

Дифференциальные уравнения высших порядков.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Определение. Порядком дифференциального уравнения называется наивысший порядок производной, входящей в уравнение

азывается наивысший порядок производной, вх
$$F\left(x,y,y',y'',...,y^{(n)}\right) = 0.$$

Дифференциальное уравнение, разрешенное относительно производной $y^{(n)}$ имеет вид $y^{(n)} = f\left(x, y, y', ..., y^{(n-1)}\right)$.

n (n) an-hab

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $f = f(t(u(x))) \Rightarrow \overline{dx}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

Общее решение дифференциального уравнения имеет вид $y = \varphi(x, C_1, C_2, ..., C_n)$.

e^{in z}

Частные решения дифференциального уравнения определяются из начальных условий

определяются из начальных условий
$$y|_{x=x_0}=y_0,\ y'|_{x=x_0}=y_0',...,\ y^{\binom{n-1}{2}}|_{x=x_0}=y_0'$$

Общим интегралом дифференциального уравнения n — ого порядка называется функция $\Phi(x,y,C_1,...C_n)$, сохраняющая свои значения на решениях дифференциального уравнения.

 $x^n + y^n = z^n$

Интегральной кривой называется график частного решения.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Общее решение представляет собой совокупность интегральных кривых.

Обычно рассматривается одна из трех задач:

- 1) Найти общее решение дифференциального уравнения п ого порядка,
- 2) *Задача Коши* найти частное решение дифференциального уравнения n ого порядка, удовлетворяющее заданным начальным условиям,
- 3) *Краевая задача* найти частное решение, удовлетворяющее заданным начальным условиям, одна часть которых задана в точке x_0 , а другая часть в точке x_1 .

Теорема о существовании и единственности решения.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Если функция $f\left(x,y,y',...,y^{\left(n-1\right)}\right)$ и ее производные $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial y'}$,...., $\frac{\partial f}{\partial v(n-1)}$ непрерывны в окрестности значений $(x_0, y_0, y'_0, ..., y_0^{(n-1)})$, то дифференциальное уравнение $y^{(n)} = f\left(x, y, y', ..., y^{(n-1)}\right)$ в достаточно малом интервале $(x_0 - h, x_0 + h)$ имеет единственное решение y = y(x), удовлетворяющее заданным начальным условиям $y|_{x=x_0} = y_0, \ y'|_{x=x_0} = y'_0, \ ..., \ y^{(n-1)}|_{x=x_0} = y_0^{(n-1)}.$

Без доказательства

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $2^n+3^n=2^n$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ (a+b) $^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ [\fs\ ≤\\! $e^{i\pi} = -1$

Или, для любой внутренней точки $(x_0, y_0, y_0', y_$ еннюю точку $(x_0, y_0, y_0', ..., y_0^{(n-1)}) \in G$ проходит кривая). пространства G существует единственное решение дифференциального удовлетворяющее уравнения, $y(x_0) = y_0, y'(x_0) = y'_0, ...y^{(n-1)}(x_0) = y_0^{(n-1)}$

(через любую внутреннюю единственная интегральная кривая).

HT TAS = MINVEW

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2^n+3^n=2^n$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ $P(X=a) = \binom{n}{a} p^a (1-p)^{n-a}$

Пример.

Рассмотрим дифференциальное уравнение второго порядка y'' = f(x,y,y'). Область существования и единственности решения $G \in R^3(x,y,y')$ заполнена непересекающимися интегральными кривыми. Через любую точку $(x_0, y_0, y_0') \in G$ проходит единственная интегральная f (8) кривая. Однако через «точку» $(x_0, y_0) \in R^2(x, y)$ проходит бесконечно много интегральных кривых, все они различаются значениями y'_0 . Заметим, что в $R^3(x,y,y')$ «точка» $(x_0,y_0) \in R^2(x,y)$ представляет собой прямую $x = x_0, y = y_0.$

[\fs\ ≤\\!

