$$f = f(t(u(x))) \Rightarrow dx$$

$$f = f(t(u(x))) \Rightarrow dx$$

$$\int_{0}^{\infty} \frac{1}{t^{2}} dx = \int_{0}^{\infty} \frac{1}{t^{2}} \frac{1}{t^{2}} dx = \int$$

 $f(x) = \sqrt{2\pi}$ Задача о массе поверхности.

Задача о массе поверхности приводит нас к поверхностиному *интегралу 1 рода*, точно так же, как задача о массе кривой привела нас к криволинейному интегралу первого рода.

ein =

$$|f(f)| \leq ||f||_{2} + ||g||_{2}$$

$$|f(f)|_{2} + ||g||_{2}$$

$$|f(f)|_{2} + ||g||_{2}$$

$$|f(f)|_{3} + ||g||_{2}$$

$$|f(f)|_{4} + ||g||_{4}$$

$$|f(f)|_{4}$$

Пусть в каждой точке кусочно-гладкой поверхности σ задана поверхностная плотность f(x, y, z).

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

- Введем разбиение σ на элементарные области $\Delta \sigma_i$ элементы разбиения так, чтобы они не имели общих внутренних точек (*условие A*).
- Отметим точки M_i на элементах разбиения $\Delta \sigma_i$. Вычисляем $f(M_i) = f(x_i, y_i, z_i)$ и считаем плотность постоянной и равной $f(M_i)$ на всем элементе разбиения $\Delta \sigma_i$..Приближенно вычислим массу ячейки разбиения как $f(M_i)$ $\Delta \sigma_i$. Приближенно вычислим массу поверхности σ , просуммировав массы ячеек (составим

интегральную сумму) $\sum_{i=1}^n f(M_i) \Delta \sigma_i$. В интегральной сумме $\Delta \sigma_i$ это площадь поверхности элементарной ячейки. Здесь, как и ранее, традиционно употребляется одно и то же обозначение для самой элементарной ячейки и для ее площади.

11 F 348 = 111

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$ TIP TOS = JIII

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ Измельчаем разбиение и переходим к пределу в интегральной сумме при условии $\max_i diam \Delta \sigma_i \to 0$ (условие В). Получаем поверхностный интеграл первого рода, который равен массе

ein =

 $||fg|| \leq ||f||$

$$m_{\sigma} = \iint_{\sigma} f(M) d\sigma = \lim_{\max_{i} diam \Delta \sigma_{i} \to 0} \sum_{i=1}^{n} f(M_{i}) \Delta \sigma_{i}.$$

поверхности (если только $f(M_i) > 0$ на поверхности). $m_{\sigma} = \iint_{\sigma} f(M) d\sigma = \lim_{\max_i diam \Delta \sigma_i \to 0} \sum_{i=1}^{n} f(M_i) \Delta \sigma_i$

 $V = \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{n}{n} \right) a^{n-k} b^k$

MF TUS = MVEW

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$

Теорема существования.

Теорема существования. Пусть функция f(M) = f(x, y, z) непрерывна на кусочно-[\fg\≤\!! гладкой ограниченной поверхности б. Тогда поверхностный интеграл первого рода существует как предел интегральных сумм.

$$\iint_{\sigma} f(M) d\sigma = \lim_{\max_{i} \operatorname{diam} \Delta \sigma_{i} \to 0} \sum_{i=1}^{n} f(M_{i}) \Delta \sigma_{i}.$$

Замечание. Интеграл (как предел интегральных сумм) не зависит: 1) от выбора разбиения поверхности (лишь бы выполнялось условие A),

- 2) от выбора отмеченных точек на элементах разбиения,
- 3)от способа измельчения разбиения (лишь бы выполнялось условие В).

MT TAS = MIVEN

 $2^n+3^n=2^n$

[\fs\ ≤\\!

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

1) Линейность.
$$\iint_{\sigma} (\lambda f + \mu g) d\sigma = \lambda \iint_{\sigma} f d\sigma + \mu \iint_{\sigma} g d\sigma$$

2) Аддитивность
$$\iint f d\sigma = \iint f d\sigma \iint f d\sigma$$

Свойства поверхностного интеграла первого рода. (они аналогичны по формулировке и доказательству свойствам рассмотренных ранее интегралов первого рода).

1) Линейность.
$$\iint_{\sigma} (\lambda f + \mu g) d\sigma = \lambda \iint_{\sigma} f d\sigma + \mu \iint_{\sigma} g d\sigma$$
2) Аддитивность
$$\iint_{\sigma} f d\sigma = \iint_{\sigma} f d\sigma \iint_{\sigma} f d\sigma$$
3)
$$\iint_{\sigma} d\sigma = S_{\sigma} - \text{площадь поверхности.}$$
4) Если $f(x, y, z) \ge g(x, y, z)$, то
$$\iint_{\sigma} f d\sigma \ge \iint_{\sigma} g d\sigma \text{ (если } f \ge 0 \text{ , то } \int_{\sigma} f d\sigma \ge 0 \text{)}$$

MF TOS = MVEN

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f = f(t(u(x))) \Rightarrow dx$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$

5) Теорема об оценке. Если $m \le f(x,y,z) \le M$, то $mS_{\sigma} \le \iint_{\sigma} f d\sigma \le MS_{\sigma}$, 6) Теорема о среднем. Пусть финепрерывна на m

e^{in z}

f (8)

[\fs\ ≤\\1

6) Теорема о среднем. Пусть функция f(M) = f(x, y, z) непрерывна на кусочно-гладкой ограниченной поверхности σ . Тогда на поверхности найдется точка C, такая что $f(C) = \frac{1}{S_{\sigma}} \iint_{\sigma} f(x, y, z) d\sigma$

 $\frac{a}{1-r}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{1}{\sqrt{2\pi}} e^{\frac{r^2}{2}}$ $= \frac{1}{\sqrt{2\pi}} e^{\frac{r^2}{2}}$

Вычисление поверхностного интеграла первого рода.

