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ike all other sciences, physics is based on experimental observations and quan-
titative measurements. The main objective of physics is to find the limited num-

ber of fundamental laws that govern natural phenomena and to use them to
develop theories that can predict the results of future experiments. The funda-
mental laws used in developing theories are expressed in the language of mathe-
matics, the tool that provides a bridge between theory and experiment.

When a discrepancy between theory and experiment arises, new theories must
be formulated to remove the discrepancy. Many times a theory is satisfactory only
under limited conditions; a more general theory might be satisfactory without
such limitations. For example, the laws of motion discovered by Isaac Newton
(1642–1727) in the 17th century accurately describe the motion of bodies at nor-
mal speeds but do not apply to objects moving at speeds comparable with the
speed of light. In contrast, the special theory of relativity developed by Albert Ein-
stein (1879–1955) in the early 1900s gives the same results as Newton’s laws at low
speeds but also correctly describes motion at speeds approaching the speed of
light. Hence, Einstein’s is a more general theory of motion.

Classical physics, which means all of the physics developed before 1900, in-
cludes the theories, concepts, laws, and experiments in classical mechanics, ther-
modynamics, and electromagnetism. 

Important contributions to classical physics were provided by Newton, who de-
veloped classical mechanics as a systematic theory and was one of the originators
of calculus as a mathematical tool. Major developments in mechanics continued in
the 18th century, but the fields of thermodynamics and electricity and magnetism
were not developed until the latter part of the 19th century, principally because
before that time the apparatus for controlled experiments was either too crude or
unavailable.

A new era in physics, usually referred to as modern physics, began near the end
of the 19th century. Modern physics developed mainly because of the discovery
that many physical phenomena could not be explained by classical physics. The
two most important developments in modern physics were the theories of relativity
and quantum mechanics. Einstein’s theory of relativity revolutionized the tradi-
tional concepts of space, time, and energy; quantum mechanics, which applies to
both the microscopic and macroscopic worlds, was originally formulated by a num-
ber of distinguished scientists to provide descriptions of physical phenomena at
the atomic level.

Scientists constantly work at improving our understanding of phenomena and
fundamental laws, and new discoveries are made every day. In many research
areas, a great deal of overlap exists between physics, chemistry, geology, and
biology, as well as engineering. Some of the most notable developments are 
(1) numerous space missions and the landing of astronauts on the Moon, 
(2) microcircuitry and high-speed computers, and (3) sophisticated imaging tech-
niques used in scientific research and medicine. The impact such developments
and discoveries have had on our society has indeed been great, and it is very likely
that future discoveries and developments will be just as exciting and challenging
and of great benefit to humanity.

STANDARDS OF LENGTH, MASS, AND TIME
The laws of physics are expressed in terms of basic quantities that require a clear def-
inition. In mechanics, the three basic quantities are length (L), mass (M), and time
(T). All other quantities in mechanics can be expressed in terms of these three.

1.1

L
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If we are to report the results of a measurement to someone who wishes to re-
produce this measurement, a standard must be defined. It would be meaningless if
a visitor from another planet were to talk to us about a length of 8 “glitches” if we
do not know the meaning of the unit glitch. On the other hand, if someone famil-
iar with our system of measurement reports that a wall is 2 meters high and our
unit of length is defined to be 1 meter, we know that the height of the wall is twice
our basic length unit. Likewise, if we are told that a person has a mass of 75 kilo-
grams and our unit of mass is defined to be 1 kilogram, then that person is 75
times as massive as our basic unit.1 Whatever is chosen as a standard must be read-
ily accessible and possess some property that can be measured reliably—measure-
ments taken by different people in different places must yield the same result.

In 1960, an international committee established a set of standards for length,
mass, and other basic quantities. The system established is an adaptation of the
metric system, and it is called the SI system of units. (The abbreviation SI comes
from the system’s French name “Système International.”) In this system, the units
of length, mass, and time are the meter, kilogram, and second, respectively. Other
SI standards established by the committee are those for temperature (the kelvin),
electric current (the ampere), luminous intensity (the candela), and the amount of
substance (the mole). In our study of mechanics we shall be concerned only with
the units of length, mass, and time. 

Length

In A.D. 1120 the king of England decreed that the standard of length in his coun-
try would be named the yard and would be precisely equal to the distance from the
tip of his nose to the end of his outstretched arm. Similarly, the original standard
for the foot adopted by the French was the length of the royal foot of King Louis
XIV. This standard prevailed until 1799, when the legal standard of length in
France became the meter, defined as one ten-millionth the distance from the equa-
tor to the North Pole along one particular longitudinal line that passes through
Paris.

Many other systems for measuring length have been developed over the years,
but the advantages of the French system have caused it to prevail in almost all
countries and in scientific circles everywhere. As recently as 1960, the length of the
meter was defined as the distance between two lines on a specific platinum–
iridium bar stored under controlled conditions in France. This standard was aban-
doned for several reasons, a principal one being that the limited accuracy with
which the separation between the lines on the bar can be determined does not
meet the current requirements of science and technology. In the 1960s and 1970s,
the meter was defined as 1 650 763.73 wavelengths of orange-red light emitted
from a krypton-86 lamp. However, in October 1983, the meter (m) was redefined
as the distance traveled by light in vacuum during a time of 1/299 792 458
second. In effect, this latest definition establishes that the speed of light in vac-
uum is precisely 299 792 458 m per second.

Table 1.1 lists approximate values of some measured lengths.

1 The need for assigning numerical values to various measured physical quantities was expressed by
Lord Kelvin (William Thomson) as follows: “I often say that when you can measure what you are speak-
ing about, and express it in numbers, you should know something about it, but when you cannot ex-
press it in numbers, your knowledge is of a meagre and unsatisfactory kind. It may be the beginning of
knowledge but you have scarcely in your thoughts advanced to the state of science.”
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Mass

The basic SI unit of mass, the kilogram (kg), is defined as the mass of a spe-
cific platinum–iridium alloy cylinder kept at the International Bureau of
Weights and Measures at Sèvres, France. This mass standard was established in
1887 and has not been changed since that time because platinum–iridium is an
unusually stable alloy (Fig. 1.1a). A duplicate of the Sèvres cylinder is kept at the
National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.

Table 1.2 lists approximate values of the masses of various objects.

Time

Before 1960, the standard of time was defined in terms of the mean solar day for the
year 1900.2 The mean solar second was originally defined as of a mean
solar day. The rotation of the Earth is now known to vary slightly with time, how-
ever, and therefore this motion is not a good one to use for defining a standard.

In 1967, consequently, the second was redefined to take advantage of the high
precision obtainable in a device known as an atomic clock (Fig. 1.1b). In this device,
the frequencies associated with certain atomic transitions can be measured to a
precision of one part in 1012. This is equivalent to an uncertainty of less than one
second every 30 000 years. Thus, in 1967 the SI unit of time, the second, was rede-
fined using the characteristic frequency of a particular kind of cesium atom as the
“reference clock.” The basic SI unit of time, the second (s), is defined as 9 192
631 770 times the period of vibration of radiation from the cesium-133
atom.3 To keep these atomic clocks—and therefore all common clocks and

( 1
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24)

TABLE 1.1 Approximate Values of Some Measured Lengths

Length (m)

Distance from the Earth to most remote known quasar 1.4 � 1026

Distance from the Earth to most remote known normal galaxies 9 � 1025

Distance from the Earth to nearest large galaxy 
(M 31, the Andromeda galaxy) 2 � 1022

Distance from the Sun to nearest star (Proxima Centauri) 4 � 1016

One lightyear 9.46 � 1015

Mean orbit radius of the Earth about the Sun 1.50 � 1011

Mean distance from the Earth to the Moon 3.84 � 108

Distance from the equator to the North Pole 1.00 � 107

Mean radius of the Earth 6.37 � 106

Typical altitude (above the surface) of a satellite orbiting the Earth 2 � 105

Length of a football field 9.1 � 101

Length of a housefly 5 � 10�3

Size of smallest dust particles � 10�4

Size of cells of most living organisms � 10�5

Diameter of a hydrogen atom � 10�10

Diameter of an atomic nucleus � 10�14

Diameter of a proton � 10�15

web
Visit the Bureau at www.bipm.fr or the
National Institute of Standards at
www.NIST.gov

2 One solar day is the time interval between successive appearances of the Sun at the highest point it
reaches in the sky each day.
3 Period is defined as the time interval needed for one complete vibration.

TABLE 1.2
Masses of Various Bodies
(Approximate Values)

Body Mass (kg)

Visible � 1052

Universe
Milky Way 7 � 1041

galaxy
Sun 1.99 � 1030

Earth 5.98 � 1024

Moon 7.36 � 1022

Horse � 103

Human � 102

Frog � 10�1

Mosquito � 10�5

Bacterium � 10�15

Hydrogen 1.67 � 10�27

atom
Electron 9.11 � 10�31
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watches that are set to them—synchronized, it has sometimes been necessary to
add leap seconds to our clocks. This is not a new idea. In 46 B.C. Julius Caesar be-
gan the practice of adding extra days to the calendar during leap years so that the
seasons occurred at about the same date each year.

Since Einstein’s discovery of the linkage between space and time, precise mea-
surement of time intervals requires that we know both the state of motion of the
clock used to measure the interval and, in some cases, the location of the clock as
well. Otherwise, for example, global positioning system satellites might be unable
to pinpoint your location with sufficient accuracy, should you need rescuing.