 $f(z) = \sqrt{2\pi}^c$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ MF. HAS = MIVEN

динейные дифференциальные уравнения.

Линейные дифференциальные уравнения 2-го порядка.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Определение. Линейным дифференциальным уравнением 2-го порядка называется дифференциальное уравнение 1-й степени относительно неизвестной функции у и ее производных

$$y'' + a_1(x)y' + a_2(x)y = f(x).$$
 (*)

Функция f(x) называется правой частью дифференциального уравнения. Если $f(x) \equiv 0$, то уравнение называется однородным (ЛОДУ). уравнения.

в противном случае - уравнение называется неоднородным (ЛНДУ)).

Теорема Коши Если $\forall x \in (a,b)$ $f(x), a_1(x), a_2(x)$ непрерывны, то $\forall y|_{x=x_0} = y_0, y'|_{x=x_0} = y'_0 \quad x_0 \in (a,b)$ существует единственное решение y = y(x), удовлетворяющее заданным начальным условиям. curl F = 0 =>

 $x^n + y^n = z^n$

n (n) an-habh

| \fs\ \le \\!

f (8)

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Дифференциальное уравнение $p_{0}(x)y'' + p_{1}(x)y' + p_{2}(x)y = q(x)$ можно привести к виду $y'' + a_1(x)y' + a_2(x)y = f(x)$. f = f(t(u(x)))разделив на p_0 .

IIF TAS = IIIVEN

Там, где $p_0 = 0$ - особые точки.

Линейные дифференциальные уравнения 2-го порядка без правой части (ЛОДУ).

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

$$y'' + a_1(x)y' + a_2(x)y = 0.$$

e^{i#} =

f (8)

$$\|fg\| \leq \|f\|_e + \|g\|_e$$

$$\lim_{t \to \infty} \vec{F} = 0 \implies \|\vec{F} \cdot d\vec{F} = 0$$

Считаем, что
$$a_1(x), \ a_2(x)$$
 непрерывны на (a,b) .

$$f(z) = \sqrt{2}$$
Тривиальное решение $y \equiv 0$.

 $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f = f(t(u(x))) \Rightarrow \lambda x$ $x^n + y^n = x^n$

Теорема. Если $y_1(x)$, $y_2(x)$ - решения дифференциального уравнения (**), то их линейная комбинация $y = C_1 y_1(x) + C_2 y_2(x)$ также является решением уравнения (**) для любых C_1 , C_2 .

 $\frac{a}{1-r} = \frac{\partial f}{\partial t} \frac{\partial u}{\partial u} \frac{\partial u}{\partial x}$

f(x) = f(x) - f(x) f = f(x

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2^n+3^n=2^n$

Доказательство: $y = C_1 y_1 + C_2 y_2$, $y' = C_1 y_1' + C_2 y_2'$, $y'' = C_1 y_1'' + C_2 y_2''$.

ein =

f (8)

[\fs\ ≤\\!

Подставим в уравнение

Подставим в уравнение
$$C_1y_1'' + C_2\ y_2'' + a_1\left(C_1y_1' + C_2\ y_2'\right) + a_2\left(C_1y_1 + C_2\ y_2\right) =$$

$$= C_1 \left(y_1'' + a_1 y_1' + a_2 y_1 \right) + C_2 \left(y_2'' + a_1 y_2' + a_2 y_2 \right) = 0.$$

Теорема. Если $y_1(x)$, $y_2(x)$ - решения дифференциального уравнения (**) и $\frac{y_2}{y_1} \neq const$, то $y = C_1 y_1(x) + C_2 y_2(x)$ общее решение дифференциального уравнения.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $x^n + y^n = z^n$

