIF TAS = IIIVEN

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$ TIS = III

Ряд абсолютно сходится при тех значениях x, для которых

 $|x| < \frac{1}{\lim\limits_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right|} = \lim\limits_{n \to \infty} \left|\frac{a_n}{a_{n+1}}\right|;$

e^{in z}

| \fg\ \le \|!

Ряд расходится при тех значениях x, для которых

$$|x| > \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

 $|x|>\lim_{n o\infty}\left|rac{a_n}{a_{n+1}}
ight|$ Таким образом, для ряда радиус абсолютной сходимости

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f = f(t(u(x))) \Rightarrow dx$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$$

Если $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$ $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$ то можно убедиться, что ряд абсолютно сходится на всей числовой

то можно убедиться, что ряд абсолютно сходится на всей числово оси. В этом случае
$$R=\infty$$
. Если
$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\infty$$
 то $R=0$.

To
$$R = 0$$
.

$$x^n + y^n = x^n$$

гично, вос Аналогично, воспользовавшись радикальным признаком Коши, можно установить, что $R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}.$ Замечание.

 $f = f(t(u(x))) \Rightarrow \overline{\partial}x$

 $x^n + y^n = z^n$

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}.$$

Замечание.

Если степенной ряд содержит не все степени x, т. е. задан неполный степенной ряд, то интервал сходимости ряда находят без определения радиуса сходимости, а непосредственно применяя .. даламбера (членов данного ряда. признак Даламбера (или Коши) для ряда, составленного из модулей MF. TAS = MVEW

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$

Например ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^{N(n)}$, где N(n) произвольная функция аргумента n .

Для определения области сходимости применяют признак Даламбера.

$$\sum_{n=0}^{\infty} a_n (x - x_0)^{np}, \quad p = 2, 3, 4, \dots$$

В частности рассмотрим ряд $\sum_{n=0}^{\infty}a_n\left(x-x_0\right)^{np},\ p=2,3,4,...\ .$ Применяя признак Даламбера, получим $R=\sqrt[p]{\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|}.$

HT TAS = MINVEW

[\fs\ ≤\\!

Пример. Найти область сходимости ряда

$$\sum_{n=0}^{\infty} (3x)^{n^2} = 1 + 3x + 3^4 x^4 + 3^9 x^9 + \dots$$

Найти радиус сходимости по формуле $R=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|$ не тредставляется возможным, т.к. коэффициант '2, a_3,a_5,a_6,a_7,a_9 . a_9

 $a_2, a_3, a_5, a_6, a_7, a_8, a_{10}, \dots$ равны нулю. Поэтому применим признак

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $x^n + y^n = z^n$

| \fg\ \le \|!

Даламбера: $k = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \left| \frac{(3x)^{(n+1)^2}}{(3x)^{n^2}} \right| = \lim_{n \to \infty} \left| 3x \right|^{2n+1}$. Этот предел

будет равен ∞ , если |3x| > 1, ряд расходится; этот предел будет равен

нулю, если |3x| < 1, и ряд будет сходиться при $-\frac{1}{3} < x < \frac{1}{3}$ или на

 $=\frac{1}{3}$ интервале $(-\frac{1}{3};\frac{1}{3})$.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $2^n+3^n=2^n$ TDUN.

Рассмотрим поведение ряда на концах интервала. При $x = -\frac{1}{3}$ ряд

примет вид $\sum_{n=0}^{\infty} (-1)^n = 1-1+1-1+1-\dots$, ряд расходится, при $x=\frac{1}{3}$ ряд примет вид $\sum_{n=0}^{\infty} (1)^n = 1+1+1+\dots$, ряд расходится.

Итак, область сходимости ряда - интервал $(-\frac{1}{3}; \frac{1}{3})$.

MT TAS = MIN VEW

 $V = \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{n}{n} \right) a^{n-k} b^k$

ein =

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Пример.