Approximate values of time intervals are presented in Table 1.3.
In addition to SI, another system of units, the British engineering system (some-

times called the conventional system), is still used in the United States despite accep-
tance of SI by the rest of the world. In this system, the units of length, mass, and

Figure 1.1 (Top) The National Standard Kilogram No.
20, an accurate copy of the International Standard Kilo-
gram kept at Sèvres, France, is housed under a double bell
jar in a vault at the National Institute of Standards and
Technology (NIST). (Bottom) The primary frequency stan-
dard (an atomic clock) at the NIST. This device keeps
time with an accuracy of about 3 millionths of a second
per year. (Courtesy of National Institute of Standards and Technology,
U.S. Department of Commerce)
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time are the foot (ft), slug, and second, respectively. In this text we shall use SI
units because they are almost universally accepted in science and industry. We
shall make some limited use of British engineering units in the study of classical
mechanics.

In addition to the basic SI units of meter, kilogram, and second, we can also
use other units, such as millimeters and nanoseconds, where the prefixes milli- and
nano- denote various powers of ten. Some of the most frequently used prefixes 
for the various powers of ten and their abbreviations are listed in Table 1.4. For 

TABLE 1.3 Approximate Values of Some Time Intervals

Interval (s)

Age of the Universe 5 � 1017

Age of the Earth 1.3 � 1017

Average age of a college student 6.3 � 108

One year 3.16 � 107

One day (time for one rotation of the Earth about its axis) 8.64 � 104

Time between normal heartbeats 8 � 10�1

Period of audible sound waves � 10�3

Period of typical radio waves � 10�6

Period of vibration of an atom in a solid � 10�13

Period of visible light waves � 10�15

Duration of a nuclear collision � 10�22

Time for light to cross a proton � 10�24

TABLE 1.4 Prefixes for SI Units

Power Prefix Abbreviation

10�24 yocto y
10�21 zepto z
10�18 atto a
10�15 femto f
10�12 pico p
10�9 nano n
10�6 micro �
10�3 milli m
10�2 centi c
10�1 deci d
101 deka da
103 kilo k
106 mega M
109 giga G
1012 tera T
1015 peta P
1018 exa E
1021 zetta Z
1024 yotta Y
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example, 10�3 m is equivalent to 1 millimeter (mm), and 103 m corresponds 
to 1 kilometer (km). Likewise, 1 kg is 103 grams (g), and 1 megavolt (MV) is 
106 volts (V).

THE BUILDING BLOCKS OF MATTER
A 1-kg cube of solid gold has a length of 3.73 cm on a side. Is this cube nothing
but wall-to-wall gold, with no empty space? If the cube is cut in half, the two pieces
still retain their chemical identity as solid gold. But what if the pieces are cut again
and again, indefinitely? Will the smaller and smaller pieces always be gold? Ques-
tions such as these can be traced back to early Greek philosophers. Two of them—
Leucippus and his student Democritus—could not accept the idea that such cut-
tings could go on forever. They speculated that the process ultimately must end
when it produces a particle that can no longer be cut. In Greek, atomos means “not
sliceable.” From this comes our English word atom.

Let us review briefly what is known about the structure of matter. All ordinary
matter consists of atoms, and each atom is made up of electrons surrounding a
central nucleus. Following the discovery of the nucleus in 1911, the question
arose: Does it have structure? That is, is the nucleus a single particle or a collection
of particles? The exact composition of the nucleus is not known completely even
today, but by the early 1930s a model evolved that helped us understand how the
nucleus behaves. Specifically, scientists determined that occupying the nucleus are
two basic entities, protons and neutrons. The proton carries a positive charge, and a
specific element is identified by the number of protons in its nucleus. This num-
ber is called the atomic number of the element. For instance, the nucleus of a hy-
drogen atom contains one proton (and so the atomic number of hydrogen is 1),
the nucleus of a helium atom contains two protons (atomic number 2), and the
nucleus of a uranium atom contains 92 protons (atomic number 92). In addition
to atomic number, there is a second number characterizing atoms—mass num-
ber, defined as the number of protons plus neutrons in a nucleus. As we shall see,
the atomic number of an element never varies (i.e., the number of protons does
not vary) but the mass number can vary (i.e., the number of neutrons varies). Two
or more atoms of the same element having different mass numbers are isotopes
of one another. 

The existence of neutrons was verified conclusively in 1932. A neutron has no
charge and a mass that is about equal to that of a proton. One of its primary pur-
poses is to act as a “glue” that holds the nucleus together. If neutrons were not
present in the nucleus, the repulsive force between the positively charged particles
would cause the nucleus to come apart.

But is this where the breaking down stops? Protons, neutrons, and a host of
other exotic particles are now known to be composed of six different varieties of
particles called quarks, which have been given the names of up, down, strange,
charm, bottom, and top. The up, charm, and top quarks have charges of � that of
the proton, whereas the down, strange, and bottom quarks have charges of �
that of the proton. The proton consists of two up quarks and one down quark
(Fig. 1.2), which you can easily show leads to the correct charge for the proton.
Likewise, the neutron consists of two down quarks and one up quark, giving a net
charge of zero.

1
3

2
3

1.2

Quark
composition
of a proton

u u

d

Gold
nucleus

Gold
atoms

Gold
cube

Proton

Neutron

Nucleus

Figure 1.2 Levels of organization
in matter. Ordinary matter consists
of atoms, and at the center of each
atom is a compact nucleus consist-
ing of protons and neutrons. Pro-
tons and neutrons are composed of
quarks. The quark composition of
a proton is shown.
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DENSITY
A property of any substance is its density � (Greek letter rho), defined as the
amount of mass contained in a unit volume, which we usually express as mass per
unit volume:

(1.1)

For example, aluminum has a density of 2.70 g/cm3, and lead has a density of 
11.3 g/cm3. Therefore, a piece of aluminum of volume 10.0 cm3 has a mass of 
27.0 g, whereas an equivalent volume of lead has a mass of 113 g. A list of densities
for various substances is given Table 1.5.

The difference in density between aluminum and lead is due, in part, to their
different atomic masses. The atomic mass of an element is the average mass of one
atom in a sample of the element that contains all the element’s isotopes, where the
relative amounts of isotopes are the same as the relative amounts found in nature.
The unit for atomic mass is the atomic mass unit (u), where 1 u � 1.660 540 2 �
10�27 kg. The atomic mass of lead is 207 u, and that of aluminum is 27.0 u. How-
ever, the ratio of atomic masses, 207 u/27.0 u � 7.67, does not correspond to the
ratio of densities, (11.3 g/cm3)/(2.70 g/cm3) � 4.19. The discrepancy is due to
the difference in atomic separations and atomic arrangements in the crystal struc-
ture of these two substances.

The mass of a nucleus is measured relative to the mass of the nucleus of the
carbon-12 isotope, often written as 12C. (This isotope of carbon has six protons
and six neutrons. Other carbon isotopes have six protons but different numbers of
neutrons.) Practically all of the mass of an atom is contained within the nucleus.
Because the atomic mass of 12C is defined to be exactly 12 u, the proton and neu-
tron each have a mass of about 1 u. 

One mole (mol) of a substance is that amount of the substance that con-
tains as many particles (atoms, molecules, or other particles) as there are
atoms in 12 g of the carbon-12 isotope. One mole of substance A contains the
same number of particles as there are in 1 mol of any other substance B. For ex-
ample, 1 mol of aluminum contains the same number of atoms as 1 mol of lead.

� �
m
V

1.3
A table of the letters in the Greek
alphabet is provided on the back
endsheet of this textbook.

TABLE 1.5 Densities of Various
Substances

Substance Density � (103 kg/m3)

Gold 19.3
Uranium 18.7
Lead 11.3
Copper 8.92
Iron 7.86
Aluminum 2.70
Magnesium 1.75
Water 1.00
Air 0.0012
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Experiments have shown that this number, known as Avogadro’s number, NA , is

Avogadro’s number is defined so that 1 mol of carbon-12 atoms has a mass of
exactly 12 g. In general, the mass in 1 mol of any element is the element’s atomic
mass expressed in grams. For example, 1 mol of iron (atomic mass � 55.85 u) has
a mass of 55.85 g (we say its molar mass is 55.85 g/mol), and 1 mol of lead (atomic
mass � 207 u) has a mass of 207 g (its molar mass is 207 g/mol). Because there
are 6.02 � 1023 particles in 1 mol of any element, the mass per atom for a given el-
ement is

(1.2)

For example, the mass of an iron atom is 

mFe �
55.85 g/mol

6.02 � 1023 atoms/mol
� 9.28 � 10�23 g/atom

matom �
molar mass

NA

NA � 6.022 137 � 1023 particles/mol

How Many Atoms in the Cube?EXAMPLE 1.1
minum (27 g) contains 6.02 � 1023 atoms:

1.2 � 1022 atomsN �
(0.54 g)(6.02 � 1023 atoms)

27 g
�

  
6.02 � 1023 atoms

27 g
�

N
0.54 g

  

  
NA

27 g
�

N
0.54 g

  

A solid cube of aluminum (density 2.7 g/cm3) has a volume
of 0.20 cm3. How many aluminum atoms are contained in the
cube?

Solution Since density equals mass per unit volume, the
mass m of the cube is

To find the number of atoms N in this mass of aluminum, we
can set up a proportion using the fact that one mole of alu-

m � �V � (2.7 g/cm3)(0.20 cm3) � 0.54 g

DIMENSIONAL ANALYSIS
The word dimension has a special meaning in physics. It usually denotes the physi-
cal nature of a quantity. Whether a distance is measured in the length unit feet or
the length unit meters, it is still a distance. We say the dimension—the physical
nature—of distance is length.

The symbols we use in this book to specify length, mass, and time are L, M,
and T, respectively. We shall often use brackets [ ] to denote the dimensions of a
physical quantity. For example, the symbol we use for speed in this book is v, and
in our notation the dimensions of speed are written As another exam-
ple, the dimensions of area, for which we use the symbol A, are The di-
mensions of area, volume, speed, and acceleration are listed in Table 1.6.