Доказательство: Покажем, что

 $\forall y|_{x=x_0} = y_0, y'|_{x=x_0} = y'_0$ можно подобрать C_1, C_2 так, чтобы решение у удовлетворяло начальным условиям. Подставим начальные условия в выражения для y и y_0

$$\begin{cases} C_1 y_{10} + C_2 y_{20} = y_0, \\ C_1 y_{10}' + C_2 y_{20}' = y_0'. \end{cases} \qquad y_1 \Big|_{x=0} = y_{10} \quad y_2 \Big|_{x=0} = y_{20}$$

$$f(z) = \frac{1}{\sqrt{2\pi}} = \frac{1}{2\pi} = \frac{1}{2\pi}$$

Предположим обратное. Определитель равен нулю. Тогда система при нулевых начальных условиях помимо $\begin{cases} C_1 y_{10} + C_2 y_{20} = 0, \\ C_1 y_{10}' + C_2 y_{20}' = 0 \end{cases}$ нулевого, имеет бесконечное множество ненулевых решений.

 $2^n+3^n=2^n$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Пусть C_{10} , C_{20} одно из них.

Тогда $C_{10}y_1 + C_{20}y_2 \equiv 0$. Тедователи $C_{10}y_1 + C_{20}y_2 = 0$. Следовательно $\frac{y_2}{y_1} = -\frac{C_{10}}{C_{20}} = const$, что противоречит условию.

MF. Tas = III VEW

Линейная независимость и определитель Вронского

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Функция
$$y = C_1 y_1(x) + C_2 y_2(x)$$

содержит две произвольные постоянные и является решением уравнения . Может ли она являться общим решением уравнения ?

[\f9\≤\\!

Определение

Функции $y_1(x)$ и $y_2(x)$ называются линейно независимыми на $\alpha_1 y_1(x) + \alpha_2 y_2(x) = 0$ интервале (a; b), если равенство

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) = 0$$

выполняется тогда и только тогда, когда $\alpha_1=\alpha_2\equiv 0$. MT. Tas = MVEN

curl F = 0 => 6 F

хотя бы ^-Если хотя бы одно из чисел α_1 или α_2 отлично от нуля и выполняется $\alpha_1 y_1(x) + \alpha_2 y_2(x) = 0$ равенство,

 $x^n + y^n = z^n$

 $V = \sum_{n=1}^{\infty} \binom{n}{n} a^{n-k}b^k$

f(z)

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

то функции $y_1(x)$ и $y_2(x)$ называются линейно зависимыми на (a;b). $\sum_{n=1}^{\infty} a^{n-1} = \overline{1-r}$

Очевидно, что функции y_1 и y_2 линейно зависимы тогда и только тогда, когла они пропоримента. тогда, когда они пропорциональны,

MT TOS = MINTEN

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^$

Средством изучения линейной зависимости системы функций является так называемый *определитель Вронского или вронскиан* (Ю. Вронский — польский математик).

Для двух дифференцируемых функций *вронскиан имеет вид*

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{cases} 0 & \text{or } x^{-1} = \frac{1}{1-r} \\ 0 & \text{or } x^{-1} = \frac{1}{1-r} \end{cases}$$

$$f(t)dt = f(t)(u(x)) \Rightarrow dx = dt du dx$$

$$f(x) = \sqrt{2\pi}$$

$$f(t)dt = f(t)(u(x)) \Rightarrow dx = dt du dx$$

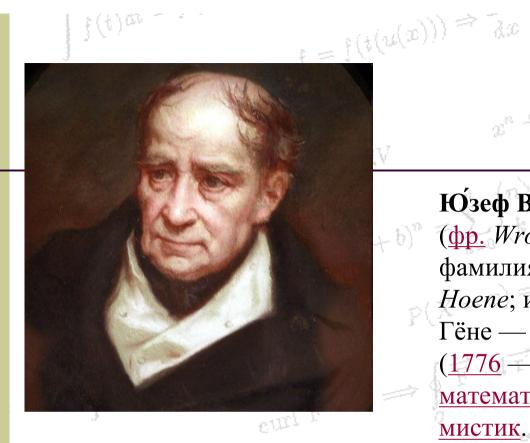
$$f(t) = \sqrt{2\pi}$$

$$f(t) = \sqrt{2\pi}$$

$$f(t) = f(t)(u(x)) \Rightarrow dx = dt du dx$$

$$f(t) = \sqrt{2\pi}$$

 $\frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial x} \frac{\partial}{\partial x}$ $= \frac{\partial}{\partial t} \frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial x}$



