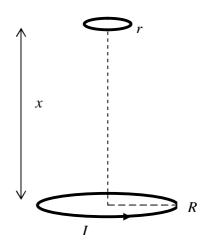

ВАРИАНТ 11.

- 1. Горизонтальный длинный провод, по которому течет ток I=5,12 κA , ориентирован вдоль земного меридиана. Направление тока с юга на север. Магнитная индукция поля Земли B=58 $m\kappa Tn$ и вектор магнитной индукции направлен под углом 70^0 к горизонтали. Найти величину и направление магнитного поля на расстоянии 100 m от проводника.
- 2. Проводник с током I=10 A лежит в плоскости и форма проводника представлена на рисунке. Радиус изогнутой части проводника R=10 cм. Угол $\phi=90^0$. Определить величину магнитной индукции в центре проводника.



- 3. На синхрофазатроне ускорителе частиц удается сообщить протонам кинетическую энергию $W_K = 950~\Gamma$ эB. Определить скорость движения протонов и индукцию магнитного поля, необходимую для удержания протонов на орбите радиусом R = 750~M. (Энергия покоя протона $W_0 = 938~M$ эB).
- 4. Пять параллельных проводников лежат в одной плоскости. Расстояние между проводниками $a=8\,$ см. По проводникам текут одинаковые токи одного направления силой $I=3\,$ А. Найти силу, действующую на метр длины каждого проводника.

- **5**. Точечный заряд q движется с нерелятивистской скоростью v = const. Найти плотность тока смещения \mathbf{j}_{cm} в точке, находящейся на расстоянии r от заряда на прямой: а) перпендикулярной траектории и проходящей через заряд; б) совпадающей с траекторией заряда
 - 6. Тонкий пластмассовый диск радиуса R равномерно заряжен по поверхности зарядом q. Диск вращается с угловой скоростью ω относительно оси, проходящей через центр диска. Найти магнитную индукцию в центре диска.

7. Плоскости круговых контуров с радиусами r и R параллельны. Расстояние между контурами увеличивается с постоянной скоростью $\frac{dx}{dt} = \mathbf{u}$. Предполагая магнитное поле в плоскости малого контура приблизительно однородным, определить: магнитный a) поток через контур r; б) ЭДС индукции; *B*) направление индукционного тока.

8. Полный магнитный поток через катушку индуктивности $\Psi = 26,2 \, \textit{мВ6}$, когда ток в катушке $I = 5,48 \, \textit{A}$. Электрическое сопротивление катушки $R = 0,745 \, \textit{Ом}$. Определить индуктивность катушки и время, через которое включение источника тока с ЭДС $\mathcal{E} = 6 \, \textit{B}$ создает ток $I = 2,53 \, \textit{A}$.