In solving problems in physics, there is a useful and powerful procedure called
dimensional analysis. This procedure, which should always be used, will help mini-
mize the need for rote memorization of equations. Dimensional analysis makes
use of the fact that dimensions can be treated as algebraic quantities. That is,
quantities can be added or subtracted only if they have the same dimensions. Fur-
thermore, the terms on both sides of an equation must have the same dimensions.

[A] � L2.
[v] � L/T.

1.4
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By following these simple rules, you can use dimensional analysis to help deter-
mine whether an expression has the correct form. The relationship can be correct
only if the dimensions are the same on both sides of the equation.

To illustrate this procedure, suppose you wish to derive a formula for the dis-
tance x traveled by a car in a time t if the car starts from rest and moves with con-
stant acceleration a. In Chapter 2, we shall find that the correct expression is

Let us use dimensional analysis to check the validity of this expression.
The quantity x on the left side has the dimension of length. For the equation to be
dimensionally correct, the quantity on the right side must also have the dimension
of length. We can perform a dimensional check by substituting the dimensions for
acceleration, L/T2, and time, T, into the equation. That is, the dimensional form
of the equation is

The units of time squared cancel as shown, leaving the unit of length.
A more general procedure using dimensional analysis is to set up an expres-

sion of the form

where n and m are exponents that must be determined and the symbol � indicates
a proportionality. This relationship is correct only if the dimensions of both sides
are the same. Because the dimension of the left side is length, the dimension of
the right side must also be length. That is,

Because the dimensions of acceleration are L/T2 and the dimension of time is T,
we have

Because the exponents of L and T must be the same on both sides, the dimen-
sional equation is balanced under the conditions and 
Returning to our original expression we conclude that This result
differs by a factor of 2 from the correct expression, which is Because the
factor is dimensionless, there is no way of determining it using dimensional
analysis.

1
2

x � 1
2at2.

x �  at2.x �  antm,
m � 2.n � 1,m � 2n � 0,

 Ln Tm�2n � L1

� L
T2 �

n
Tm � L1

[antm] � L � LT0

x �  antm

L �
L
T2 �T2 � L

x � 1
2at2

x � 1
2at2.

TABLE 1.6 Dimensions and Common Units of Area, Volume, 
Speed, and Acceleration

Area Volume Speed Acceleration
System (L2) (L3) (L/T) (L/T2)

SI m2 m3 m/s m/s2

British engineering ft2 ft3 ft/s ft/s2
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True or False: Dimensional analysis can give you the numerical value of constants of propor-
tionality that may appear in an algebraic expression.

Quick Quiz 1.1

Analysis of an EquationEXAMPLE 1.2
Show that the expression v � at is dimensionally correct,
where v represents speed, a acceleration, and t a time inter-
val.

Solution For the speed term, we have from Table 1.6

[v] �
L
T

The same table gives us L/T2 for the dimensions of accelera-
tion, and so the dimensions of at are 

Therefore, the expression is dimensionally correct. (If the ex-
pression were given as it would be dimensionally in-
correct. Try it and see!)

v � at2,

[at] � � L
T2   �(T) �

L
T

CONVERSION OF UNITS
Sometimes it is necessary to convert units from one system to another. Conversion
factors between the SI units and conventional units of length are as follows:

A more complete list of conversion factors can be found in Appendix A.
Units can be treated as algebraic quantities that can cancel each other. For ex-

ample, suppose we wish to convert 15.0 in. to centimeters. Because 1 in. is defined
as exactly 2.54 cm, we find that

This works because multiplying by is the same as multiplying by 1, because
the numerator and denominator describe identical things.

(2.54 cm
1 in. )

15.0 in. � (15.0 in.)(2.54 cm/in.) � 38.1 cm

 1 m �  39.37 in. � 3.281 ft  1 in. �  0.025 4 m � 2.54 cm (exactly)

1 mi � 1 609 m � 1.609 km  1 ft � 0.304 8 m � 30.48 cm 

1.5

Analysis of a Power LawEXAMPLE 1.3
This dimensional equation is balanced under the conditions

Therefore n � � 1, and we can write the acceleration expres-
sion as

When we discuss uniform circular motion later, we shall see
that k � 1 if a consistent set of units is used. The constant k
would not equal 1 if, for example, v were in km/h and you
wanted a in m/s2.

a � kr �1v2 � k 
v2

r

n � m � 1  and  m � 2

Suppose we are told that the acceleration a of a particle mov-
ing with uniform speed v in a circle of radius r is proportional
to some power of r, say rn, and some power of v, say vm. How
can we determine the values of n and m?

Solution Let us take a to be

where k is a dimensionless constant of proportionality. Know-
ing the dimensions of a, r, and v, we see that the dimensional
equation must be

L/T2 � Ln(L/T)m � Ln�m/Tm

a � kr nvm

QuickLab
Estimate the weight (in pounds) of
two large bottles of soda pop. Note
that 1 L of water has a mass of about
1 kg. Use the fact that an object
weighing 2.2 lb has a mass of 1 kg.
Find some bathroom scales and
check your estimate.
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ESTIMATES AND ORDER-OF-
MAGNITUDE CALCULATIONS

It is often useful to compute an approximate answer to a physical problem even
where little information is available. Such an approximate answer can then be
used to determine whether a more accurate calculation is necessary. Approxima-
tions are usually based on certain assumptions, which must be modified if greater
accuracy is needed. Thus, we shall sometimes refer to the order of magnitude of a
certain quantity as the power of ten of the number that describes that quantity. If,
for example, we say that a quantity increases in value by three orders of magni-
tude, this means that its value is increased by a factor of 103 � 1000. Also, if a
quantity is given as 3 � 103, we say that the order of magnitude of that quantity is
103 (or in symbolic form, 3 � 103 � 103). Likewise, the quantity 8 � 107 � 108.

The spirit of order-of-magnitude calculations, sometimes referred to as
“guesstimates” or “ball-park figures,” is given in the following quotation: “Make an
estimate before every calculation, try a simple physical argument . . . before
every derivation, guess the answer to every puzzle. Courage: no one else needs to

1.6

(Left) This road sign near Raleigh, North Carolina, shows distances in miles and kilometers. How
accurate are the conversions? (Billy E. Barnes/Stock Boston). 

(Right) This vehicle’s speedometer gives speed readings in miles per hour and in kilometers per
hour. Try confirming the conversion between the two sets of units for a few readings of the dial.
(Paul Silverman/Fundamental Photographs)

The Density of a CubeEXAMPLE 1.4
The mass of a solid cube is 856 g, and each edge has a length
of 5.35 cm. Determine the density � of the cube in basic SI
units.

Solution Because 1 g � 10�3 kg and 1 cm � 10�2 m, the
mass m and volume V in basic SI units are

 m � 856 g � 10�3 kg/g � 0.856 kg

Therefore,

5.59 � 103 kg/m3� �
m
V

�
0.856 kg

1.53 � 10�4 m3 �

  � (5.35)3 � 10�6 m3 � 1.53 � 10�4 m3

V � L3 � (5.35 cm � 10�2 m/cm)3  
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know what the guess is.” 4 Inaccuracies caused by guessing too low for one number
are often canceled out by other guesses that are too high. You will find that with
practice your guesstimates get better and better. Estimation problems can be fun
to work as you freely drop digits, venture reasonable approximations for unknown
numbers, make simplifying assumptions, and turn the question around into some-
thing you can answer in your head.

Breaths in a LifetimeEXAMPLE 1.5
approximately

Notice how much simpler it is to multiply 400 � 25 than it 
is to work with the more accurate 365 � 24. These approxi-
mate values for the number of days in a year and the number
of hours in a day are close enough for our purposes. Thus, in
70 years there will be (70 yr)(6 � 105 min/yr) � 4 � 107

min. At a rate of 10 breaths/min, an individual would take

4 � 108 breaths in a lifetime.

1 yr � 400 
days
yr

� 25 
h

day
� 60 

min
h

� 6 � 105 min

Estimate the number of breaths taken during an average life
span.

Solution We shall start by guessing that the typical life
span is about 70 years. The only other estimate we must make
in this example is the average number of breaths that a per-
son takes in 1 min. This number varies, depending on
whether the person is exercising, sleeping, angry, serene, and
so forth. To the nearest order of magnitude, we shall choose
10 breaths per minute as our estimate of the average. (This is
certainly closer to the true value than 1 breath per minute or
100 breaths per minute.) The number of minutes in a year is

Estimate the number of gallons of gasoline used each year by
all the cars in the United States.

Solution There are about 270 million people in the
United States, and so we estimate that the number of cars in
the country is 100 million (guessing that there are between
two and three people per car). We also estimate that the aver-

How Much Gas Do We Use?EXAMPLE 1.7

Now we switch to scientific notation so that we can do the
calculation mentally:

So if we intend to walk across the United States, it will take us
on the order of ten million steps. This estimate is almost cer-
tainly too small because we have not accounted for curving
roads and going up and down hills and mountains. Nonethe-
less, it is probably within an order of magnitude of the cor-
rect answer.

107 steps�

(3 � 103 mi)(2.5 � 103 steps/mi) � 7.5 � 106 steps

age distance each car travels per year is 10 000 mi. If we as-
sume a gasoline consumption of 20 mi/gal or 0.05 gal/mi,
then each car uses about 500 gal/yr. Multiplying this by the
total number of cars in the United States gives an estimated 

total consumption of 5 � 1010 gal � 1011 gal.

It’s a Long Way to San JoseEXAMPLE 1.6
Estimate the number of steps a person would take walking
from New York to Los Angeles.