Юзеф Вроньский

 $x^n + y^n = z^n$

(фр. Wroński, настоящая фамилия — Хёне, польск. Ноепе; известен также как Гёне — Вронский) (1776 — 1853), польский математик и философ-мистик.

 $\{ ||fg|| \leq \| ||$

Был артиллерийским офицером в армии Костюшко, впоследствии служил в штабе А. В. Суворова, с 1797 — в отставке. Его работы по математике, публиковавшиеся с 1811, характеризуются чрезвычайной широтой и общностью постановки задач. Однако сложность обозначений, которыми он пользовался, склоняющийся к мистицизму стиль затрудняли изучение его произведений. Имя Вронского сохранилось во всех курсах анализа за введённый им впервые (1812) функциональный определитель, имеющий основное значение в теории линейных дифференциальных уравнений.

Имеют место следующие теоремы.

Теорема. Если дифференцируемые функции $y_1(x)$ и $y_2(x)$ линейно зависимы на (a;b), то определитель Вронского на этом интервале тождественно равен нулю.

 $2^n+3^n=2^n$

[\fg\ ≤\\!

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Теорема. Если функции $y_1(x)$ и $y_2(x)$ — линейно независимые решения уравнения на (a;b), то определитель Вронского на этом интервале нигде не обращается в нуль.

Из теорем следует, что вронскиан не равен нулю ни в одной точке интервала (a; b) тогда и только тогда, когда частные решения линейно независимы.

 $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

HERITAS = JUNITER

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

Совокупность любых двух линейно независимых на интервале (a; b) частных решений $y_1(x)$ и $y_2(x)$ ЛОДУ второю порядка определяет фундаментальную систему решений этого уравнения: любое произвольное решение может быть получено как комбинация

ein =

[\fg\≤\\!

f (8)

этого уравнения: ли $y = C_1 y_1(x) + C_2 y_2(x)$ y = f(t)dt = f(t)dt y = f(t)dt = f(t)dt $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$ HF TAS = IIIVEW

 $\frac{1-r}{3t} = \frac{\partial t}{\partial t} \frac{\partial u}{\partial u} \frac{\partial u}{\partial x}$

Общее решение линейного однородного дифференциального уравнения второго порядка.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Из вышеизложенного видно, что отыскание общего решения линейного однородного дифференциального уравнения сводится к нахождению его фундаментальной системы решений.

Однако, даже для уравнения второго порядка, если коэффициенты зависят от x, эта задача не может быть решена в общем виде.

Тем не менее, если известно одно ненулевое частное решение, то задача может быть решена.

f(z)

MT Tas = MVTW

n (n) an-hah

| \f 9\ ≤ \\!

$$y'' + p_1(x)y' + p_2(x)y = 0$$

Eсли задано уравнение вида $y'' + p_1(x)y' + p_2(x)y = 0$ и известно одно ненулевое решение $y = y_1$, то общее решение может быть найдено по формуле:

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

$$y = C_2 y_1 \int \frac{1}{y_1^2} e^{-\int p_1(x) dx} dx + C_1 y_1$$
.

 $x^n + y^n = z^n$

[\fs\ ≤\\!

Таким образом, для получения общего решения надо подобрать какое – либо частное решение дифференциального уравнения, хотя это бывает часто довольно сложно

MF. Ids = MVEW

$$f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$$

Формула
$$y = C_2 y_1 \int \frac{1}{y_1^2} e^{-\int p_1(x) dx} dx + C_1 y_1.$$
 Называется формулой Остроградского-Лиувилля

e^{iπ} ≈

f (3)

| \fg\ \le \| !