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Ранее в лекции 2-2 мы вычисляли площадь поверхности с помощью двойного интеграла, то есть сводили интеграл $\iint d\sigma$ двойному интегралу. Теперь нам сделать тоже самое для интеграл $\iint f(x,y,z)d\sigma$. Повторяя вновь те же выкладки с той лишь разницей, ловерхности, заданной соотношение $\iint_{\sigma} f(x,y,z) d\sigma = \iint_{D} f(x,y,\varphi(x,y)) \sqrt{1+{\varphi_{x}^{'}}^{2}+{\varphi_{y}^{'}}^{2}} dxdy.$ что под интегралом стоит функция f(x, y, z), получим аналогичную формулу для поверхности, заданной соотношением $z = \varphi(x, y)$

$$\iint_{\sigma} f(x,y,z)d\sigma = \iint_{D} f(x,y,\varphi(x,y)) \sqrt{1 + \varphi_{x}^{'2} + \varphi_{y}^{'2}} dxdy.$$

|| F. Ids = || VEW

| \fg\ ≤ \\!

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$

ein =

[\fs\ ≤\\1

f(x,y,z) = 0, точно тал $\iint_{\sigma} f(x,y,z) d\sigma = \iint_{D} f(x,y,z) \sqrt{1 + \frac{F_{x}^{'2}}{F_{z}^{'2}} + \frac{F_{y}^{'2}}{F_{z}^{'2}}} dx dy$. Здесь надо учитывать, что точка (x,y,z) лежит на поверхности σ .

 $f(x) = \sqrt{2\pi}$ f(x) = f(x) - f(x) $f(x) = \frac{\partial}{\partial x} = \frac{\partial}{\partial x} \frac{\partial}{\partial x} = \frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial x}$ $f(x) = \sqrt{2\pi}$ IIF TAS = IIIVEN

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $2n+3^n=2^n$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ у поверхность $\binom{n}{k} p^n (1-p)^{n-n}$

Пример. Найти массу поверхности однородной полусферы $x^2 + y^2 + z^2 = R^2$, z>0 с постоянной поверхностной плотностью W. $F(x, y, z) = x^2 + y^2 + z^2 - R^2 = 0$. $F'_x = 2x$, $F'_y = 2y$, $F'_z = -2z$.

Обозначим D - круг – проекцию полусферы на плоскость ОХҮ.

Обозначим D - круг — проекцию полусферы на плоскость ОХҮ.
$$m_{\sigma} = \iint_{D} 2W \frac{\sqrt{x^2 + y^2 + z^2}}{2z} dx dy = 2WR \iint_{D} \frac{1}{2z} dx dy = WR \int_{0}^{2\pi} d\rho \int_{0}^{R} \frac{\rho}{\sqrt{R^2 - \rho^2}} d\rho = \frac{2\pi RW}{2} \left(-2\sqrt{R^2 - \rho^2} \right) |_{0}^{R} = 2\pi R^2 W \; .$$

MF TAS = MVEW

e^{in z}

[\fs\ ≤\\!

Поверхностный интеграл второго рода.

 $x^n + y^n = z^n$

Поверхность σ называется ориентируемой, если в каждой ее точке существует вектор нормали к σ , описываемый непрерывной вектор — функцией на σ .

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

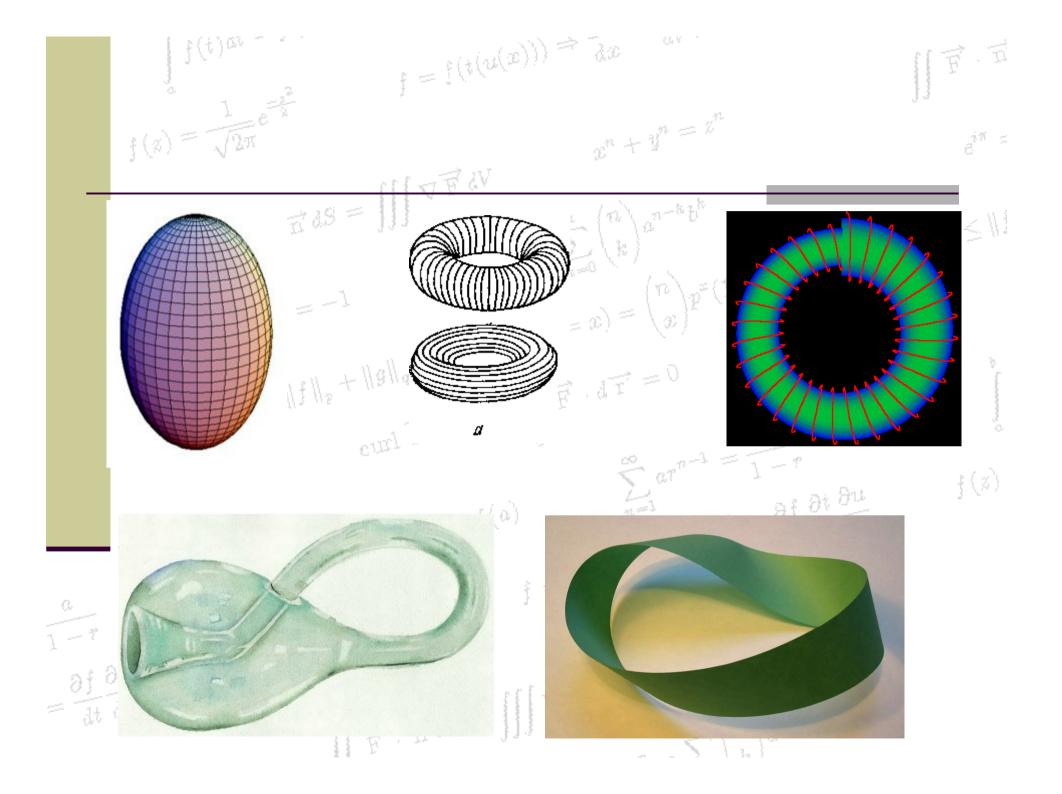
Поверхность σ называется односторонней, если при обходе поверхности σ по контуру γ вектор нормали меняет направление на противоположное.

Поверхность σ называется двусторонней, если при обходе поверхности σ по контуру γ вектор нормали не меняет свое направление.