Solution Without looking up the distance between these
two cities, you might remember from a geography class that
they are about 3 000 mi apart. The next approximation we
must make is the length of one step. Of course, this length
depends on the person doing the walking, but we can esti-
mate that each step covers about 2 ft. With our estimated step
size, we can determine the number of steps in 1 mi. Because
this is a rough calculation, we round 5 280 ft/mi to 5 000
ft/mi. (What percentage error does this introduce?) This
conversion factor gives us

5 000 ft/mi
2 ft/step

� 2 500 steps/mi

4 E. Taylor and J. A. Wheeler, Spacetime Physics, San Francisco, W. H. Freeman & Company, Publishers,
1966, p. 60.
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SIGNIFICANT FIGURES
When physical quantities are measured, the measured values are known only to
within the limits of the experimental uncertainty. The value of this uncertainty can
depend on various factors, such as the quality of the apparatus, the skill of the ex-
perimenter, and the number of measurements performed. 

Suppose that we are asked to measure the area of a computer disk label using
a meter stick as a measuring instrument. Let us assume that the accuracy to which
we can measure with this stick is 	 0.1 cm. If the length of the label is measured to
be 5.5 cm, we can claim only that its length lies somewhere between 5.4 cm and
5.6 cm. In this case, we say that the measured value has two significant figures.
Likewise, if the label’s width is measured to be 6.4 cm, the actual value lies be-
tween 6.3 cm and 6.5 cm. Note that the significant figures include the first esti-
mated digit. Thus we could write the measured values as (5.5 	 0.1) cm and 
(6.4 	 0.1) cm.

Now suppose we want to find the area of the label by multiplying the two mea-
sured values. If we were to claim the area is (5.5 cm)(6.4 cm) � 35.2 cm2, our an-
swer would be unjustifiable because it contains three significant figures, which is
greater than the number of significant figures in either of the measured lengths. A
good rule of thumb to use in determining the number of significant figures that
can be claimed is as follows: 

1.7

When multiplying several quantities, the number of significant figures in the
final answer is the same as the number of significant figures in the least accurate
of the quantities being multiplied, where “least accurate” means “having the
lowest number of significant figures.” The same rule applies to division.

Applying this rule to the multiplication example above, we see that the answer
for the area can have only two significant figures because our measured lengths
have only two significant figures. Thus, all we can claim is that the area is 35 cm2,
realizing that the value can range between (5.4 cm)(6.3 cm) � 34 cm2 and 
(5.6 cm)(6.5 cm) � 36 cm2.

Zeros may or may not be significant figures. Those used to position the deci-
mal point in such numbers as 0.03 and 0.007 5 are not significant. Thus, there are
one and two significant figures, respectively, in these two values. When the zeros
come after other digits, however, there is the possibility of misinterpretation. For
example, suppose the mass of an object is given as 1 500 g. This value is ambigu-
ous because we do not know whether the last two zeros are being used to locate
the decimal point or whether they represent significant figures in the measure-
ment. To remove this ambiguity, it is common to use scientific notation to indicate
the number of significant figures. In this case, we would express the mass as 1.5 �
103 g if there are two significant figures in the measured value, 1.50 � 103 g if
there are three significant figures, and 1.500 � 103 g if there are four. The same
rule holds when the number is less than 1, so that 2.3 � 10�4 has two significant
figures (and so could be written 0.000 23) and 2.30 � 10�4 has three significant
figures (also written 0.000 230). In general, a significant figure is a reliably
known digit (other than a zero used to locate the decimal point).

For addition and subtraction, you must consider the number of decimal places
when you are determining how many significant figures to report.

QuickLab
Determine the thickness of a page
from this book. (Note that numbers
that have no measurement errors—
like the count of a number of
pages—do not affect the significant
figures in a calculation.) In terms of
significant figures, why is it better to
measure the thickness of as many
pages as possible and then divide by
the number of sheets?
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For example, if we wish to compute 123 � 5.35, the answer given to the correct num-
ber of significant figures is 128 and not 128.35. If we compute the sum 1.000 1 �
0.000 3 � 1.000 4, the result has five significant figures, even though one of the terms
in the sum, 0.000 3, has only one significant figure. Likewise, if we perform the sub-
traction 1.002 � 0.998 � 0.004, the result has only one significant figure even though
one term has four significant figures and the other has three. In this book, most of
the numerical examples and end-of-chapter problems will yield answers hav-
ing three significant figures. When carrying out estimates we shall typically work
with a single significant figure.

Suppose you measure the position of a chair with a meter stick and record that the center
of the seat is 1.043 860 564 2 m from a wall. What would a reader conclude from this
recorded measurement?

Quick Quiz 1.2

When numbers are added or subtracted, the number of decimal places in the
result should equal the smallest number of decimal places of any term in the
sum.

The Area of a RectangleEXAMPLE 1.8
A rectangular plate has a length of (21.3 	 0.2) cm and a
width of (9.80 	 0.1) cm. Find the area of the plate and the
uncertainty in the calculated area. 

Solution
Area � �w � (21.3 	 0.2 cm) � (9.80 	 0.1 cm)  

Because the input data were given to only three significant
figures, we cannot claim any more in our result. Do you see
why we did not need to multiply the uncertainties 0.2 cm and
0.1 cm?

(209 	 4) cm2    �

  � (21.3 � 9.80 	 21.3 � 0.1 	 0.2 � 9.80) cm2

Installing a CarpetEXAMPLE 1.9
Note that in reducing 43.976 6 to three significant figures

for our answer, we used a general rule for rounding off num-
bers that states that the last digit retained (the 9 in this exam-
ple) is increased by 1 if the first digit dropped (here, the 7) is
5 or greater. (A technique for avoiding error accumulation is
to delay rounding of numbers in a long calculation until you
have the final result. Wait until you are ready to copy the an-
swer from your calculator before rounding to the correct
number of significant figures.)

A carpet is to be installed in a room whose length is measured
to be 12.71 m and whose width is measured to be 3.46 m. Find
the area of the room.

Solution If you multiply 12.71 m by 3.46 m on your calcu-
lator, you will get an answer of 43.976 6 m2. How many of
these numbers should you claim? Our rule of thumb for mul-
tiplication tells us that you can claim only the number of sig-
nificant figures in the least accurate of the quantities being
measured. In this example, we have only three significant fig-
ures in our least accurate measurement, so we should express 

our final answer as 44.0 m2.
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SUMMARY

The three fundamental physical quantities of mechanics are length, mass, and
time, which in the SI system have the units meters (m), kilograms (kg), and sec-
onds (s), respectively. Prefixes indicating various powers of ten are used with these
three basic units. The density of a substance is defined as its mass per unit volume.
Different substances have different densities mainly because of differences in their
atomic masses and atomic arrangements.

The number of particles in one mole of any element or compound, called
Avogadro’s number, NA , is 6.02 � 1023.

The method of dimensional analysis is very powerful in solving physics prob-
lems. Dimensions can be treated as algebraic quantities. By making estimates and
making order-of-magnitude calculations, you should be able to approximate the
answer to a problem when there is not enough information available to completely
specify an exact solution.

When you compute a result from several measured numbers, each of which
has a certain accuracy, you should give the result with the correct number of signif-
icant figures.

QUESTIONS

1. In this chapter we described how the Earth’s daily rotation
on its axis was once used to define the standard unit of
time. What other types of natural phenomena could serve
as alternative time standards?

2. Suppose that the three fundamental standards of the met-
ric system were length, density, and time rather than
length, mass, and time. The standard of density in this sys-
tem is to be defined as that of water. What considerations
about water would you need to address to make sure that
the standard of density is as accurate as possible?

3. A hand is defined as 4 in.; a foot is defined as 12 in. Why
should the hand be any less acceptable as a unit than the
foot, which we use all the time?

4. Express the following quantities using the prefixes given in

Table 1.4: (a) 3 � 10�4 m (b) 5 � 10�5 s
(c) 72 � 102 g.

5. Suppose that two quantities A and B have different dimen-
sions. Determine which of the following arithmetic opera-
tions could be physically meaningful: (a) A � B (b) A/B
(c) B � A (d) AB.

6. What level of accuracy is implied in an order-of-magnitude
calculation?

7. Do an order-of-magnitude calculation for an everyday situ-
ation you might encounter. For example, how far do you
walk or drive each day?

8. Estimate your age in seconds.
9. Estimate the mass of this textbook in kilograms. If a scale is

available, check your estimate.

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Section 1.3 Density
1. The standard kilogram is a platinum–iridium cylinder

39.0 mm in height and 39.0 mm in diameter. What is
the density of the material?

2. The mass of the planet Saturn (Fig. P1.2) is 5.64 �
1026 kg, and its radius is 6.00 � 107 m. Calculate its
density.

3. How many grams of copper are required to make a hol-
low spherical shell having an inner radius of 5.70 cm
and an outer radius of 5.75 cm? The density of copper
is 8.92 g/cm3.

4. What mass of a material with density � is required to
make a hollow spherical shell having inner radius r1 and
outer radius r2 ?

5. Iron has molar mass 55.8 g/mol. (a) Find the volume
of 1 mol of iron. (b) Use the value found in (a) to de-
termine the volume of one iron atom. (c) Calculate
the cube root of the atomic volume, to have an esti-
mate for the distance between atoms in the solid. 
(d) Repeat the calculations for uranium, finding its
molar mass in the periodic table of the elements in
Appendix C.
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6. Two spheres are cut from a certain uniform rock. One
has radius 4.50 cm. The mass of the other is five times
greater. Find its radius.

7. Calculate the mass of an atom of (a) helium, (b) iron,
and (c) lead. Give your answers in atomic mass units
and in grams. The molar masses are 4.00, 55.9, and 
207 g/mol, respectively, for the atoms given.

8. On your wedding day your lover gives you a gold ring of
mass 3.80 g. Fifty years later its mass is 3.35 g. As an av-
erage, how many atoms were abraded from the ring
during each second of your marriage? The molar mass
of gold is 197 g/mol.

