$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^$$

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Общие определения.

Нормальные системы дифференциальных уравнений.

Существуют процессы, где одной функции недостаточно для описания процесса.

Далее t - независимая переменная; $x_1(t),...,x_n(t)$ (или x(t), y(t), z(t) если функций не больше трех) - неизвестные f(t)dt = f(b) - f(a)функции.

Определение. Системой дифференциальных уравнений называют совокупность уравнений, в каждое из которых входят независимые переменные, искомые функции и их производные. IIF TAS = IIIVEN

| \fs\ \le \\!

Определение. Решением системы дифференциальных уравнений называют совокупность функций $x_1 = x_1(t),...,x_n = x_n(t)$, которая при подстановке в уравнения превращает их в тождества.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $x^n + y^n = z^n$

Определение. Система дифференциальных уравнений первого порядка, разрешенных относительно производных от неизвестных функций называется **нормальной системой дифференциальных уравнений**.

Другими словами нормальная система - это система уравнений вида

Другими словами нормальная система - э
$$\begin{cases} x_1' = f_1(t, x_1, ..., x_n), \\ x_n' = f_n(t, x_1, ..., x_n). \end{cases}$$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2n+3^n=2^n$ HOFW

Многие системы дифференциальных уравнений можно привести к нормальной системе.

Пример
$$\begin{cases} x' + 2y' - x = 0, \\ x' - 3y' + y = t. \end{cases} \Rightarrow \begin{cases} x' = \frac{1}{5}(3x - 2y + 2t), \\ y' = \frac{1}{5}(x + y - t). \end{cases}$$

ein =

[\fg\≤\\]

Некоторые системы дифференциальных уравнений нельзя $f = f(t(u(x))) \Rightarrow \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial f}{\partial x}$ привести к нормальной системе.

n (n) an-tobb

Пример

$$\begin{cases} x' + y' - tx = 0, \\ x' + y' + y = 0. \end{cases}$$

MF. INS = MINTEN

Система дифференциальных уравнений, содержащая производные высших порядков, может быть приведена к нормальной системе.

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Пример.
$$\begin{cases} x_1'' + tx_2 = 0, \\ x_2'' + 2x_1' - x_2 = 0. \end{cases}$$

Пример. $\begin{cases} x_1'' + tx_2 = 0, \\ x_2'' + 2x_1' - x_2 = 0. \end{cases}$ Введем дополнительные функции $\begin{cases} x_1' = x_3, \\ x_2' = x_4. \end{cases}$ Тогда $\begin{cases} x_1' = x_3, \\ x_2' = x_4, \\ x_3' = -tx_2, \\ x_4' = x_2 - 2x_3. \end{cases}$

$$\begin{cases} x_1' = x_3, \\ x_2' = x_4, \\ x_3' = -tx_2, \\ x_4' = x_2 - 2x_3. \end{cases}$$

MF. Tas = MVEW

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$ IF TOS = III

 $-b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ [\fs\≤\!! В частности, одно дифференциальное уравнение n - го порядка может быть сведено к нормальной системе дифференциальных уравнений.

 $||fg|| \le ||f||_p + ||g||_q$ $||f|| = ||f||_q$ $|f|| = ||f||_q$

Hpumep.

$$x''' = f(t, x, x', x'') \cdot (y = x', az = y' = x'') \cdot \begin{cases} x' = y, \\ y' \Rightarrow z, \\ z' = f(t, x, y, z) \end{cases}$$

$$= f(t, x, x', x'') \cdot (y = x', az = y' = x'') \cdot \begin{cases} x' = y, \\ y' \Rightarrow z, \\ z' = f(t, x, y, z) \end{cases}$$

$$(z) = \sqrt{2\pi} e^{-\frac{z^2}{2}}$$

$$z^n$$

HF. Eds = IIIVEN

ein =

Метод исключения (метод редукции)

Нормальная система дифференциальных уравнений, **как правило**, может быть заменена одним дифференциальным уравнением, порядок которого равен числу уравнений системы.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Для решения системы

$$\left\{egin{array}{ll} x'=f(t,x,y) & = 0 \ y'=g(t,x,y) \end{array}
ight.$$

продифференцируем первое уравнение по х. Тогда

$$x'' = f'_t + f'_x \cdot x' + f'_y \cdot y' = f'_t + f'_x \cdot x' + f'_y \cdot g(t, x, y);$$

Если выполняются условия теоремы о неявной функции, то можно найти $y = \varphi(x,x',y)$ и, подставив в первое уравнение системы, получить дифференциальное уравнение второго порядка относительно x. Очевидно, тот же способ можно применять и для случая большего числа уравнений, что, однако, приведёт к уравнению высокого порядка по x.