Примером односторонней поверхности является лист Мебиуса, гиперболоиды и т.д. примерами двусторонних поверхностей – плоскость, сфера,

MF. Tas = MVEW

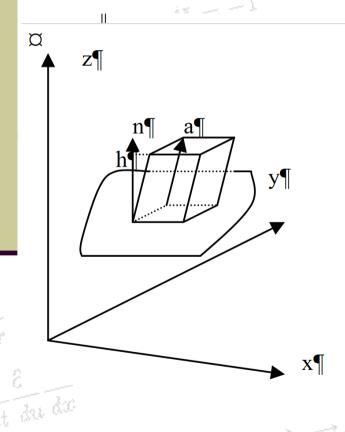
|\fg\≤\\!



Задача о потоке жидкости через поверхность.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Поток жидкости через поверхность σ .— это количество жидкости, протекающее через поверхность σ в единицу времени.



Пусть на элементе поверхности σ площадке $d\sigma$ в некоторой ее точке Mпроведен вектор \vec{a} перемещения частицы жидкости через площадку $d\sigma$ в единицу времени. Предполагаем, что для всех точек $d\sigma$ перемещение одинаково по величине и направлению. Поток жидкости можно вычислить как объем наклонного (по направлению вектора перемещений) параллелепипеда, построенного на $d\sigma$. Этот объем равен $d\Pi = h d\sigma = pr_{\vec{n}}\vec{a} d\sigma = \vec{a} \cdot \vec{n} d\sigma$, где \vec{n} - единичный вектор нормали к поверхности. Тогда поток жидкости равен $\prod_{\sigma} \vec{a} \cdot \vec{n} \, d\sigma$

Здесь мы вычисляли дифференциал потока, а затем интегрировали по всей поверхности – это метод дифференциалов при построении интеграла.

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

Можно строить интеграл с помощью метода интегральных сумм, как мы действовали обычно.

- Введем разбиение области на элементы так, чтобы соседние элементы не содержали общих внутренних точек (условие А),
- элементах разбиения отметим точку М. Предполагая на перемещение частиц жидкости постоянным на элементе и равным \vec{a} (M), вычислим приближенно поток через элемент разбиения и просуммируем его по элементам, получая интегральную сумму $f = f(t(u(x))) \Rightarrow \overline{dx}$ $\Delta\Pi_i = \sum_{i=1}^n \vec{a}(M_i) \cdot \vec{n}(M_i).$
- Измельчим разбиение при условии $\max_i \Delta \sigma_i \to 0$ (условие В) и перейдем к пределу получая поверхностный интеграл второго рода

$$\iint_{\sigma} \vec{a} \cdot \vec{n} \ d\sigma = \lim_{\max_{i} \Delta \sigma_{i} \to 0} \sum_{i=1}^{n} \vec{a}(M_{i}) \cdot \vec{n}(M_{i}).$$

$$\iint_{\sigma} \vec{a} \cdot \vec{n} \ d\sigma = \lim_{\max_{i} \Delta \sigma_{i} \to 0} \sum_{i=1}^{n} \vec{a}(M_{i}) \cdot \vec{n}(M_{i}).$$

 $x^n + y^n = z^n$

[\fs\ ≤\\!

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

По виду это – поверхностный интеграл первого рода, он и имеет те же свойства, что поверхностный интеграл первого рода, но имеет еще и свойство ориентируемости. Интеграл по внешней стороне поверхности отличается знаком от интеграла внутренней стороне поверхности, так как на различных сторонах поверхности нормали в той же точке нормали направлены по одной прямой в различные стороны.

Теорема существования формулируется так же, как для поверхностного интеграла первого рода с тем же замечанием о независимости интеграла от способа выбора разбиения (лишь бы от способа измельчения разбиения (лишь бы выполнялось условие В).

MF TAS = MINVERN

Запись поверхностного интеграла второго рода

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Запишем вектор перемещений частиц и нормаль в точке M(x, y, z), выделяя скалярные компоненты векторов

$$\vec{a}(M) = P(x, y, z)\vec{i} + Q(x, y, z)\vec{j} + R(x, y, z)\vec{k}, \ \vec{n}(M) = \cos\alpha \vec{i} + \cos\beta \vec{j} + \cos\gamma \vec{k}$$

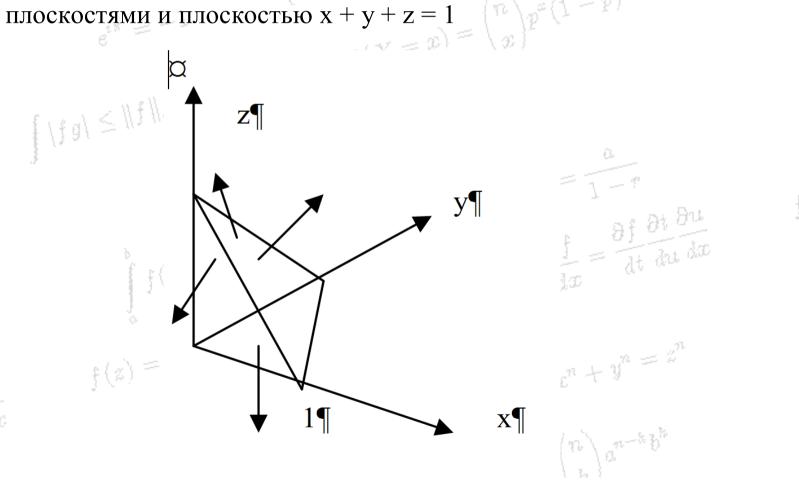
$$\vec{a}(M) \cdot \vec{n}(M) = P\cos\alpha + Q\cos\beta + R\cos\gamma$$

$$\iint_{\sigma} \vec{a} \cdot \vec{n} d\sigma = \iint_{\sigma} (P\cos\alpha + Q\cos\beta + R\cos\gamma) d\sigma = \pm \iint_{\sigma} Pdydz \pm \iint_{\sigma} Qdxdz \pm \iint_{\sigma} Rdxdy$$

 $d\sigma\cos\alpha=\pm dydz,$ $d\sigma\cos\beta=\pm dxdz,$ $d\sigma\cos\gamma=\pm dxdy.$ Знак «+» выбирается, если угол между нормалью к поверхности и осью (ОХ в первом интеграле, ОУ во втором, ОZ в третьем) острый, знак «-» выбирается, если угол тупой. В самом деле, в поверхностных интегралах площади элементов поверхности положительны, а знаки «+» или «—» компенсируют знак косинуса угла между нормалью и координатной осью. При переходе от поверхностных интегралов к двойным одна из координат подставляется из уравнения поверхности, чтобы точка (x, y, z) находилась на поверхности σ .