9. A small cube of iron is observed under a microscope.
The edge of the cube is 5.00 � 10�6 cm long. Find (a)
the mass of the cube and (b) the number of iron atoms
in the cube. The molar mass of iron is 55.9 g/mol, and
its density is 7.86 g/cm3.

10. A structural I-beam is made of steel. A view of its cross-
section and its dimensions are shown in Figure P1.10.

(a) What is the mass of a section 1.50 m long? (b) How
many atoms are there in this section? The density of
steel is 7.56 � 103 kg/m3.

11. A child at the beach digs a hole in the sand and, using a
pail, fills it with water having a mass of 1.20 kg. The mo-
lar mass of water is 18.0 g/mol. (a) Find the number of
water molecules in this pail of water. (b) Suppose the
quantity of water on the Earth is 1.32 � 1021 kg and re-
mains constant. How many of the water molecules in
this pail of water were likely to have been in an equal
quantity of water that once filled a particular claw print
left by a dinosaur?

Section 1.4 Dimensional Analysis
12. The radius r of a circle inscribed in any triangle whose

sides are a, b, and c is given by 

where s is an abbreviation for Check this
formula for dimensional consistency.

13. The displacement of a particle moving under uniform
acceleration is some function of the elapsed time and
the acceleration. Suppose we write this displacement

where k is a dimensionless constant. Show by
dimensional analysis that this expression is satisfied if 
m � 1 and n � 2. Can this analysis give the value of k?

14. The period T of a simple pendulum is measured in time
units and is described by

where � is the length of the pendulum and g is the free-
fall acceleration in units of length divided by the square
of time. Show that this equation is dimensionally correct.

15. Which of the equations below are dimensionally cor-
rect?
(a)
(b)

16. Newton’s law of universal gravitation is represented by

Here F is the gravitational force, M and m are masses,
and r is a length. Force has the SI units kg� m/s2. What
are the SI units of the proportionality constant G ?

17. The consumption of natural gas by a company satisfies
the empirical equation where V
is the volume in millions of cubic feet and t the time in
months. Express this equation in units of cubic feet and
seconds. Put the proper units on the coefficients. As-
sume a month is 30.0 days.

Section 1.5 Conversion of Units
18. Suppose your hair grows at the rate 1/32 in. per day.

Find the rate at which it grows in nanometers per sec-
ond. Since the distance between atoms in a molecule is

V � 1.50t � 0.008 00t2,

F �
GMm

r 2

y � (2 m) cos(kx), where k � 2 m�1
v � v0 � ax

T � 2
 √ �

g

s � kamtn,

/2.(a � b � c)

(s � c)/s]1/2r � [(s � a)(s � b)

15.0 cm

1.00 cm

1.00 cm

36.0 cm

Figure P1.10

Figure P1.2 A view of Saturn from Voyager 2. (Courtesy of NASA)

WEB
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on the order of 0.1 nm, your answer suggests how
rapidly layers of atoms are assembled in this protein syn-
thesis.

19. A rectangular building lot is 100 ft by 150 ft. Determine
the area of this lot in m2.

20. An auditorium measures 40.0 m � 20.0 m � 12.0 m.
The density of air is 1.20 kg/m3. What are (a) the vol-
ume of the room in cubic feet and (b) the weight of air
in the room in pounds?

21. Assume that it takes 7.00 min to fill a 30.0-gal gasoline
tank. (a) Calculate the rate at which the tank is filled in
gallons per second. (b) Calculate the rate at which the
tank is filled in cubic meters per second. (c) Determine
the time, in hours, required to fill a 1-cubic-meter vol-
ume at the same rate. (1 U.S. gal � 231 in.3)

22. A creature moves at a speed of 5.00 furlongs per fort-
night (not a very common unit of speed). Given that 
1 furlong � 220 yards and 1 fortnight � 14 days, deter-
mine the speed of the creature in meters per second.
What kind of creature do you think it might be?

23. A section of land has an area of 1 mi2 and contains 
640 acres. Determine the number of square meters in 
1 acre.

24. A quart container of ice cream is to be made in the
form of a cube. What should be the length of each edge
in centimeters? (Use the conversion 1 gal � 3.786 L.)

25. A solid piece of lead has a mass of 23.94 g and a volume
of 2.10 cm3. From these data, calculate the density of
lead in SI units (kg/m3).

26. An astronomical unit (AU) is defined as the average dis-
tance between the Earth and the Sun. (a) How many as-
tronomical units are there in one lightyear? (b) Deter-
mine the distance from the Earth to the Andromeda
galaxy in astronomical units.

27. The mass of the Sun is 1.99 � 1030 kg, and the mass of
an atom of hydrogen, of which the Sun is mostly com-
posed, is 1.67 � 10�27 kg. How many atoms are there in
the Sun?

28. (a) Find a conversion factor to convert from miles per
hour to kilometers per hour. (b) In the past, a federal
law mandated that highway speed limits would be 
55 mi/h. Use the conversion factor of part (a) to find
this speed in kilometers per hour. (c) The maximum
highway speed is now 65 mi/h in some places. In kilo-
meters per hour, how much of an increase is this over
the 55-mi/h limit?

29. At the time of this book’s printing, the U. S. national
debt is about $6 trillion. (a) If payments were made at
the rate of $1 000/s, how many years would it take to pay
off a $6-trillion debt, assuming no interest were charged?
(b) A dollar bill is about 15.5 cm long. If six trillion dol-
lar bills were laid end to end around the Earth’s equator,
how many times would they encircle the Earth? Take the
radius of the Earth at the equator to be 6 378 km. 
(Note: Before doing any of these calculations, try to 
guess at the answers. You may be very surprised.)

30. (a) How many seconds are there in a year? (b) If one
micrometeorite (a sphere with a diameter of 1.00 �
10�6 m) strikes each square meter of the Moon each
second, how many years will it take to cover the Moon
to a depth of 1.00 m? (Hint: Consider a cubic box on
the Moon 1.00 m on a side, and find how long it will
take to fill the box.)

31. One gallon of paint (volume � 3.78 � 10�3 m3) covers
an area of 25.0 m2. What is the thickness of the paint on
the wall?

32. A pyramid has a height of 481 ft, and its base covers an
area of 13.0 acres (Fig. P1.32). If the volume of a pyra-
mid is given by the expression where B is the
area of the base and h is the height, find the volume of
this pyramid in cubic meters. (1 acre � 43 560 ft2)

V � 1
3Bh,

Figure P1.32 Problems 32 and 33.

33. The pyramid described in Problem 32 contains approxi-
mately two million stone blocks that average 2.50 tons
each. Find the weight of this pyramid in pounds.

34. Assuming that 70% of the Earth’s surface is covered
with water at an average depth of 2.3 mi, estimate the
mass of the water on the Earth in kilograms.

35. The amount of water in reservoirs is often measured in
acre-feet. One acre-foot is a volume that covers an area
of 1 acre to a depth of 1 ft. An acre is an area of 
43 560 ft2. Find the volume in SI units of a reservoir
containing 25.0 acre-ft of water.

36. A hydrogen atom has a diameter of approximately 
1.06 � 10�10 m, as defined by the diameter of the
spherical electron cloud around the nucleus. The hy-
drogen nucleus has a diameter of approximately 
2.40 � 10�15 m. (a) For a scale model, represent the di-
ameter of the hydrogen atom by the length of an Amer-
ican football field (100 yards � 300 ft), and determine
the diameter of the nucleus in millimeters. (b) The
atom is how many times larger in volume than its
nucleus?

37. The diameter of our disk-shaped galaxy, the Milky Way,
is about 1.0 � 105 lightyears. The distance to Messier
31—which is Andromeda, the spiral galaxy nearest to
the Milky Way—is about 2.0 million lightyears. If a scale
model represents the Milky Way and Andromeda galax-

WEB
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ies as dinner plates 25 cm in diameter, determine the
distance between the two plates.

38. The mean radius of the Earth is 6.37 � 106 m, and that
of the Moon is 1.74 � 108 cm. From these data calcu-
late (a) the ratio of the Earth’s surface area to that of
the Moon and (b) the ratio of the Earth’s volume to
that of the Moon. Recall that the surface area of a
sphere is 4
r 2 and that the volume of a sphere is 

39. One cubic meter (1.00 m3) of aluminum has a mass of
2.70 � 103 kg, and 1.00 m3 of iron has a mass of 
7.86 � 103 kg. Find the radius of a solid aluminum
sphere that balances a solid iron sphere of radius 2.00
cm on an equal-arm balance.

40. Let �A1 represent the density of aluminum and �Fe that
of iron. Find the radius of a solid aluminum sphere that
balances a solid iron sphere of radius rFe on an equal-
arm balance.

Section 1.6 Estimates and Order-of-
Magnitude Calculations

41. Estimate the number of Ping-Pong balls that would fit
into an average-size room (without being crushed). In
your solution state the quantities you measure or esti-
mate and the values you take for them.

42. McDonald’s sells about 250 million packages of French
fries per year. If these fries were placed end to end, esti-
mate how far they would reach.

43. An automobile tire is rated to last for 50 000 miles. Esti-
mate the number of revolutions the tire will make in its
lifetime.

44. Approximately how many raindrops fall on a 1.0-acre
lot during a 1.0-in. rainfall?

45. Grass grows densely everywhere on a quarter-acre plot
of land. What is the order of magnitude of the number
of blades of grass on this plot of land? Explain your rea-
soning. (1 acre � 43 560 ft2.)

46. Suppose that someone offers to give you $1 billion if
you can finish counting it out using only one-dollar
bills. Should you accept this offer? Assume you can
count one bill every second, and be sure to note that
you need about 8 hours a day for sleeping and eating
and that right now you are probably at least 18 years
old.