Теорема о неявной функции

Если функция $F: \mathbb{R} imes \mathbb{R} o \mathbb{R}$

•дифференцируема в некоторой окрестности $I=I_x \times I_y$ точки (x_0,y_0)

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $\bullet F(x_0,y_0) = 0$ $H = F'_v(x_0,y_0) \neq 0$

то существует такая непрерывная функция что для любой точки $(x,y) \in I$ $F(x,y) = 0 \Leftrightarrow y = f(x)$

$$F(x,y) = 0 \Leftrightarrow y = f(x)$$

Более того, в этом случае, производная функции f может быть $f'(x) = -\frac{F'_x(x, f(x))}{F'_y(x, f(x))}.$ вычислена по формуле

$$f'(x) = -\frac{F'_x(x, f(x))}{F'_y(x, f(x))}$$

INF. BAS = III VEW

[\fg\≤\\!

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f = f(t(u(x))) \Rightarrow \delta x$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

$$f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$$

ein =

f (8)

[\fg\≤\\1

Отсюда сразу вытекает один из способов решения систем

Отсюда сразу вытекает один из способов решения систем
$$\int_{a}^{b} \int_{a}^{b} \int_{a}^{b$$

$$\int_{\beta} f(t) dt = \int_{\beta} f(t) (u(x)) dt = \int_{\beta} f(t) (u(x)) dt = \int_{\beta} f(t) (u(x)) dt = \int_{\beta} f(t) dt = \int_{\beta}$$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$

Однако имеют место случаи, когда система дифференциальных уравнений не может быть сведена к одному дифференциальному $\mathbf{\Pi pumep} \begin{cases} x' = x, & p(X = x) = \binom{n}{x} p^{x} (1 - x) \\ y' = z, & p(X = x) = \binom{n}{x} p^{x} (1 - x) \\ z' = y. & p(X = x) = \binom{n}{x} p^{x} (1 - x) \\ y' = z, & p(X = x) = \binom{n}{x} p^{x} (1 - x) \\ y' = y' = \binom{n}{x} p^{x} (1 - x) \\ y' = y' = \binom{n}{x$ уравнению.

$$\prod_{pumep} \begin{cases} x' = x, \\ y' = z, \\ z' = y. \end{cases}$$

Первое уравнение не зависит от остальных.
$$x'=x,\ y''=z'=y.$$
 $y=C_1e^t+C_2e^{-t},\ z=y'=C_1e^t-C_2e^{-t},\ x=C_3e^t.$

Общее решение нормальной системы дифференциальных

[\fs\ \le \\] уравнений $\begin{cases} x_1' = f_1(t, x_1, ..., x_n), \\ ... & x_n' = f_n(t, x_1, ..., x_n) \end{cases}$ имеет вид $\begin{cases} x_1 = \varphi_1(t, C_1, ..., C_n), \\ ... & x_n = \varphi_n(t, C_1, ..., C_n), \end{cases}$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

где $C_1,...,C_n$ - произвольные постоянные.

$$\begin{cases} \varphi_{1}(t_{0}, C_{1}, ..., C_{n}) = x_{10}, \\ \varphi_{n}(t_{0}, C_{1}, ..., C_{n}) = x_{n0}. \end{cases}$$

 $f = f(t(u(x))) \Rightarrow \overline{\lambda}x$ Теорема. $2^n+3^n=2^n$ NP. Ids = III VP &V

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ ЛЬНОЙ (ох $= \infty$) = $\binom{n}{k}p^2(1-p)^{n-n}$ Если правые части нормальной системы дифференциальных уравнений непрерывны вместе со своими частными производными в окрестности значений $t_0, x_{10}, x_{20}, ..., x_{n0},$ то в достаточно малом интервале $\left[t_0-h,t_0+h\right]$ существует единственная система функций $x_1(t),...,x_n(t)$, являющаяся решением системы и удовлетворяющая начальным условиям.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $V = \sum_{n=1}^{\infty} \left(\frac{n}{n} \right) a^{n-k} b^k$ MF. TAS = MVEW

[\fs\ ≤\\!