 $f(z) = \sqrt{2\pi}e^{-\frac{z^2}{2}}$ $f = f(t(u(z))) \Rightarrow dz$ $z^n + z^n = z^n$

Пример. Найти поток радиуса-вектора через полную поверхность тетраэдра, ограниченного координатными плоскостями и плоскостью x + y + z = 1



· 京·立85 = 111 [\fg\ ≤\\! Поток радиус-вектора через координатные плоскости нулевой, так как на них радиус-вектор точки лежит в координатной плоскости и ортогонален нормали к координатной плоскости, т.е. $\vec{a} \cdot \vec{n} = 0$.

 $2^n+3^n=2^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Вычислим поток через грань тетраэдра, лежащую в плоскости x + y + z = 1. Он и будет суммарным потоком, так как поток через остальные грани нулевой. Для этой грани

$$ec{n} = \left\{ \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\}, \ ec{a} = ec{r} = \{x, y, z\},$$
 площадь грани — треугольника по теореме Пифагора равна $\frac{\sqrt{3}}{2}$. Поток равен

Поток равен
$$\Pi = \iint_{\Delta} \vec{a} \cdot \vec{n} \ d\vec{\sigma} = \iint_{\Delta} \frac{1}{\sqrt{3}} (x + y + z) d\vec{\sigma} = \frac{1}{\sqrt{3}} \iint_{\Delta} d\vec{\sigma} = \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{2} = \frac{1}{2}$$

IIF TAS = IIIVEN

Скалярное и векторное поля.

Говорят, что в области (плоской или пространственной) задано скалярное поле ф (М), если в этой области задана скалярная функция ф (М).

 $f = f(t(u(x))) \Rightarrow \overline{ax}$

Говорят, что в области (плоской или пространственной) задано векторное поле \vec{a} (M), если в этой области задана векторная функция \vec{a} (M).

Например, масса или температура частиц в комнате – скалярные поля, скорость или силы взаимодействия частиц – векторные поля.

:двойных, криволинейных, первого рода интегралах имели дело со скалярным полем поверхностных МЫ распределением масс точек кривой или поверхности пространстве.

интегралах второго рода вычислялись характеристики векторных полей: работа векторного поля (силового поля) в криволинейном интеграле, поток векторного поля в поверхностном = dt du интеграле.

 $f(x) = \int_{-\pi}^{\pi} f(t) dt - \frac{1}{2\pi} dt$ $f = f(t) (u(x))) \Rightarrow 3x$ $f(x) = \int_{-\pi}^{\pi} e^{-\frac{t^2}{2\pi}} dt$ $g^n + g^n = f^n$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ Скалярные поля.

Линии уровня плоского поля ϕ (x, y) — кривые, на которых значения функции постоянны ϕ (x, y) = C.

Например, линии равной высоты, нанесенные на географической карты (h (x, y) = 0 — уровень моря, h = 7000м — немногие горные вершины, h = -10000м — самые глубокие океанские впадины).

Поверхности уровня пространственного поля ϕ (x, y, z) – поверхности, на которых значения функции постоянны ϕ (x, y, z) = C.

Например, поверхности равной температуры или давления в атмосфере. Любая линия на поверхности уровня — это линия уровня.

 $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial f}{\partial t} \frac{\partial u}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial f}{\partial t} \frac{\partial u}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial f}{\partial t} \frac{\partial u}{\partial u} \frac{\partial u}{\partial x}$ $= \frac{\partial f}{\partial t} \frac{\partial u}{\partial u} \frac{\partial u}{\partial x}$