Называется формулой Остроградского-Лиувилля
$$|f(t)| \leq |f(t)|^{\frac{1}{2}} + |f(t)|^{\frac{1}{2}} = 0 \qquad \text{ (i)} \qquad \text{ (i)}$$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$

Pacemor Рассмотрим уравнение второго порядка более общего вида $a_0(x)y'' + a_1(x)y' + a_2(x)y = 0,$ ула Острогос

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0,$$

Формула Остроградского – Лиувилля дает значение определителя

Формула Остроградского — Лиувилля дает значение определителя Вронского для решений этого уравнения:
$$\begin{vmatrix} y_1 & y_2 \\ y_1 & y_2 \end{vmatrix} = Ce^{-\int \frac{a_1(x)}{a_0(x)}dx}$$
 где y_1, y_2 — любые два решения

eⁱⁿ =

HOFW $L_f(b) - f(a)$

Михаил Васильевич Остроградский (Михайло Васильович Остроградський); 12 сентября [24 сентября] 1801 — 20 декабря 1861 [1 января 1862]) — российский математик и механик украинского происхождения, признанный лидер математиков Российской империи середины XIX века $f = f(t(u(x))) \Rightarrow \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

 $2c^n + 3l^n = 2^n$

 $\frac{1-r}{3t} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $V = \sum_{n=1}^{\infty} \binom{n}{n} a^{n-k}b^k$

[/fa/ ≤//1

f (2)

ULTEN W

Лиувилль Жозеф (Liouville Joseph), род. 24.3.1809, Сент-Омер (Па-де-Кале) - ум. 8.9.1882, Париж. Французский математик, иностранный чл.-корр. Петербургской АН (с 18.12.1840), член Парижской АН (1839), профессор Политехнической школы (1833) и Коллеж де Франс (1839) в Париже. Основные труды по математическому анализу. Построил теорию эллиптических функций, рассматриваемых краевую задачу для линейных дифференциальных уравнений 2-го порядка (так называемая задача Штурма-Лиувилля)

 $2^n+3^n=2^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Линейные дифференциальные уравнения 2-го порядка с правой частью.

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

$$y'' + a_1(x)y' + a_2(x)y = f(x). (***)$$

[\fs\ \le \\]

Теорема. Общее решение неоднородного дифференциального уравнения (***) есть сумма общего решения однородного уравнения (**) и частного решения неоднородного уравнения (***).

стного решения неоднородного уравнения (***).

$$f(t) = f(t) = f$$

Доказательство: Пусть $\Phi(x)$ - общее решение однородного уравнения, $\varphi(x)$ - частное решение неоднородного уравнения.

 $x^n + y^n = z^n$

 $x^n + y^n = z^n$

To man to be

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Тогда
$$y' = \Phi'(x) + \varphi'(x), \ y'' = \Phi''(x) + \varphi''(x).$$
 Подставим y, y', y'' в(***).

$$\Phi''(x) + \varphi''(x) + a_1(\Phi'(x) + \varphi'(x)) + a_2(\Phi(x) + \varphi(x)) =$$

$$= (\Phi''(x) + a_1\Phi'(x) + a_2\Phi(x)) + (\varphi''(x) + a_1\varphi'(x) + a_2\varphi(x)) = f(x).$$

Следовательно $y = \Phi(x) + \varphi(x)$. 新五式S= MINTER

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$$

Комплексные числа

В поле действительных чисел неразрешимо простейшее уравнение $x^2+1=0$, или $x^2=-1$.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $x^2+1=0$, или $x^2=-1$. Введем новое число i, которое является решением этого уравнения.