 $f(x) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2\pi}}$ $f(x) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2\pi}} e^{-\frac{x^{2}}{2\pi}}$ $f(x) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2\pi}}$ $f(x) = \int_{0}^{\infty}$

Определение. Пространство $(x_1,...x_n)$ называется фазовым пространством системы дифференциальных уравнений. Кривые, заданные на фазовом пространстве решениями $\mathbf{x}(t)$, называются фазовыми траекториями системы.

ein =

 $f(x) = \sqrt{2\pi}$ f(x) = f(x) - f(x) f(x) = f(x) - f(x) $f(x) = \sqrt{2\pi}$ $f(x) = \sqrt{2\pi}$ $f(x) = \sqrt{2\pi}$ $f(x) = \sqrt{2\pi}$ IIF TAS = IIIVEN

NO VA Состоянию $\mathbf{x}(t)$ в некоторый момент t в фазовом пространстве соответствует точка с координатами $x_1(t), x_2(t),$ изображающая точка (она изображает мгновенное состояние). В процессе эволюции изображающая точка с течением времени, смещается вдоль некоторой линии – фазовой траектории. Совокупность характерных фазовых траекторий называют фазовым портретом системы. При определенном навыке по фазовому портрету можно многое сказать о возможных $f = f(t(u(x))) \Rightarrow \frac{dx}{dx} = \frac{3\pi n \pi DIX}{dt du dx}$ движениях системы.

MF FAS = MVEW

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $x^n + y^n = z^n$

 $x^n + y^n = x^n$ $x^n + y^n = x^n$ $x^n + y^n = x^n$

Теорема

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ В условиях теоремы единственности фазовые траектории системы дифференциальных уравнений первого порядка не пересекаются.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $x^n + y^n = z^n$

[\fs\ \le \\]

 $\|fg\| \leq \|f\|_2 + \|g\|_2$ $\operatorname{curl} \vec{F} = 0 \implies \oint \vec{F} \cdot d\vec{F} = 0$ Доказательство

 $\sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{1-r}$ Пусть x_0 — точка пересечения фазовых траекторий, соответствующих решениям \mathbf{x}_1 , \mathbf{x}_2 . Тогда $\mathbf{x}_1(x_0) = \mathbf{x}_2(x_0)$ то есть двум различным решениям соответствует одно начальное условие, что невозможно согласно теореме единственности. Таким образом, фазовые траектории не пересекаются. ■

MT. Tas = MVEW

В типичной фазовой траектории можно выделить начальный участок (переходный процесс) и более поздний этап движений, которые отличаются большей степенью повторяемости – установившиеся движения. Установившимся движениям, которые менее разнообразны, чем переходные процессы, в фазовом пространстве соответствуют объекты, названные аттракторами – от английского «attract» — притягивать, привлекать.

 $2^n+3^n=2^n$

 $x^n + y^n = x^n$ $x^n + y^n = x^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

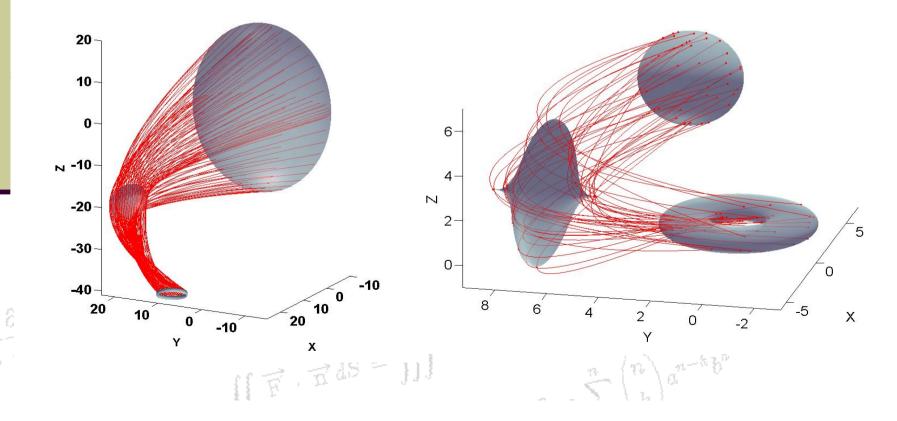
HF TAS = III VEW

 $\frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial u}{\partial u} \frac{\partial u}{\partial x}$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$ eⁱⁿ = HOFW _ f(a) $f = f(t(u(x))) \stackrel{\Rightarrow}{=} \overline{dx}$ $x^n + y^n = x^n$ $x^n + y^n = x^n$ $x^n + y^n = x^n$ Примеры простейших аттракторов f(2) = \[\sqrt{2\pi} $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ IIF TAS = IIIVEW