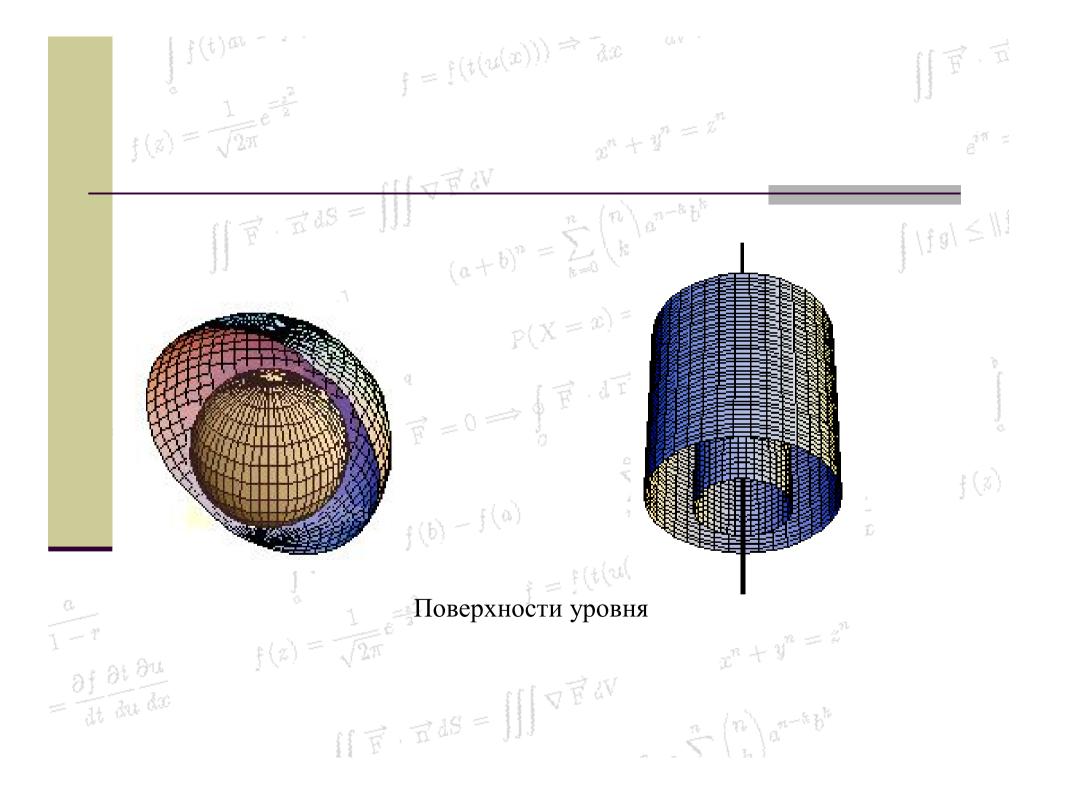
n (n) an-hah

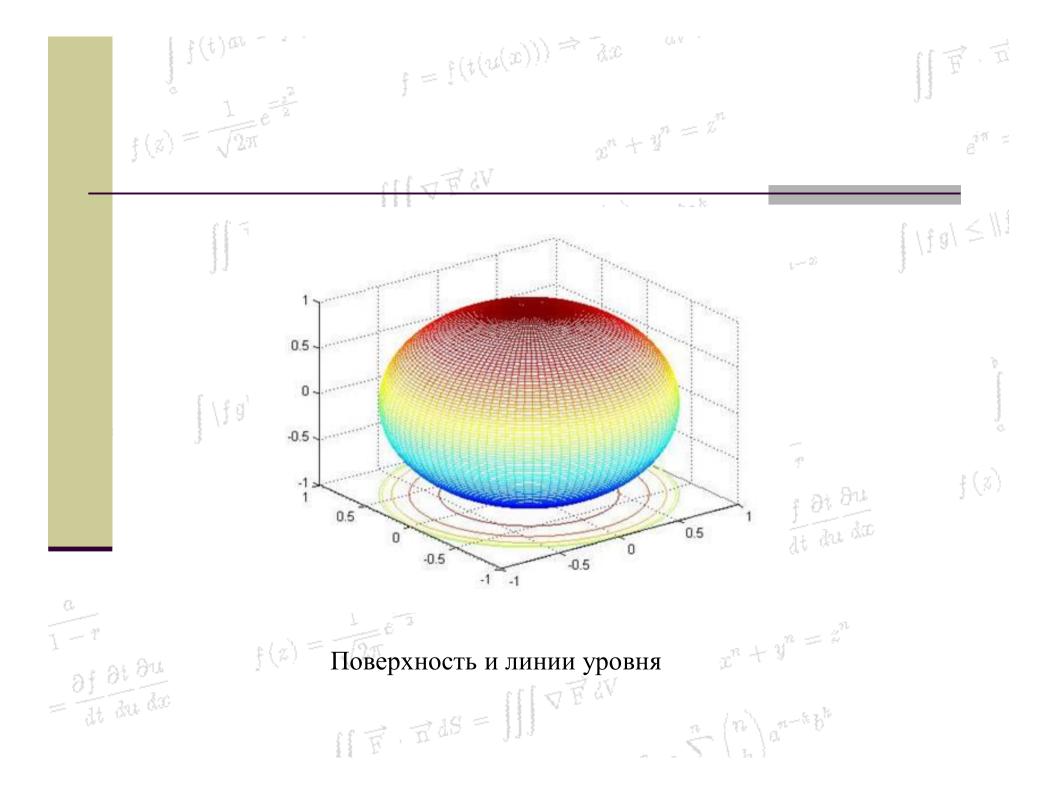
[\fs\ \le \\]

 $f = f(t(u(x))) \Rightarrow \bar{d}x$ $f(t)^{00} = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$ $x^n + y^n = z^n$ eⁱⁿ = [[京·立dS=]]] V (V (V) [\fs\ \le \\! TOHE OPEN $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial f}{\partial x} \frac{\partial u}{\partial x}$ f (8) Рельеф Антарктиды в районе озера Восток

 $f(z) = \sqrt{2\pi}$ IIF. Tas = IIIVEN

 $x^{n} + y^{n} = x^{n}$ $x^{n} + y^{n} = x^{n}$





 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$

Пример. Задано поле $x^2 + y^2 - z^2 = C$. При C > 0 поверхности уровня — однополостные гиперболоиды, при C = 0 поверхность уровня – конус, при С < 0 поверхности уровня – двуполостные гиперболоиды.

[\fg\≤\!!

перболоиды. Линии или поверхности различных уровней не пересекаются.

Чем чаще (гуще) поверхности или линии уровня, интенсивнее изменение поля.

линии уровня, $f(a) = f(t(u(x))) = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial f}{\partial x}$ MF. TAS = MINTEN

 Градиент поля — вектор $\overrightarrow{grad\phi} = \left\{ \frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z} \right\}$.

 Утверждение
 Градист

Утверждение. Градиент скалярного поля ортогонален его поверхности уровня.

 $x^n + y^n = z^n$

1/fs/ < 1/!

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Доказательство. Пусть точка (x, y, z) остается на поверхности уровня g(x, y, z) = 0 при вариациях переменных. Тогда равенство превращается в тождество, а тождество можно дифференцировать.

$$dg(x, y, z) = \frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy + \frac{\partial g}{\partial z} dz = \overrightarrow{grad} \overrightarrow{g} \cdot \overrightarrow{dr} = 0.$$

Вектор $\overline{dr}(x, y, z)$ - это вектор, касательный в точке (x, y, z) к любой кривой, лежащей на поверхности уровня, проходящей через эту точку. Поэтому в точке (x, y, z) вектор градиента ортогонален всем касательным к линии уровня, проходящим через эту точку. Следовательно, он ортогонален касательной плоскости к поверхности уровня и направлен по нормали к поверхности уровня.