 $P(X = x) = \langle x \rangle$ Тогда формально можно написать

 $f(z) = \sqrt{2\pi}$

$$i = \sqrt{-1}$$

Уравнение x^2 =-1 будет иметь два корня: i и -i, ибо

$$i^2 = (\sqrt{1})^2 = 1,$$

$$i^{2} = \left(\sqrt{11}\right)^{2} = 1,$$

$$(-i)^{2} = \left(-\sqrt{-1}\right)^{2} = 1$$

$$f(t)^{2} = \left(-\sqrt{-1}\right)^{2} = 1$$

MF. HAS = MIVEN

 $\sum_{n=1}^{\infty} \alpha r^{n-1} = \frac{\alpha}{1-r}$ $\sum_{n=1}^{\infty} \alpha r^{n-1} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial t} \frac{\partial u}{\partial x}$ $(x))) \Rightarrow \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial x} \frac{\partial u}{\partial x}$ Более того, с появлением "мнимой единицы" (так было названо i) **любое** квадратное уравнение получает два корня!

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $x^n + y^n = z^n$

В самом деле, если D = b2 - 4ac < 0 , то -D > 0 , и значит,

$$x_{1,2}=rac{-b\pm\sqrt{D}}{2a}=rac{-b\pm\sqrt{(-1)(-D)}}{2a}=rac{-b\pm\sqrt{-1}\sqrt{-D}}{2a}=rac{-b\pm i\sqrt{-D}}{2a}$$
 [апример, для уравнения x^2 - $2x$ + 2 = 0 имеем D =- 4 , откуда - D = 4 , и з

Например, для уравнения x^2 -2x+2=0 имеем D=-4 , откуда -D=4 , и значит,

ример, для уравнения
$$x^2$$
- $2x+2=0$ имеем $D=-4$, откуда - $D=4$, и значения x^2 - $2x+2=0$ имеем $D=-4$, откуда - $D=4$, и значения x^2 - $2x+2=0$ имеем $D=-4$, откуда - $D=4$, и значения x^2 - $2x+2=0$ имеем $D=-4$, откуда - $D=4$, и значения x^2 - $2x+2=0$ имеем $D=-4$, откуда - $D=4$, и значения x^2 - $2x+2=0$ имеем $D=-4$, откуда - $D=4$, и значения x^2 - $2x+2=0$ имеем $D=-4$, откуда - $D=4$, и значения x^2 - $2x+2=0$ имеем $D=-4$, откуда - $D=4$, и значения x^2 - x^2 -

IIF TOS = IIIVEN

e^{in z}

[\fs\ \le \\]

 $f(x) = \int_{-\infty}^{\infty} f(x) dx - \frac{1}{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \int_{-\infty}^{\infty} f(x) dx - \frac{1}{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \int_{-\infty}^{\infty} f(x) dx - \frac{1}{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \int_{-\infty}^{\infty} f(x) dx - \frac{1}{2\pi} e^{-\frac{x^2}{2}}$

Символ вида a+bi , где a и b - действительные числа, а $i=\sqrt{-1}$

-мнимая единица, называется комплексным числом с действительной частью a и мнимой частью b.

Действительное число a можно трактовать как комплексное число a+0i (т.е. с отсутствующей мнимой частью), так что поле действительных чисел является подмножеством множества C

Комплексные числа вида 0+bi=bi называются чисто мнимыми.

 $f(z) = \sqrt{2\pi} e^{-\frac{z^2}{2}}$ $f(z) = \sqrt{2\pi} e^{-\frac{z^2}{2}}$ f(z)

 $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f = f(f(u(x))) \Rightarrow dx$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$

В XVIII веке мнимые числа (так их назвал Декарт) широко использовались в математической практике, но не имели никакого содержательного истолкования. Им не было места на числовой прямой, а выйти за пределы этого одномерного пространства не догадались ни Лейбниц, ни Бернулли, ни Даламбер, ни Эйлер (именно он обозначил мнимую единицу буквой *i*). Первым это сделал датский землемер Каспар Вессель в 1799 году. Он предложил отождествить комплексные числа с точками плоскости.