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

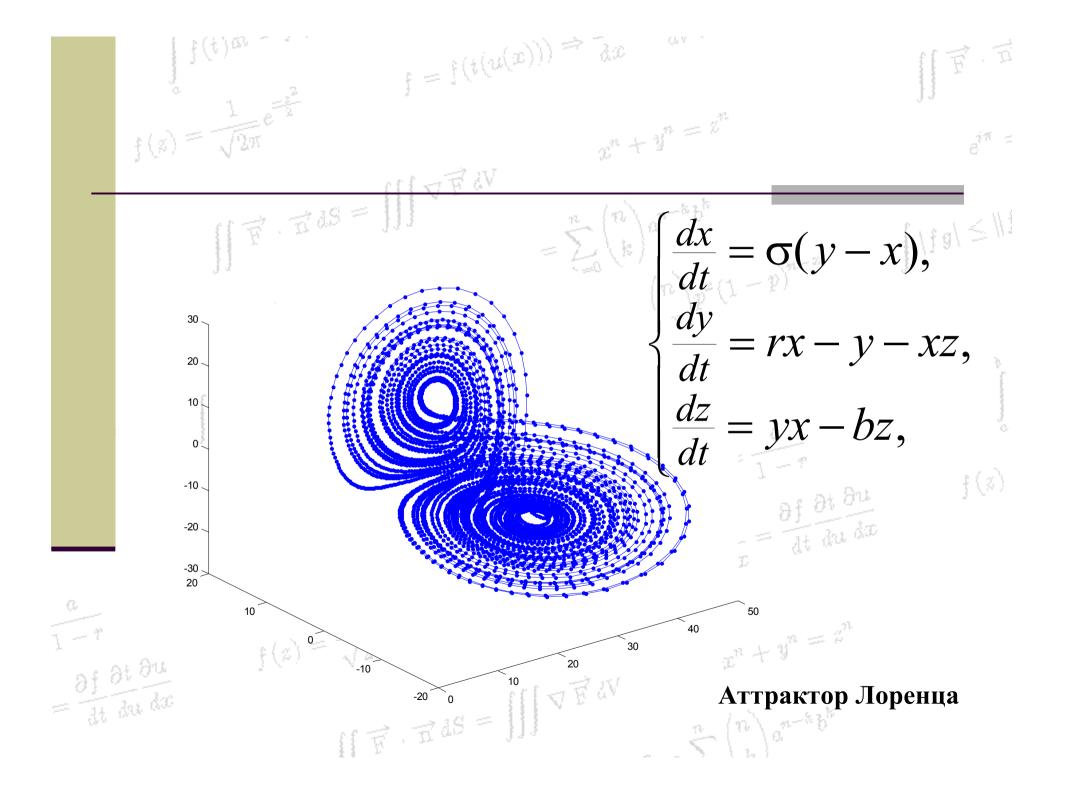
Аттракторы могут существовать в пространстве состояний только диссипативных динамических систем. Так называют системы, обладающие свойством сжатия фазового объема,



 $f(x) = \int_{0}^{\infty} \int_{0}^{$

Во фрактальной среде динамический хаос, то есть непериодическое движение в детерминированных системах, приводит к специальному виду аттрактора, который называется странным аттрактором.