47. Compute the order of magnitude of the mass of a bath-
tub half full of water and of the mass of a bathtub half
full of pennies. In your solution, list the quantities you
take as data and the value you measure or estimate for
each.

48. Soft drinks are commonly sold in aluminum containers.
Estimate the number of such containers thrown away or
recycled each year by U.S. consumers. Approximately
how many tons of aluminum does this represent?

49. To an order of magnitude, how many piano tuners are
there in New York City? The physicist Enrico Fermi was
famous for asking questions like this on oral Ph.D. qual-

4
3 
 r 3.

ifying examinations and for his own facility in making
order-of-magnitude calculations.

Section 1.7 Significant Figures
50. Determine the number of significant figures in the fol-

lowing measured values: (a) 23 cm (b) 3.589 s
(c) 4.67 � 103 m/s (d) 0.003 2 m.

51. The radius of a circle is measured to be 10.5 	 0.2 m.
Calculate the (a) area and (b) circumference of the cir-
cle and give the uncertainty in each value.

52. Carry out the following arithmetic operations: (a) the
sum of the measured values 756, 37.2, 0.83, and 2.5; 
(b) the product 0.003 2 � 356.3; (c) the product 
5.620 � 
.

53. The radius of a solid sphere is measured to be (6.50 	
0.20) cm, and its mass is measured to be (1.85 	 0.02)
kg. Determine the density of the sphere in kilograms
per cubic meter and the uncertainty in the density.

54. How many significant figures are in the following num-
bers: (a) 78.9 	 0.2, (b) 3.788 � 109, (c) 2.46 � 10�6,
and (d) 0.005 3?

55. A farmer measures the distance around a rectangular
field. The length of the long sides of the rectangle is
found to be 38.44 m, and the length of the short sides is
found to be 19.5 m. What is the total distance around
the field?

56. A sidewalk is to be constructed around a swimming 
pool that measures (10.0 	 0.1) m by (17.0 	 0.1) m. 
If the sidewalk is to measure (1.00 	 0.01) m wide by 
(9.0 	 0.1) cm thick, what volume of concrete is needed,
and what is the approximate uncertainty of this volume?

ADDITIONAL PROBLEMS

57. In a situation where data are known to three significant
digits, we write 6.379 m � 6.38 m and 6.374 m �
6.37 m. When a number ends in 5, we arbitrarily choose
to write 6.375 m � 6.38 m. We could equally well write
6.375 m � 6.37 m, “rounding down” instead of “round-
ing up,” since we would change the number 6.375 by
equal increments in both cases. Now consider an order-
of-magnitude estimate, in which we consider factors
rather than increments. We write 500 m � 103 m be-
cause 500 differs from 100 by a factor of 5 whereas it dif-
fers from 1000 by only a factor of 2. We write 437 m �
103 m and 305 m � 102 m. What distance differs from
100 m and from 1000 m by equal factors, so that we
could equally well choose to represent its order of mag-
nitude either as � 102 m or as � 103 m?

58. When a droplet of oil spreads out on a smooth water
surface, the resulting “oil slick” is approximately one
molecule thick. An oil droplet of mass 9.00 � 10�7 kg
and density 918 kg/m3 spreads out into a circle of ra-
dius 41.8 cm on the water surface. What is the diameter
of an oil molecule?

WEB
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59. The basic function of the carburetor of an automobile
is to “atomize” the gasoline and mix it with air to pro-
mote rapid combustion. As an example, assume that
30.0 cm3 of gasoline is atomized into N spherical
droplets, each with a radius of 2.00 � 10�5 m. What is
the total surface area of these N spherical droplets?

60. In physics it is important to use mathematical approxi-
mations. Demonstrate for yourself that for small angles
(� 20°)

tan � � sin � � � � 
�/180°

where � is in radians and � is in degrees. Use a calcula-
tor to find the largest angle for which tan � may be ap-
proximated by sin � if the error is to be less than 10.0%.

61. A high fountain of water is located at the center of a cir-
cular pool as in Figure P1.61. Not wishing to get his feet
wet, a student walks around the pool and measures its
circumference to be 15.0 m. Next, the student stands at
the edge of the pool and uses a protractor to gauge the
angle of elevation of the top of the fountain to be 55.0°.
How high is the fountain?

64. A crystalline solid consists of atoms stacked up in a re-
peating lattice structure. Consider a crystal as shown in
Figure P1.64a. The atoms reside at the corners of cubes
of side L � 0.200 nm. One piece of evidence for the
regular arrangement of atoms comes from the flat sur-
faces along which a crystal separates, or “cleaves,” when
it is broken. Suppose this crystal cleaves along a face di-
agonal, as shown in Figure P1.64b. Calculate the spac-
ing d between two adjacent atomic planes that separate
when the crystal cleaves.

Figure P1.64

Figure P1.61

55.0˚

62. Assume that an object covers an area A and has a uni-
form height h. If its cross-sectional area is uniform over
its height, then its volume is given by (a) Show
that is dimensionally correct. (b) Show that the
volumes of a cylinder and of a rectangular box can be
written in the form identifying A in each case.
(Note that A, sometimes called the “footprint” of the
object, can have any shape and that the height can be
replaced by average thickness in general.)

63. A useful fact is that there are about 
 � 107 s in one
year. Find the percentage error in this approximation,
where “percentage error” is defined as

� Assumed value � true value �
True value

� 100%

V � Ah,

V � Ah
V � Ah.

L

(b)

(a)

d

65. A child loves to watch as you fill a transparent plastic
bottle with shampoo. Every horizontal cross-section of
the bottle is a circle, but the diameters of the circles all
have different values, so that the bottle is much wider in
some places than in others. You pour in bright green
shampoo with constant volume flow rate 16.5 cm3/s. At
what rate is its level in the bottle rising (a) at a point
where the diameter of the bottle is 6.30 cm and (b) at a
point where the diameter is 1.35 cm?

66. As a child, the educator and national leader Booker T.
Washington was given a spoonful (about 12.0 cm3) of
molasses as a treat. He pretended that the quantity in-
creased when he spread it out to cover uniformly all of
a tin plate (with a diameter of about 23.0 cm). How
thick a layer did it make?

67. Assume there are 100 million passenger cars in the
United States and that the average fuel consumption is
20 mi/gal of gasoline. If the average distance traveled
by each car is 10 000 mi/yr, how much gasoline would
be saved per year if average fuel consumption could be
increased to 25 mi/gal?

68. One cubic centimeter of water has a mass of 1.00 �
10�3 kg. (a) Determine the mass of 1.00 m3 of water.
(b) Assuming biological substances are 98% water, esti-



1.1 False. Dimensional analysis gives the units of the propor-
tionality constant but provides no information about its
numerical value. For example, experiments show that
doubling the radius of a solid sphere increases its mass
8-fold, and tripling the radius increases the mass 27-fold.
Therefore, its mass is proportional to the cube of its ra-
dius. Because we can write Dimen-
sional analysis shows that the proportionality constant k
must have units kg/m3, but to determine its numerical
value requires either experimental data or geometrical
reasoning.

m � kr 3.m   �    r 3,

22 C H A P T E R  1 Physics and Measurements

mate the mass of a cell that has a diameter of 1.0 �m, a
human kidney, and a fly. Assume that a kidney is
roughly a sphere with a radius of 4.0 cm and that a 
fly is roughly a cylinder 4.0 mm long and 2.0 mm in 
diameter.

69. The distance from the Sun to the nearest star is 4 �
1016 m. The Milky Way galaxy is roughly a disk of diame-
ter � 1021 m and thickness � 1019 m. Find the order of
magnitude of the number of stars in the Milky Way. As-
sume the distance between the Sun and the
nearest star is typical.

70. The data in the following table represent measurements
of the masses and dimensions of solid cylinders of alu-

4 � 1016-m

minum, copper, brass, tin, and iron. Use these data to
calculate the densities of these substances. Compare
your results for aluminum, copper, and iron with those
given in Table 1.5.

ANSWERS TO QUICK QUIZZES

1.2 Reporting all these digits implies you have determined
the location of the center of the chair’s seat to the near-
est 	 0.000 000 000 1 m. This roughly corresponds to
being able to count the atoms in your meter stick be-
cause each of them is about that size! It would probably
be better to record the measurement as 1.044 m: this in-
dicates that you know the position to the nearest mil-
limeter, assuming the meter stick has millimeter mark-
ings on its scale.

Diameter
Substance Mass (g) (cm) Length (cm)

Aluminum 51.5 2.52 3.75
Copper 56.3 1.23 5.06
Brass 94.4 1.54 5.69
Tin 69.1 1.75 3.74
Iron 216.1 1.89 9.77
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In a moment the arresting cable will be
pulled taut, and the 140-mi/h landing of
this F/A-18 Hornet on the aircraft carrier
USS Nimitz will be brought to a sudden
conclusion. The pilot cuts power to the
engine, and the plane is stopped in less
than 2 s. If the cable had not been suc-
cessfully engaged, the pilot would have
had to take off quickly before reaching
the end of the flight deck. Can the motion
of the plane be described quantitatively
in a way that is useful to ship and aircraft
designers and to pilots learning to land
on a “postage stamp?” (Courtesy of the
USS Nimitz/U.S. Navy)

2.1 Displacement, Velocity, and Speed

2.2 Instantaneous Velocity and Speed

2.3 Acceleration

2.4 Motion Diagrams

2.5 One-Dimensional Motion with
Constant Acceleration

2.6 Freely Falling Objects

2.7 (Optional) Kinematic Equations
Derived from Calculus

GOAL Problem-Solving Steps

C h a p t e r  O u t l i n e

P U Z Z L E RP U Z Z L E R
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s a first step in studying classical mechanics, we describe motion in terms of
space and time while ignoring the agents that caused that motion. This por-
tion of classical mechanics is called kinematics. (The word kinematics has the

same root as cinema. Can you see why?) In this chapter we consider only motion in
one dimension. We first define displacement, velocity, and acceleration. Then, us-
ing these concepts, we study the motion of objects traveling in one dimension with
a constant acceleration.