 $f(x) = \int_{0}^{\infty} \int_{0}^{$

Производная скалярного поля по направлению l определяется как $\frac{\partial g}{\partial l}|_{M} = \lim_{t \to 0} \frac{g(M+t\overline{l})-g(M)}{t}$. Известно из теории функций многих переменных, что производная по направлению есть проекция градиента на данное направление

[\fs\ ≤ |\i

f (8)

 $\frac{\partial g}{\partial \vec{l}}|_{M} = \overline{gradg} \cdot \frac{\vec{l}}{|\vec{l}|} \cdot f(b) - f(a)$ f(b) = f(a) f(b) = f(a) f(b) = f(a) $f(a) = f(b) \cdot f(a)$ f(b) = f(a) f(b) = f(b) f(b) = f(b)

 $\frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial v}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial v}$

| \fs\ ≤ \\!

Векторная линия - линия, в каждой точке которой вектор поля направлен по касательной к ней.

 $f = f(t(u(x))) \Rightarrow \overline{\lambda}x$

Уравнения векторной линии легко получить из условия коллинеарности векторов поля $\vec{a}(M) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$ и касательной $\overrightarrow{dr} = dx \overrightarrow{i} + dy \overrightarrow{j} + dz \overrightarrow{k}$

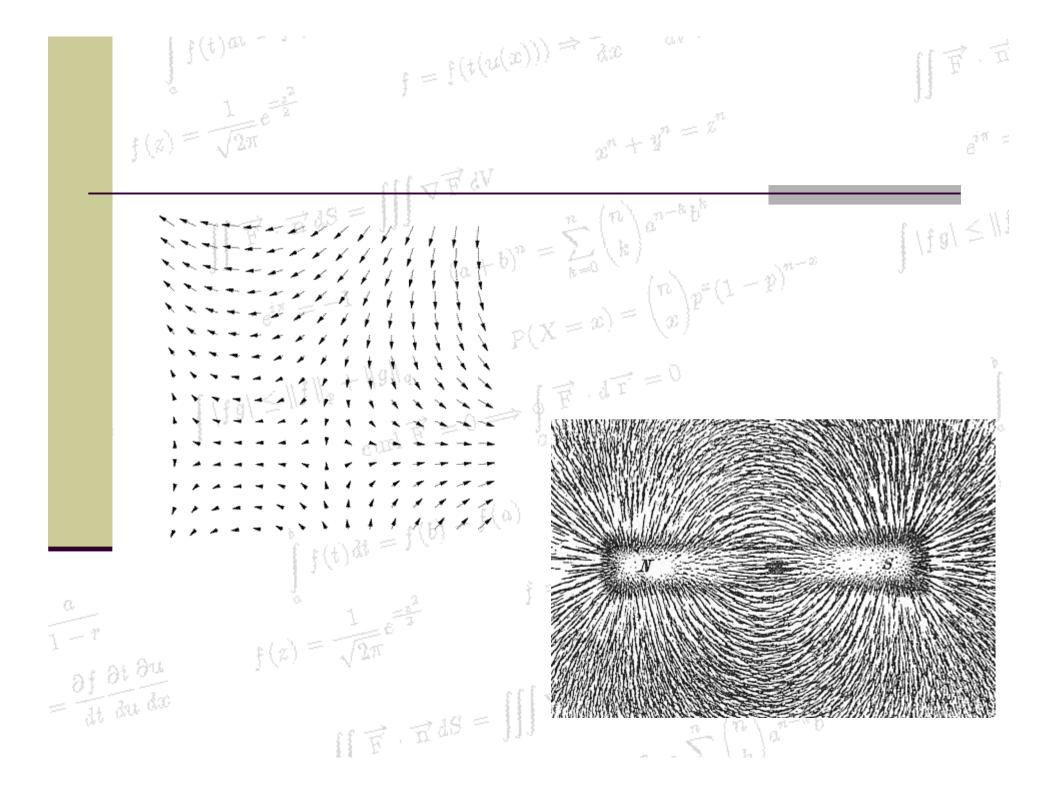
$$\frac{dx}{P(x,y,z)} = \frac{dy}{Q(x,y,z)} = \frac{dz}{R(x,y,z)}.$$

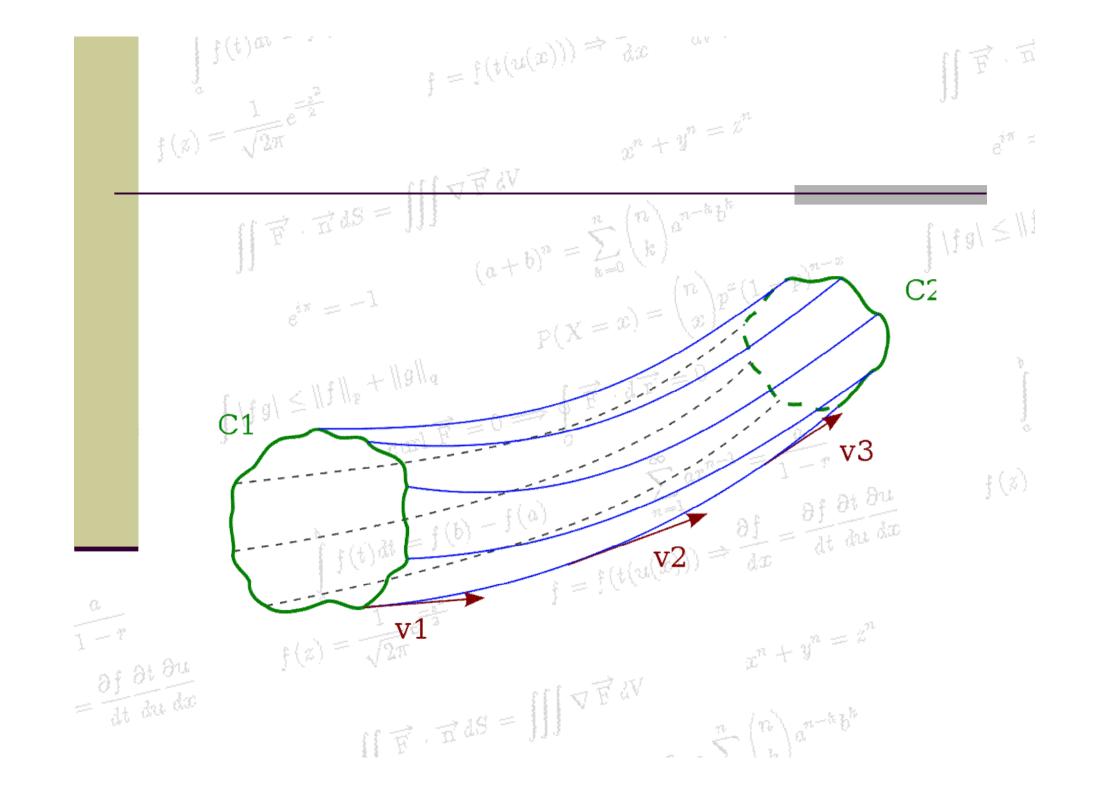
Пример. Написать уравнения векторных линий векторного поля $\vec{a}(M) = y\vec{i} - x\vec{j}$