f(t) = f(t) - f(a) f(t) = f(b) - f(b) f(t) =



 $f(t)^{(1)} = \frac{1}{\sqrt{2\pi}} e^{-\frac{3^2}{2}}$ HVFW myJulia.Ru

MF. Tas = MVEW

Э́двард Но́ртон Ло́ренц

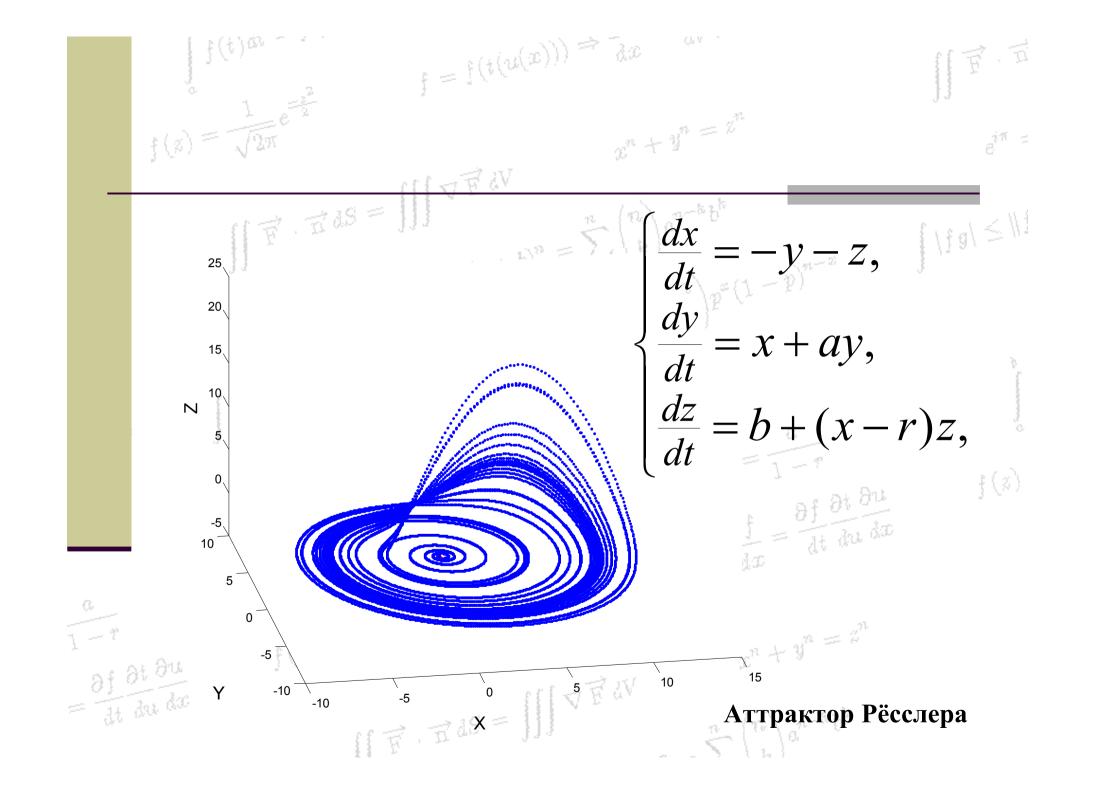
 $2^n+3^n=2^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

(англ. Edward Norton Lorenz; 1917 —2008) — американский математик и метеоролог, один из основоположников Теории Хаоса, автор Эффекта бабочки, Аттрактора Лоренца.

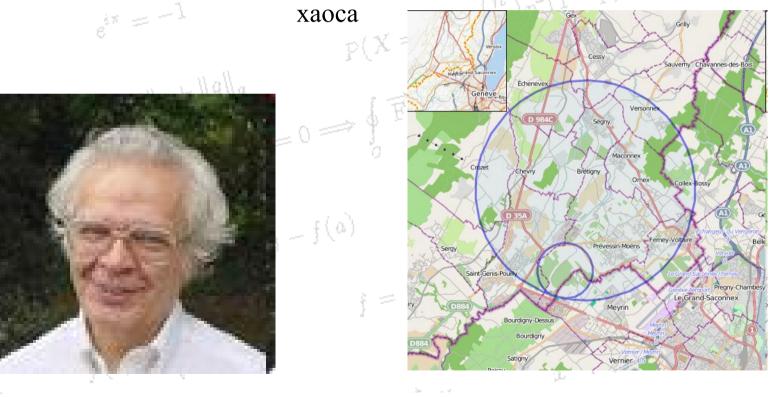
 $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$

 $\lceil |fg| \leq |f|$



Немецкий профессор Отто **Ресслер** (р.1940)— специалист в области теории

 $x^n + y^n = z^n$



 $f = f(t(u(x))) \Rightarrow \bar{d}x$

HIVER

Большой адронный коллайдер

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$ ein = MAF 232538/9

IIF . II

 $\frac{a}{1-t}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial u}$

 $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f = f(f(u(x))) \Rightarrow \partial_x x$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$

Стандартная модель физики элементарных частиц, или просто Стандартная модель, — теоретические рамки в физике, которые наиболее точно и удачно описывают текущее положение элементарных частиц, их значения и поведение.

На Большом адронном коллайдере пока не смогли опровергнуть Стандартную модель, но сумели разогнать свой ускоритель до новых скоростей.

 $f(x) = \sqrt{2\pi}$ $f(x) = \frac{1}{\sqrt{2\pi}}$ $f(x) = \sqrt{2\pi}$ $f(x) = \sqrt{2\pi}$

 $\frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial u}{\partial u} \frac{\partial u}{\partial x}$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2^n+3^n=2^n$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^l$ Стандартная модель имеет несколько очевидных недостатков. Она, например, не объясняет темной материи и темной энергии, она

несовместима с Общей теорией относительности, в то время как одна из предложенных ей взамен альтернатив — теория суперсимметрии (сокращенно — SUSY) — прекрасным образом все существующие несоответствия в состоянии убрать, вдобавок объяснив

[/fs/ < //!