From everyday experience we recognize that motion represents a continuous
change in the position of an object. In physics we are concerned with three types
of motion: translational, rotational, and vibrational. A car moving down a highway
is an example of translational motion, the Earth’s spin on its axis is an example of
rotational motion, and the back-and-forth movement of a pendulum is an example
of vibrational motion. In this and the next few chapters, we are concerned only
with translational motion. (Later in the book we shall discuss rotational and vibra-
tional motions.)

In our study of translational motion, we describe the moving object as a parti-
cle regardless of its size. In general, a particle is a point-like mass having infini-
tesimal size. For example, if we wish to describe the motion of the Earth around
the Sun, we can treat the Earth as a particle and obtain reasonably accurate data
about its orbit. This approximation is justified because the radius of the Earth’s or-
bit is large compared with the dimensions of the Earth and the Sun. As an exam-
ple on a much smaller scale, it is possible to explain the pressure exerted by a gas
on the walls of a container by treating the gas molecules as particles. 

DISPLACEMENT, VELOCITY, AND SPEED
The motion of a particle is completely known if the particle’s position in space is
known at all times. Consider a car moving back and forth along the x axis, as shown
in Figure 2.1a. When we begin collecting position data, the car is 30 m to the right
of a road sign. (Let us assume that all data in this example are known to two signifi-
cant figures. To convey this information, we should report the initial position as 
3.0 � 101 m. We have written this value in this simpler form to make the discussion
easier to follow.) We start our clock and once every 10 s note the car’s location rela-
tive to the sign. As you can see from Table 2.1, the car is moving to the right (which
we have defined as the positive direction) during the first 10 s of motion, from posi-
tion � to position �. The position values now begin to decrease, however, because
the car is backing up from position � through position �. In fact, at �, 30 s after
we start measuring, the car is alongside the sign we are using as our origin of coordi-
nates. It continues moving to the left and is more than 50 m to the left of the sign
when we stop recording information after our sixth data point. A graph of this infor-
mation is presented in Figure 2.1b. Such a plot is called a position–time graph.

If a particle is moving, we can easily determine its change in position. The dis-
placement of a particle is defined as its change in position. As it moves from
an initial position xi to a final position xf , its displacement is given by We
use the Greek letter delta (�) to denote the change in a quantity. Therefore, we
write the displacement, or change in position, of the particle as

(2.1)

From this definition we see that �x is positive if xf is greater than xi and negative if
xf is less than xi . 

�x � x f � x i

x f � x i .

2.1

A

TABLE 2.1
Position of the Car at
Various Times

Position t(s) x(m)

� 0 30
� 10 52
� 20 38
� 30 0
� 40 � 37
� 50 � 53
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A very easy mistake to make is not to recognize the difference between dis-
placement and distance traveled (Fig. 2.2). A baseball player hitting a home run
travels a distance of 360 ft in the trip around the bases. However, the player’s dis-
placement is zero because his final and initial positions are identical.

Displacement is an example of a vector quantity. Many other physical quanti-
ties, including velocity and acceleration, also are vectors. In general, a vector is a
physical quantity that requires the specification of both direction and mag-
nitude. By contrast, a scalar is a quantity that has magnitude and no direc-
tion. In this chapter, we use plus and minus signs to indicate vector direction. We
can do this because the chapter deals with one-dimensional motion only; this
means that any object we study can be moving only along a straight line. For exam-
ple, for horizontal motion, let us arbitrarily specify to the right as being the posi-
tive direction. It follows that any object always moving to the right undergoes a
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Figure 2.1 (a) A car moves back
and forth along a straight line
taken to be the x axis. Because we
are interested only in the car’s
translational motion, we can treat it
as a particle. (b) Position–time
graph for the motion of the 
“particle.”



26 C H A P T E R  2 Motion in One Dimension

positive displacement ��x, and any object moving to the left undergoes a negative
displacement ��x. We shall treat vectors in greater detail in Chapter 3. 

There is one very important point that has not yet been mentioned. Note that
the graph in Figure 2.1b does not consist of just six data points but is actually a
smooth curve. The graph contains information about the entire 50-s interval during
which we watched the car move. It is much easier to see changes in position from
the graph than from a verbal description or even a table of numbers. For example, it
is clear that the car was covering more ground during the middle of the 50-s interval
than at the end. Between positions � and �, the car traveled almost 40 m, but dur-
ing the last 10 s, between positions � and �, it moved less than half that far. A com-
mon way of comparing these different motions is to divide the displacement �x that
occurs between two clock readings by the length of that particular time interval �t.
This turns out to be a very useful ratio, one that we shall use many times. For conve-
nience, the ratio has been given a special name—average velocity. The average ve-
locity of a particle is defined as the particle’s displacement �x divided by
the time interval �t during which that displacement occurred:

(2.2)

where the subscript x indicates motion along the x axis. From this definition we
see that average velocity has dimensions of length divided by time (L/T)—meters
per second in SI units.

Although the distance traveled for any motion is always positive, the average ve-
locity of a particle moving in one dimension can be positive or negative, depending
on the sign of the displacement. (The time interval �t is always positive.) If the co-
ordinate of the particle increases in time (that is, if then �x is positive and

is positive. This case corresponds to motion in the positive x direction.
If the coordinate decreases in time (that is, if then �x is negative and
hence is negative. This case corresponds to motion in the negative x direction.vx

x f � x i),
vx � �x/�t

x f � x i),

vx � 
�x
�t

vx

Figure 2.2 Bird’s-eye view of a baseball
diamond. A batter who hits a home run
travels 360 ft as he rounds the bases, but his
displacement for the round trip is zero.
(Mark C. Burnett/Photo Researchers, Inc.)

Average velocity

3.2
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We can interpret average velocity geometrically by drawing a straight line be-
tween any two points on the position–time graph in Figure 2.1b. This line forms
the hypotenuse of a right triangle of height �x and base �t. The slope of this line
is the ratio �x/�t. For example, the line between positions � and � has a slope
equal to the average velocity of the car between those two times, (52 m � 30 m)/
(10 s � 0) � 2.2 m/s.

In everyday usage, the terms speed and velocity are interchangeable. In physics,
however, there is a clear distinction between these two quantities. Consider a
marathon runner who runs more than 40 km, yet ends up at his starting point. His
average velocity is zero! Nonetheless, we need to be able to quantify how fast he
was running. A slightly different ratio accomplishes this for us. The average
speed of a particle, a scalar quantity, is defined as the total distance trav-
eled divided by the total time it takes to travel that distance:

The SI unit of average speed is the same as the unit of average velocity: meters
per second. However, unlike average velocity, average speed has no direction and
hence carries no algebraic sign. 

Knowledge of the average speed of a particle tells us nothing about the details
of the trip. For example, suppose it takes you 8.0 h to travel 280 km in your car.
The average speed for your trip is 35 km/h. However, you most likely traveled at
various speeds during the trip, and the average speed of 35 km/h could result
from an infinite number of possible speed values.

Average speed �
total distance

total time
Average speed

magnitude as the supplied data. A quick look at Figure 2.1a
indicates that this is the correct answer.

It is difficult to estimate the average velocity without com-
pleting the calculation, but we expect the units to be meters
per second. Because the car ends up to the left of where we
started taking data, we know the average velocity must be
negative. From Equation 2.2,

We find the car’s average speed for this trip by adding the
distances traveled and dividing by the total time: 

2.5 m/sAverage speed �
22 m � 52 m � 53 m

50 s
�

�1.7 m/s�
�53 m � 30 m

50 s � 0 s
�

�83 m
50 s

�

vx �
�x
�t

�
x f � x i

tf � ti
�

xF � xA

tF � tA

Find the displacement, average velocity, and average speed of
the car in Figure 2.1a between positions � and �.

Solution The units of displacement must be meters, and
the numerical result should be of the same order of magni-
tude as the given position data (which means probably not 10
or 100 times bigger or smaller). From the position–time
graph given in Figure 2.1b, note that m at s
and that m at s. Using these values along
with the definition of displacement, Equation 2.1, we find
that

This result means that the car ends up 83 m in the negative
direction (to the left, in this case) from where it started. This
number has the correct units and is of the same order of

�83 m�x � xF � xA � �53 m � 30 m �

tF � 50xF � �53
tA � 0xA � 30

INSTANTANEOUS VELOCITY AND SPEED
Often we need to know the velocity of a particle at a particular instant in time,
rather than over a finite time interval. For example, even though you might want
to calculate your average velocity during a long automobile trip, you would be es-
pecially interested in knowing your velocity at the instant you noticed the police

2.2

Calculating the Variables of MotionEXAMPLE 2.1
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car parked alongside the road in front of you. In other words, you would like to be
able to specify your velocity just as precisely as you can specify your position by not-
ing what is happening at a specific clock reading—that is, at some specific instant.
It may not be immediately obvious how to do this. What does it mean to talk about
how fast something is moving if we “freeze time” and talk only about an individual
instant? This is a subtle point not thoroughly understood until the late 1600s. At
that time, with the invention of calculus, scientists began to understand how to de-
scribe an object’s motion at any moment in time.