поля
$$\vec{a}(M) = y\vec{i} - x\vec{j}$$

$$\frac{dx}{y} = \frac{dy}{-x}, \quad -xdx = ydy, \quad xdx + ydy = 0, \quad d(x^2 + y^2) = 0, \quad x^2 + y^2 = C - \text{ линии}$$
 уровня — окружности (C>0).

Векторной трубкой называется поверхность, образованная векторными линиями





Формула Остроградского – Гаусса.

 $x^n + y^n = z^n$

Пусть компоненты векторного поля $\vec{a}(M) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$ непрерывны и имеют непрерывные частные производные в пространственно односвязной замкнутой области V и на ее кусочно гладкой границе σ .

Тогда справедлива формула Остроградского – Гаусса

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

$$\iint_{\sigma} P(x,y,z)dydz + Q(x,y,z)dxdz + R(x,y,z)dxdy = \iiint_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right)dv.$$

Заметим, что левая часть формулы представляет собой поток векторного поля $\vec{a}(M)$ через поверхность σ .

(2) = VIT (1) = VIT (1) = VIT (2) = VIT (3) = VIT (4) VEW

n (n) on-hat

[\f9\≤\!!

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ 2n+3n=2nTOKA?

Доказательство. 1) Формула Остроградского – Гаусса, в [\fg\≤\\! силу произвольности P, Q, R состоит из трех частей, в каждую из которых входит одна из компонент векторного поля P, Q, R. В самом деле, можно взять P = 0, Q = 0 и доказывать отдельно часть формулы в которую входит только R. Остальные части формулы (при $P=0,\ R=0,\ Q=0,\ R=0)$ доказываются аналогично. Будем доказывать часть формулы

 $f(a) = \int_{n=1}^{\infty} \frac{df}{dx} = \int_{0}^{\infty} \frac{\partial f}{\partial x} \frac{\partial f}{\partial x}$ $f = f(f(a(x))) \Rightarrow \frac{\partial f}{\partial x} = \frac{\partial f}{\partial t} \frac{\partial f}{\partial x}$ $\iint_{\sigma} R(x, y, z) dxdy = \iiint_{V} \frac{\partial R}{\partial z} dv$ $\int_{\sigma} f(t) dt = \int_{\sigma} f(t) dt$

MF TAS = MVEW

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f(x) = \sqrt{2\pi}e^$

2) Для доказательства выбранной части формулы представим пространственную область V в виде объединения конечного числа цилиндрических тел, не имеющих общих внутренних точек, с образующими, параллельными оси OZ. Доказательство можно проводить для цилиндрического тела. В самом деле, тройной интеграл в правой части равен сумме тройных интегралов по цилиндрическим телам (свойство аддитивности). Поверхностный интеграл в левой части также равен сумме поверхностных интегралов полным поверхностям ПО цилиндрических тел, причем при суммировании интегралы по общим границам соседних цилиндрических сокращаться из-за противоположного направления внешних нормалей на общих границах.

{\fs\≤\!!

= af at au do

IIF BUS = IIIVEW - CONONNE

Итак, будем доказывать соотношение $\oint R(x,y,z)dxdy = \iiint \frac{\partial R}{\partial z}dv$ для цилиндрического тела V, проектирующегося в область D на плоскости ОХҮ. Пусть «верхняя» граница цилиндрического тела — поверхность σ_1 описывается уравнением $z = z_1(x, y)$, «нижняя» граница — поверхность σ_2 описывается уравнением $z = z_2(x, y)$. Боковую поверхность цилиндрического тела, параллельную оси OZ, обозначим σ_3 . Сразу заметим, что поток векторного поля через боковую поверхность равен нулю. Действительно, $\iint R(x, y, z) dxdy = \iint R(x, y, z) \cos \gamma \, d\sigma = 0$ так как оси ОZ и $\cos \gamma = 0$. нормаль на боковой поверхности ортогональна

 $x^n + y^n = z^n$

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

 $f(x) = \sqrt{2\pi}$ $f(x) = \sqrt{2\pi}$ f(x)

Заметим также, что на «верхней» поверхности $\sigma_1 \cos \gamma > 0$, а на «нижней поверхности $\sigma_2 \cos \gamma < 0$. Поэтому при переходе от поверхностного интеграла по σ_2 к двойному интегралу по области D и обратно надо менять знак, а при переходе от поверхностного интеграла по σ_1 к двойному интегралу по области D и обратно менять знак не надо

f(t)dt = f(b) - f(a) f(t)dt = f(b) - f(a) $f = f(t)(u(a)) \rightarrow \frac{\partial f}{\partial a} = \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial a}$ $f(a) = \sqrt{2\pi}$ $f(a) = \sqrt{2\pi}$