существование и темной материи, и темной энергии.

f(t) $f = f(t(u(x))) \Rightarrow \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ MT TAS = MINVEW

Отто Рёсслер (нем. Otto Rössler, 6 февраля 1907, Айзенштадт, Австро-Венгрия — 9 июля 1991, Марбург) — австрийский семитолог, африканист, сотрудник Аненербе, унтерштурмфюрер СС.

 $2^n+3^n=2^n$

| \fg\ ≤ \\!

Выступл на страницах «Политического журнала» («Zeitschrift für Politik») с антисемитскими статьями

После освобождения из плена и процесса денацификации Рёсслер в 1954 г. стал экстраординарным профессором Тюбингенского университета. В 1964—1975 гг. возглавлял семинар по семитологии в университете Марбурга.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Отто Ресслер, профессор химии из Университета Тюбингена (Германия) утверждает, что образовавшиеся черные дыры быстро вырастут, захватывая частицы. Например, электроны

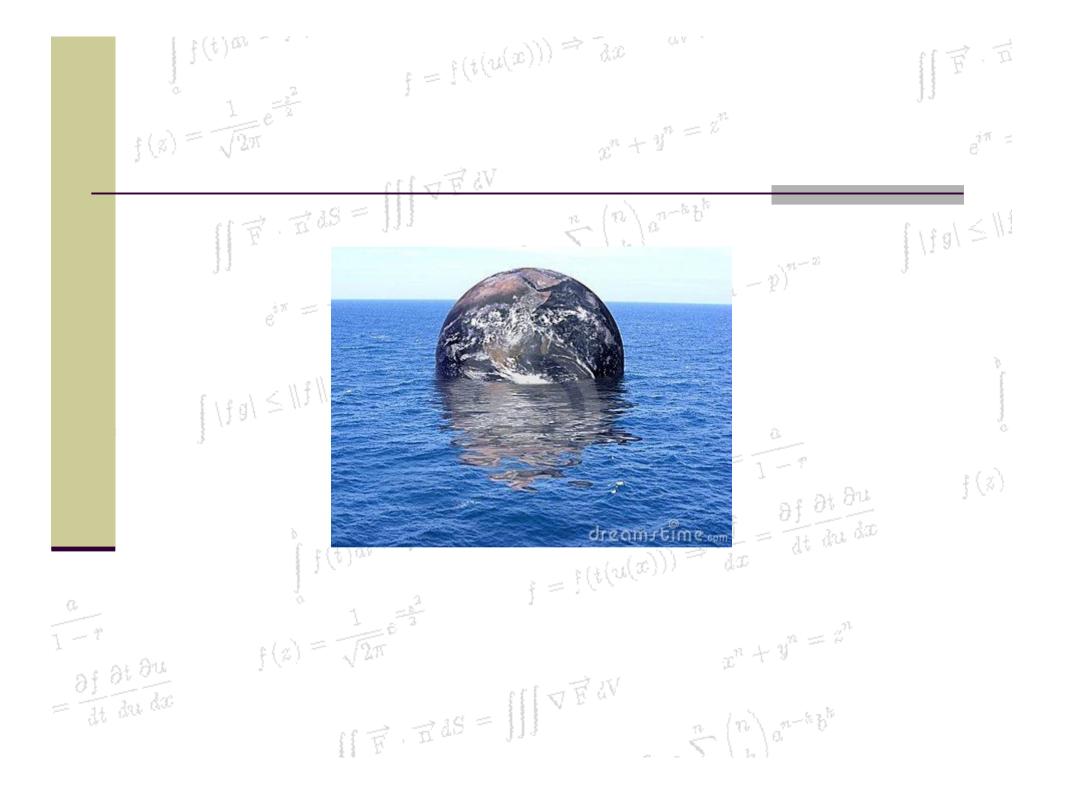
 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Но в ЦЕРН (*CERN*) — Европейская организация по ядерным исследованиям тогда отбивались: если что - эксперимент будет немедленно прекращен - ускоритель остановят. И вот в 2012 г БАК остановили