 $f(z) = \sqrt{2\pi}$ в f(b) - f(a) f(b) = f(b) f(b) = f(b

 $\frac{a}{1-r} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial u}$

Рене Декарт — (1596-1650) — французский философ, математик, физик и физиолог, основатель новоевропейского рационализма и один из влиятельнейших метафизиков Нового времени.

 $x^n + y^n = z^n$

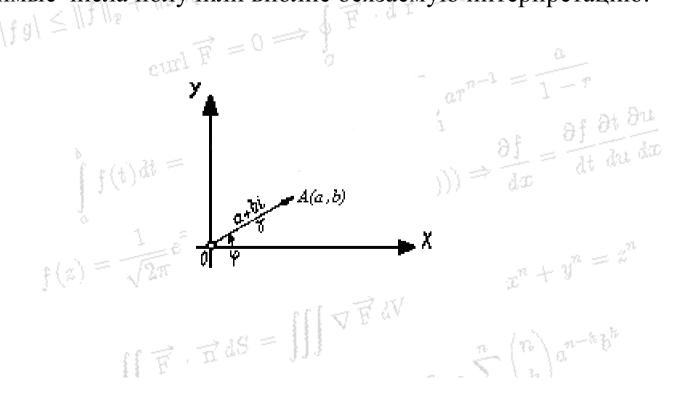
[\fg\ ≤\\!

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Каспар Вессель (норв. Caspar Wessel; род. 8 июня 1745, Вестбю, умер 25 марта 1818, Копенгаген) — датсконорвежский математик, по профессии землемер.

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

Идея геометрического представления комплексных чисел заключается в том, что комплексному числу a+bi сопоставляется точка плоскости с координатами (a,b). Таким образом, между точками числовой плоскости и комплексными числами устанавливается попарное соответствие . Так мнимые числа получили вполне осязаемую интерпретацию.



 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f = f(t(u(x))) \Rightarrow \overline{dx}$ $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = x^n$

Можно было ожидать, что при анализе уравнений более высоких степеней возникнет необходимость в дальнейшем обобщении понятия числа. Но в 1799 году Гаусс доказал так называемую Основную теорему алгебры.-

Теорема . Всякое алгебраическое уравнение степени n с действительными или комплексными коэффициентами $a_0x^n+a_1x^{n-1}+...+a_{n-1}x+a_n=0$ разрешимо в поле комплексных чисел и имеет n корней (с учетом их кратностей).

f(x) = f(x) - f(x) $f = f(x)(x(x)) + \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} \frac{\partial f}{\partial x} \frac{\partial f}{\partial x}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi$

 $\frac{\partial}{1-i}$ $= \frac{\partial}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

 $f = f(t(u(x))) \Rightarrow \bar{\lambda}x$ $x^n + y^n = z^n$ INFO

[[京、豆山5=]]

Иоганн Карл Фридрих Гаусс (нем. Johann Carl Friedrich *Gauß*; 1777—1855) — немецкий математик, астроном и физик, считается одним из величайших математиков всех времён, «королём математиков

[\fs\≤\!!

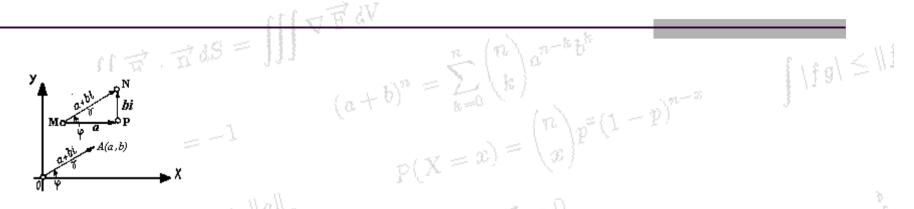
f (8)

 $f = f(t(u(x))) \Rightarrow \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial x} \frac{\partial u}{\partial x}$

