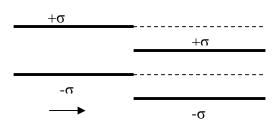

ВАРИАНТ 20.

1. Два одинаковых проводящих шарика радиуса R, заряженные разноименными зарядами, расположены на расстоянии $r \gg R$ и взаимодействуют с силой $F_1 = 0,108$ H. Шарики соединяются тонким проводником, который затем удаляется. После этого сила взаимодействия становится равной $F_2 = 0,036$ H. Определить начальные заряды на шариках.



- 4. Диполь с электрическим моментом p находится на расстоянии r от длинной нити, заряженной равномерно с линейной плотностью заряда τ . Найти силу, действующую на диполь, если вектор дипольного момента ориентирован: a) вдольнити; δ) по радиусу-вектору r; ϵ) перпендикулярно r и нити.
- 5. Для газообразного аргона при нормальных условиях диэлектрическая проницаемость $\varepsilon \approx 1,0006$. Пользуясь этим результатом, вычислить смещение «центра масс» электронной оболочки атома аргона относительно ядра в электрическом поле с напряженностью $E=30~\frac{\kappa B}{M}$. Атомный номер аргона Z=
- 18. Считать, что в отсутствие внешнего поля электроны распределены вокруг ядра симметрично.
- 6. Найти потенциал электрического поля E = ayi + (ax + bz)j + byk , где a, b const; i, j, k орты осей координат

7. Какую работу нужно совершить, чтобы вставить одну систему параллельных заряженных пластин в другую? Поверхностная плотность зарядов на пластинах $\pm \sigma$, площадь каждой пластины S, расстояние между пластинами d много меньше линейных размеров пластин.

8. Заряд q равномерно распределен по объему шара с радиусом R. Определить: a) энергию электрического поля внутри шара; δ) энергию поля вне шара; ϵ 0 изменение полной энергии поля при делении заряженного шара на два равных заряженных шара.