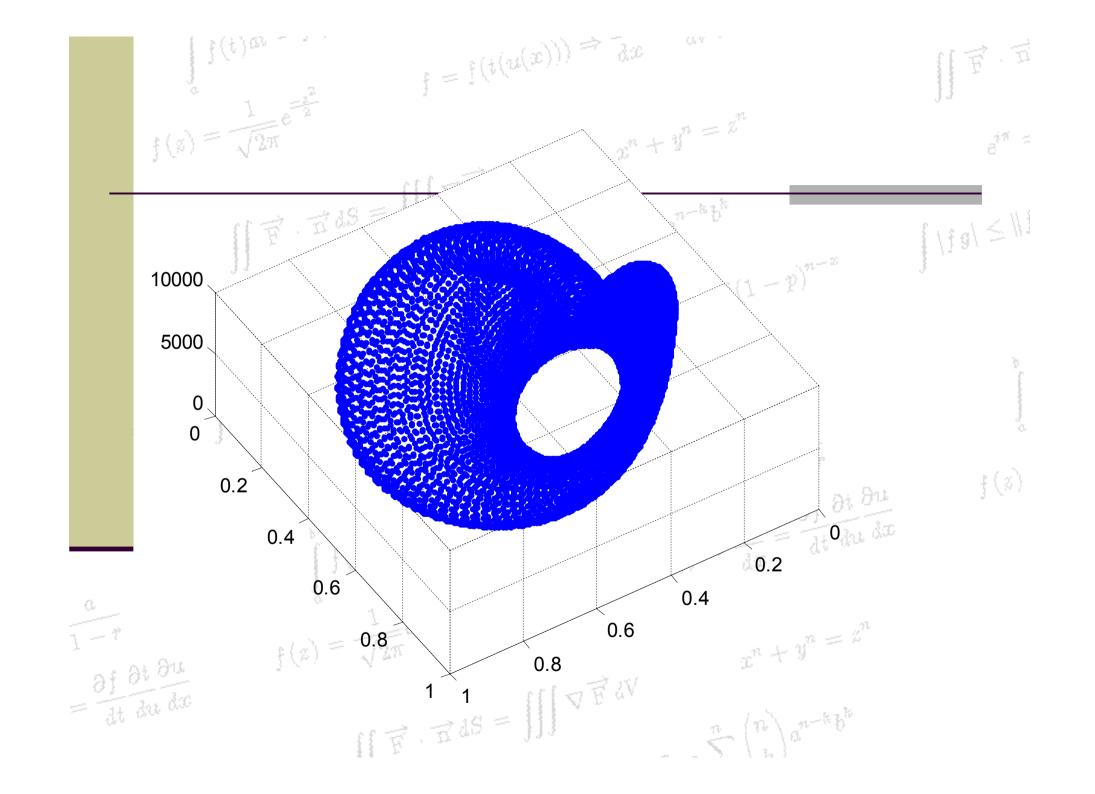
А если бы не успели, - комментирует профессор Ресслер, - то образовавшаяся черная дыра могла быть притянута гравитацией к самому центру Земли за ничтожные доли секунды. И разрастаясь, уничтожит планету

n (n) an-tobb



$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2$$



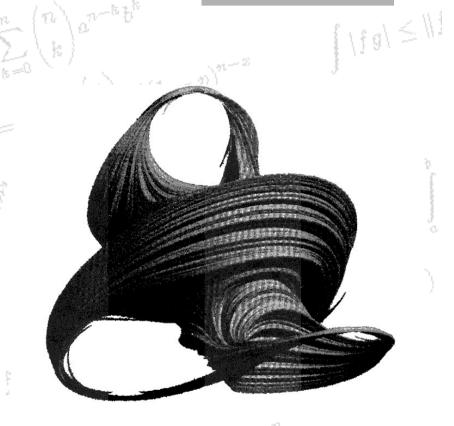
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2$$