 $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$

Тригонометрическая форма комплексных чисел

 $f = f(t(u(x))) \Rightarrow \bar{d}x$



Вместо того, чтобы определить вектор его проекциями a и b на координатные оси, мы можем определить его двумя другими величинами, а именно: его длиною r и углом ϕ , который направление образует с положительным направлением оси ОХ. Если же мы считаем, что комплексное число a + bi соответствует точке с координатами (a, b), то r и ϕ будут, очевидно, полярными координатами этой точки. Как известно, имеют место соотношения

$$f(z) = \sqrt{2\pi} a = r \cos \varphi; \ b = r \sin \varphi;$$

$$f(z) = \sqrt{2\pi} a = r \cos \varphi; \ b = r \sin \varphi;$$

$$r = \sqrt{a^2 + b^2}$$
; $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$ $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$

 $\varphi = arctg \frac{b}{a}$

Положительное число r называется modynem, φ - apryment mom комплексного числа z=a+bi. Аргумент $Arg\ z$ определяется лишь с точностью до слагаемого 2π . В случае r=0, комплексное число равно нулю, и его аргумент совершенно не определен. $Ycnobue\ pabencmba$ двух комплексных чисел состоит, очевидно, в том, что $modynu\ ux$ don жень don don

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $x^n + y^n = z^n$

Комплексное число через его модуль и аргумент записывается в виде: $z = r (\cos \varphi + i \sin \varphi)$.

В таком случае говорят, что комплексное число задано в тригонометрической форме

Формулы Эйлера

Обобщим понятие о показательной функции на случай любого комплексного показателя. При вещественном показателе функция e^x может быть представлена в виде ряда:

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

гавлена в виде ряда:
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Определим аналогично

$$e^{-1} \cdot \overline{1!} \cdot \overline{2!} \cdot \overline{3!}$$
 налогично
$$e^{yi} = 1 + \frac{yi}{1!} + \frac{(yi)^2}{2!} + \frac{(yi)^3}{3!} + \dots$$
 ественные и мнимые члены, имеем отсюда

Отделяя вещественные и мнимые члены, имеем отсюда

$$e^{yi} = \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} - \frac{y^6}{6!} + \dots\right) + i\left(\frac{y}{1!} - \frac{y^3}{3!} + \frac{y^5}{5!} - \frac{y^7}{7!} + \dots\right)$$
и, учитывая разложения созу и siny в ряд, определяем

[[京·豆dS = | □ ▽豆dy

$$f(x) = \sqrt{2\pi} e^{-\frac{x^2}{2}}$$

$$f = f(f(u(x))) \Rightarrow \partial x$$

$$x^n + y^n = x^n$$

$$e^{yi} = \cos y + i \sin y$$

$$e^{-yi} = \cos y - i \sin y$$

[\fg\≤\\! Эти формулы определяют показательную функцию при чисто мнимом показателе

Отсюда и получаются формулы Эйлера, выражающие тригонометрические функции через показательные с чисто мнимым показателем

$$\cos y = \frac{e^{yi} + e^{-yi}}{2}$$

$$\sin y = \frac{e^{yi} - e^{-yi}}{2i}$$

$$\int_{a}^{b} \int_{a}^{b} \int$$

IN THE W

THE TOTAL STATE OF THE STATE OF Формулы Эйлера дают новую показательную форму комплексного числа, имеющего модуль r и аргумент ϕ :

 $x^n + y^n = z^n$

n (n) an-table

еющего модуль
$$r$$
 и аргумент ϕ :
$$r\left(\cos\phi+i\sin\phi\right)=r\,e^{\phi i}$$
 Гоказатель нуло функцию при побом комилексном

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Показательную функцию при любом комплексном показателе x + yi $e^{x+yi} = e^x e^{yi} = e^x (\cos y + i \sin y)$ определяем формулой

$$e^{x+yi} = e^x e^{yi} = e^x (\cos y + i \sin y)$$

Т.е. модуль числа e^{x+yi} будем считать равным e^x , а аргумент равным yMF. TAS = MINVEW