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}, \qquad R = \lim_{n \to \infty} \frac{(n+1)!}{n!} = \infty.$$

$$\int |fg| \le ||f||_2 + ||g||_2$$

$$\operatorname{curl} \overrightarrow{F} = 0 \Longrightarrow \oint \overrightarrow{F} \cdot d\overrightarrow{F} = 0$$

$$f(t)dt = f(t) - f(u)$$

$$f(t)dt = f(t)$$

$$f(t)dt =$$

$$f(z) = \sqrt{2\pi}e^{-\frac{z^2}{2}}$$

eⁱⁿ =

f (8)

$$= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$$

$$f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$$

$$f = f(f(u(x))) \Rightarrow \overline{\partial}x$$

$$f = f(f(u(x))) \Rightarrow \overline{\partial}x$$

$$x^n + y^n = x^n$$

Пример.
$$\sum_{n=1}^{\infty} \frac{x^n}{n},$$

$$R = \lim_{n \to \infty} \frac{n+1}{n} = 1,$$

$$x = 1 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n}$$
 - ряд расходится,

Пример.
$$\sum_{n=1}^{\infty} \frac{x^n}{n},$$

$$x = 1 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n} - \text{ряд расходится,}$$

$$x = -1 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^n}{n} - \text{ряд сходится условно.}$$

$$x = -1 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^n}{n} - \text{ряд сходится условно.}$$

$$f(z) = \sqrt{2\pi}e^{-\frac{z}{2}}$$

Окончательно
$$x \in [-1,1)$$
.

e^{in z}

[\fg\≤\!!

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f = f(t(u(x))) \Rightarrow dx$$

$$f = f(t(u(x))) \Rightarrow dx$$

$$x^n + y^n = x^n$$

Пример.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)^2},$$

Пример.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)^2},$$

$$R = \sqrt{\lim_{n \to \infty} \frac{(2n+1)^2}{(2n-1)^2}} = \lim_{n \to \infty} \frac{(2n+1)}{(2n-1)} = 1,$$

$$\sum_{n=1}^{\infty} (-1)^{n+1}$$

$$x=1 \Rightarrow \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{\left(2n-1\right)^2}$$
 - ряд сходится,

$$x = 1 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)^2} - \text{ряд сходится,}$$

$$x = -1 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(-1)^{2n-1}}{(2n-1)^2} = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^2} - \text{ряд сходится,}$$

n (n) an-hoh

e^{in z}

f (8)

[\fs\≤\\!

$$x \in [-1,1].$$

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n \cdot 2^n}, \qquad x^n + x^n = x^n$$

ein =

[\fg| \le \\!

 \boldsymbol{x}

Пример.
$$\sum_{n=1}^{\infty} n \cdot 2^n$$
, $R = \lim_{n \to \infty} \frac{(n+1) \cdot 2^{n+1}}{n \cdot 2^n} = 2.$

$$x = -1 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^n 2^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 - ряд сходится условно,

$$x = 3 \Rightarrow \sum_{n=1}^{\infty} \frac{2^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{1}{n} - \text{ряд расходится,}$$

$$x \in [-1,3).$$

$$x \in [-1,3), = \sqrt{2\pi}$$

$$= \frac{\partial f}{\partial t} \frac{\partial u}{\partial u} \frac{\partial u}{\partial x}$$

$$= \frac{1}{\sqrt{2\pi}} \frac{\partial u}{\partial x} \frac{\partial u}{\partial x}$$

Пример.

$$x - \frac{x^3}{3} + \frac{x^3}{5} - \frac{x^7}{7} + \dots + (-1)^{n+1} \frac{x^{2n-1}}{2n-1} + \dots$$

 $x^n + y^n = z^n$

ein =

| \fg\ \le \\!

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Ряд неполный. Воспользуемся признаком Даламбера:

яд неполный. Воспользуемся признаком даламоера.
$$|u_n| = \frac{|x^{2n-1}|}{2n-1}, \quad |u_{n+1}| = \frac{|x^{2n+1}|}{2n+1},$$

$$\lim_{n\to\infty} \left|\frac{u_{n+1}}{u_n}\right| = \lim_{n\to\infty} \frac{|x^{2n+1}|\cdot (2n-1)}{(2n+1)\cdot |x^{2n-1}|} = |x^2|\cdot \lim_{n\to\infty} \frac{2n-1}{2n+1} = x^2.$$

$$\frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$$

$$= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$$

$$x^n + y^n = x^n$$

Ряд абсолютно сходится, если $x^2 < 1$ или -1 < x < 1. Исследуем поведение ряда на концах интервала сходимости.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $x^n + y^n = z^n$

 $x^n + y^n = x^n$ $\frac{n}{2} \left(\frac{n}{2} \right) a^{n-k} b^k$

| \fg\ ≤ \\!

При
$$x = -1$$
 имеем ряд $-1 + \frac{1}{3} - \frac{1}{5} + \frac{1}{7} - \dots$,

который сходится по признаку Лейбница.

При
$$x=1$$
 имеем ряд $+1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\dots$

Это тоже сходящийся лейбницевский ряд. Следовательно, областью сходимости исходного ряда является отрезок [-1; 1].

MF. Tas = MVEW