10000 8000 4000 2000 0.7 0.65 0.5 0.45 0.40 0

 $f = f(t(u(x))) \Rightarrow \overline{Ax}$

Пример странного аттрактора, построенного по реальным данным,



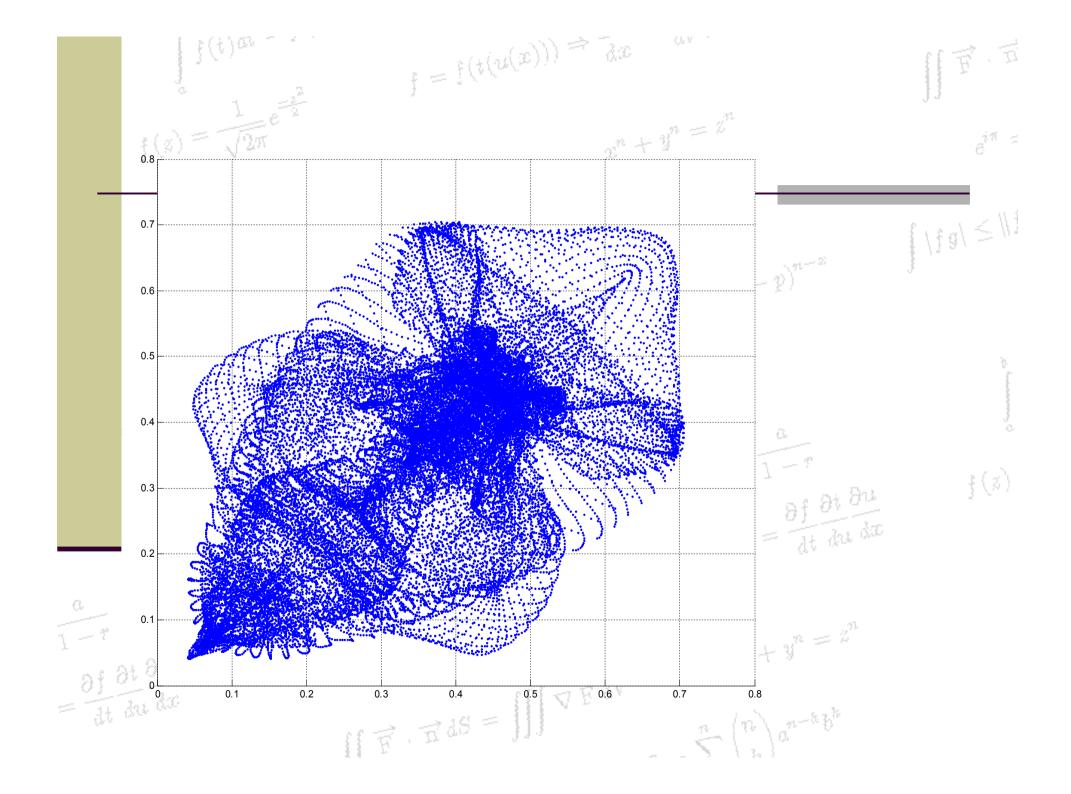
Пространственный фрактал, полученный в результате трехмерного сечения четырехмерного пространства кватернионов.(Б. Мандельброт)

 $x^n + y^n = z^n$

T-r

af at au

dat



Системы линейных дифференциальных уравнений.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Однородной системой линейных дифференциальных уравнений

называется система
$$\begin{cases} x_1' = a_{11}(t)x_1 + ... + a_{1n}(t)x_n, \\ x_n' = a_{n1}(t)x_1 + ... + a_{nn}(t)x_n, \end{cases}$$
 где $a_{ij}(t)$ - непрерывные функции.

где
$$a_{ij}(t)$$
 - непрерывные функции.

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \qquad X(t) = \begin{pmatrix} x_1(t) \\ \dots \\ x_n(t) \end{pmatrix}, \quad X'(t) = \begin{pmatrix} x'_1(t) \\ \dots \\ x'_n(t) \end{pmatrix}.$$

$$X' = AX.$$

$$X' = AX.$$

$$X' = AX.$$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}$ 1) Если известно частное решение системы линейных дифференциальных уравнений $x_{11}(t),...,x_{n1}(t)$, то $C_1x_{11}(t),...,C_1x_{n1}(t)$ тоже является решением системы, где C_1 - произвольная постоянная.

[/fs/ ≤ //!

Доказательство
$$X' - AX = 0 \Rightarrow (CX)' - A(CX) = C(X' - AX) = 0.$$

MF. BAS = MVEW

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2n+3^n=2^n$

2) Если известны два частных решения системы линейных дифференциальных уравнений $x_{11}(t),...,x_{n1}(t)$ и $x_{12}(t),...,x_{n2}(t)$, то $x_{11}(t) + x_{12}(t), ..., x_{n1}(t) + x_{n2}(t)$ тоже является решением системы.

Доказательство
$$X_1' - AX_1 = 0$$
 и $X_2' - AX_2 = 0 \Rightarrow (X_1 + X_2)' - A(X_1 + X_2) = (X_1' - AX_1) + (X_2' - AX_2) = 0.$

HF. IS = IIIVEW

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$

3) Если известны n частных решений системы $x_{11}(t),...,x_{n1}(t); ...;$ $x_{1n}(t),...,x_{nn}(t)$, то $\begin{cases} x_1 = C_1x_{11} + ... + C_nx_{n1}, \\ ... \\ x_n = C_1x_{1n} + ... + C_nx_{nn} \end{cases}$ (*)

ein =

f(s)

$$\begin{cases} x_1 = C_1 x_{11} + \dots + C_n x_{n1}, \\ \dots & (*) \\ x_n = C_1 x_{1n} + \dots + C_n x_{nn} \end{cases}$$

тоже является решением системы линейных дифференциальных уравнений.

F(x) = $\sqrt{2\pi}$ HF TAS = IIIVEN