 $\frac{a}{1-i}$ $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial u}$

$$\iint_{V} \frac{\partial R}{\partial z} dx dy dz = \iint_{D} \left(\int_{z_{2}(x,y)}^{z_{1}(x,y)} \frac{\partial R}{\partial z} dz \right) dx dy = \iint_{D} (R(x,y,z_{1}(x,y)) dx dy = \iint_{D} (R(x,y,z) dx dy + \iint_{\sigma_{2}} R(x,y,z) dx dy + \iint_{\sigma_{2}} R(x,y,z) dx dy + \iint_{\sigma_{3}} R(x,y,z) dx dy = \iint_{D} R(x,y,z) dx dy = \iint_{\sigma_{1}} R(x,y,z) dx dy$$

$$\iint_{\sigma_{1}} R(x,y,z) dx dy + \iint_{\sigma_{2}} R(x,y,z) dx dy + \iint_{\sigma_{3}} R(x,y,z) dx dy = \iint_{\sigma_{4}} R(x,y,z) dx dy = \iint_{\sigma_{4}} R(x,y,z) dx dy$$
Taking of passon, contributions of $R(x,y,z) dx dy = \iint_{\sigma_{4}} \frac{\partial R}{\partial x} dy$

Таким образом, соотношение $\oiint_{\sigma} R(x,y,z) dx dy = \iiint_{V} \frac{\partial R}{\partial z} dv$ доказано.

 $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

II F. EdS = III VEW

e^{in z}

[\fs\≤\\!

Дивергенция векторного поля (расходимость) есть $div\vec{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$.

 $f = f(t(u(x))) \Rightarrow \bar{d}x$

 $x^n + y^n = z^n$

Дивергенция — это характеристика векторного поля, инвариантная относительно системы координат.

Инвариантное определение дивергенции.

'ассмотрим произвольную точку M в пространственной области V. Зыберем ее окрестность V_M — шар радиуса r с центром в точке M. Эбозначим σ_{M} - ее границу — сферу радиуса r. По теореме о среднем гля тройного интеграла

ПЯ ТРОИНОГО ИНТЕГРАЛА
$$\iint_{M} div\vec{a} \, dv = div\vec{a}(\vec{M}) \, V_{M}, \quad \vec{M} \in V_{M}, \quad div\vec{a}(\vec{M}) = \frac{1}{V_{M}} \iint_{V_{M}} div\vec{a} dv = \frac{1}{V_{M}} \iint_{\sigma_{M}} \vec{a} \cdot \vec{n} \, d\sigma \qquad \qquad \text{(ПО} \qquad \text{формуле}$$

Эстроградского – Гаусса).

Стягиваем окрестность к точке M, получаем дивергенцию векторного юля в точке M.

$$\lim_{V_M \to M} \frac{\iint \vec{a} \cdot \vec{n} \ d\sigma}{V_M}$$
. Это и есть инвариантное определение

Инвариантное определение дивергенции.

 $x^n + y^n = z^n$

n (n) an-hah

 $f = f(t(u(x))) \Rightarrow \overline{dx}$

Рассмотрим произвольную точку М в пространственной области V. Выберем ее окрестность V_{M} — шар радиуса r с центром в точке M. Обозначим $\sigma_{\scriptscriptstyle M}$ - ее границу – сферу радиуса г. По теореме о среднем для тройного интеграла

среднем для тройного интеграла
$$\iiint_{V_M} div\vec{a}\,dv = div\vec{a}(\vec{M})\,V_M\,,\quad \vec{M}\in V_M\,,\quad div\vec{a}\big(\vec{M}\big) = \frac{1}{V_M} \iiint_{V_M} div\vec{a}dv = \frac{1}{V_M} \oiint_{\sigma_M} \vec{a}\cdot\vec{n}\,d\sigma$$
 (но формуле Острогралского — Гаусса)

(по формуле Остроградского – Гаусса).

Стягиваем окрестность к точке М, получаем дивергенцию $f = f(t(u(x))) \Rightarrow \frac{dx}{dx} = \frac{dx}{dt} dx$ векторного поля в точке М.

$$diva(M) = \lim_{V_M \to M} \frac{\oint_{\sigma_M} \vec{a} \cdot \vec{n} \ d\sigma}{V_M}.$$

Это и есть инвариантное определение дивергенции. 们下、五dS = || ▼京都

 $f(x) = \sqrt{2\pi}e^{-\frac{x^2}{2}}$ $f = f(t(n(x))) \Rightarrow dx$ $2^n + 3^n = z^n$ $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k}b^k$ $IIo \Rightarrow mom \qquad \text{in } (n-p)^{n-2}$

Поэтому дивергенция векторного поля в точке M имеет смысл объемной плотности потока векторного поля через окрестность этой точки и характеризует мощность источника (если $\operatorname{div}\vec{a}(M) > 0$) или стока (если $\operatorname{div}\vec{a}(M) < 0$) векторного поля в точке M.

векторного поля в точке M. Если $div\vec{a}(M)>0$, то точка M — источник векторного поля, если $div\vec{a}(M)<0$, то точка M — сток векторного поля. Если в некоторой области дивергенция равна нулю, то в этой области нет ни источников, ни стоков, поток векторного поля через границу такой области равен нулю — «сколько поля втекает в область, столько и вытекает из нее».

 $= \frac{\partial f}{\partial t} \frac{\partial t}{\partial u} \frac{\partial u}{\partial x}$

IIF . I dS = | | | V F dV - - (1) 07-68

| \fs\ \le \| !

 $f = f(t(u(x))) \Rightarrow \overline{dx}$ $x^n + y^n = z^n$ 3000 TOS = 111 VE OV

Замечание. Формулу Остроградского – Гаусса можно [\fg\≤\!! $\Pi_{\sigma}(\vec{a}) = \iiint_{V} div \ \vec{a} \ dv$ записать в «полевом» виде

$$\Pi_{\sigma}(\vec{a}) = \iiint_{V} div \ \vec{a} \ dv$$

поток векторного поля через замкнутую поверхность σ равен объемному интегралу от дивергенции поля по области, ограниченной поверхностью О

f(a) $f(t)^{2t} = f(0) - f(0)$ $f(t)^{2t} = \frac{1}{\sqrt{2\pi}} e^{-\frac{2}{3}t}$ $f(x) = \sqrt{2\pi} e^{-\frac{2}{3}t}$ MT TOS = MVTOV