To see how this is done, consider Figure 2.3a. We have already discussed the
average velocity for the interval during which the car moved from position � to
position � (given by the slope of the dark blue line) and for the interval during
which it moved from � to � (represented by the slope of the light blue line).
Which of these two lines do you think is a closer approximation of the initial veloc-
ity of the car? The car starts out by moving to the right, which we defined to be the
positive direction. Therefore, being positive, the value of the average velocity dur-
ing the � to � interval is probably closer to the initial value than is the value of
the average velocity during the � to � interval, which we determined to be nega-
tive in Example 2.1. Now imagine that we start with the dark blue line and slide
point � to the left along the curve, toward point �, as in Figure 2.3b. The line be-
tween the points becomes steeper and steeper, and as the two points get extremely
close together, the line becomes a tangent line to the curve, indicated by the green
line on the graph. The slope of this tangent line represents the velocity of the car
at the moment we started taking data, at point �. What we have done is determine
the instantaneous velocity at that moment. In other words, the instantaneous veloc-
ity vx equals the limiting value of the ratio �x/�t as �t approaches zero:1

(2.3)vx � lim
�t:0

 
�x
�t3.3

Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of 
the upper left -hand corner of the graph shows how the blue line between positions � and �
approaches the green tangent line as point � gets closer to point �.

Definition of instantaneous
velocity
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1 Note that the displacement �x also approaches zero as �t approaches zero. As �x and �t become
smaller and smaller, the ratio �x/�t approaches a value equal to the slope of the line tangent to the 
x -versus-t curve.
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In calculus notation, this limit is called the derivative of x with respect to t, written
dx/dt:

(2.4)

The instantaneous velocity can be positive, negative, or zero. When the slope
of the position–time graph is positive, such as at any time during the first 10 s in
Figure 2.3, vx is positive. After point �, vx is negative because the slope is negative.
At the peak, the slope and the instantaneous velocity are zero.

From here on, we use the word velocity to designate instantaneous velocity.
When it is average velocity we are interested in, we always use the adjective average.

The instantaneous speed of a particle is defined as the magnitude of its
velocity. As with average speed, instantaneous speed has no direction associated
with it and hence carries no algebraic sign. For example, if one particle has a
velocity of � 25 m/s along a given line and another particle has a velocity of 
� 25 m/s along the same line, both have a speed2 of 25 m/s.

vx � lim
�t:0

 
�x
�t

�
dx
dt

Figure 2.4 Position–time graph for a particle having an x coordi-
nate that varies in time according to the expression x � �4t � 2t2.

Average and Instantaneous VelocityEXAMPLE 2.2

These displacements can also be read directly from the posi-
tion–time graph.

�8 m �

  � [�4(3) � 2(3)2] � [�4(1) � 2(1)2]

A particle moves along the x axis. Its x coordinate varies with
time according to the expression where x is in
meters and t is in seconds.3 The position–time graph for this
motion is shown in Figure 2.4. Note that the particle moves in
the negative x direction for the first second of motion, is at rest
at the moment t � 1 s, and moves in the positive x direction
for (a) Determine the displacement of the particle in
the time intervals t � 0 to t � 1 s and t � 1 s to t � 3 s.

Solution During the first time interval, we have a negative
slope and hence a negative velocity. Thus, we know that the
displacement between � and � must be a negative number
having units of meters. Similarly, we expect the displacement
between � and � to be positive.

In the first time interval, we set and
Using Equation 2.1, with we ob-

tain for the first displacement

To calculate the displacement during the second time in-
terval, we set and 

�xB:D � x f � x i � xD � xB 

tf � tD � 3 s:ti � tB � 1 s

�2 m  �

 � [�4(1) � 2(1)2] � [�4(0) � 2(0)2]

�xA:B � x f � x i � xB � xA 

x � �4t � 2t2,tf � tB � 1 s.
ti � tA � 0

t � 1 s.

x � �4t � 2t2,

2 As with velocity, we drop the adjective for instantaneous speed: “Speed” means instantaneous speed.
3 Simply to make it easier to read, we write the empirical equation as rather than as

When an equation summarizes measurements, consider its coef-
ficients to have as many significant digits as other data quoted in a problem. Consider its coefficients to
have the units required for dimensional consistency. When we start our clocks at t � 0 s, we usually do
not mean to limit the precision to a single digit. Consider any zero value in this book to have as many
significant figures as you need.

x � (�4.00 m/s)t � (2.00 m/s2)t 2.00.
x � �4t � 2t2
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(2.5)

As with velocity, when the motion being analyzed is one-dimensional, we can
use positive and negative signs to indicate the direction of the acceleration. Be-
cause the dimensions of velocity are L/T and the dimension of time is T, accelera-

a x �
�vx

�t
�

vx f � vxi

tf � ti

The average acceleration of the particle is defined as the change in velocity �vx
divided by the time interval �t during which that change occurred:

ACCELERATION
In the last example, we worked with a situation in which the velocity of a particle
changed while the particle was moving. This is an extremely common occurrence.
(How constant is your velocity as you ride a city bus?) It is easy to quantify changes
in velocity as a function of time in exactly the same way we quantify changes in po-
sition as a function of time. When the velocity of a particle changes with time, the
particle is said to be accelerating. For example, the velocity of a car increases when
you step on the gas and decreases when you apply the brakes. However, we need a
better definition of acceleration than this.

Suppose a particle moving along the x axis has a velocity vxi at time ti and a ve-
locity vxf at time tf , as in Figure 2.5a.

2.3

Figure 2.5 (a) A “particle” mov-
ing along the x axis from � to �
has velocity vxi at t � ti and velocity
vxf at t � tf . (b) Velocity– time
graph for the particle moving in a
straight line. The slope of the blue
straight line connecting � and �
is the average acceleration in the
time interval �t � tf � ti .

Average acceleration

These values agree with the slopes of the lines joining these
points in Figure 2.4.

(c) Find the instantaneous velocity of the particle at t �
2.5 s.

Solution Certainly we can guess that this instantaneous ve-
locity must be of the same order of magnitude as our previ-
ous results, that is, around 4 m/s. Examining the graph, we
see that the slope of the tangent at position � is greater than
the slope of the blue line connecting points � and �. Thus,
we expect the answer to be greater than 4 m/s. By measuring
the slope of the position–time graph at t � 2.5 s, we find that

vx � �6 m/s

(b) Calculate the average velocity during these two time
intervals.

Solution In the first time interval, 
Therefore, using Equation 2.2 and the displacement

calculated in (a), we find that

In the second time interval, therefore,

�4 m/svx(B:D) �
�xB:D

�t
�

8 m
2 s

�

�t � 2 s;

�2 m/svx(A:B) �
�xA:B

�t
�

�2 m
1 s

�

tA � 1 s.
�t � tf � ti � t B �

�

�

�

t ft i

vxi

vxf

vx a–x
 =

∆t

∆vx

∆vx
∆t

t

(b)

ti tf

(a)

x

v = vxi v = vxf

�



2.3 Acceleration 31

tion has dimensions of length divided by time squared, or L/T2. The SI unit of ac-
celeration is meters per second squared (m/s2). It might be easier to interpret
these units if you think of them as meters per second per second. For example,
suppose an object has an acceleration of 2 m/s2. You should form a mental 
image of the object having a velocity that is along a straight line and is increasing
by 2 m/s during every 1-s interval. If the object starts from rest, you should be 
able to picture it moving at a velocity of � 2 m/s after 1 s, at � 4 m/s after 2 s, and
so on.

In some situations, the value of the average acceleration may be different over
different time intervals. It is therefore useful to define the instantaneous acceleration
as the limit of the average acceleration as �t approaches zero. This concept is anal-
ogous to the definition of instantaneous velocity discussed in the previous section.
If we imagine that point � is brought closer and closer to point � in Figure 2.5a
and take the limit of �vx/�t as �t approaches zero, we obtain the instantaneous
acceleration:

(2.6)

That is, the instantaneous acceleration equals the derivative of the velocity
with respect to time, which by definition is the slope of the velocity– time graph
(Fig. 2.5b). Thus, we see that just as the velocity of a moving particle is the slope of
the particle’s x -t graph, the acceleration of a particle is the slope of the particle’s
vx -t graph. One can interpret the derivative of the velocity with respect to time as the
time rate of change of velocity. If ax is positive, then the acceleration is in the positive
x direction; if ax is negative, then the acceleration is in the negative x direction.

From now on we shall use the term acceleration to mean instantaneous accel-
eration. When we mean average acceleration, we shall always use the adjective
average.

Because the acceleration can also be written

(2.7)

That is, in one-dimensional motion, the acceleration equals the second derivative of
x with respect to time.

Figure 2.6 illustrates how an acceleration–time graph is related to a
velocity– time graph. The acceleration at any time is the slope of the velocity– time
graph at that time. Positive values of acceleration correspond to those points in
Figure 2.6a where the velocity is increasing in the positive x direction. The acceler-

ax �
dvx

dt
�

d
dt �

dx
dt � �

d2x
dt2

vx � dx/dt,

ax � lim
�t:0

 
�vx

�t
�

dvx

dt
Instantaneous acceleration

tA
t

tB tC

(a)

t

(b)

vx
ax

tA tB

tC

Figure 2.6 Instantaneous accel-
eration can be obtained from the
vx -t graph. (a) The velocity– time
graph for some motion. (b) The
acceleration–time graph for the
same motion. The acceleration
given by the ax -t graph for any
value of t equals the slope of the
line tangent to the vx -t graph at the
same value of t.
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ation reaches a maximum at time tA , when the slope of the velocity– time graph is
a maximum. The acceleration then goes to zero at time tB , when the velocity is a
maximum (that is, when the slope of the vx -t graph is zero). The acceleration is
negative when the velocity is decreasing in the positive x direction, and it reaches
its most negative value at time tC .

Average and Instantaneous AccelerationEXAMPLE 2.4
Solution Figure 2.8 is a vx -t graph that was created from
the velocity versus time expression given in the problem state-
ment. Because the slope of the entire vx -t curve is negative,
we expect the acceleration to be negative.

The velocity of a particle moving along the x axis varies in
time according to the expression m/s, where
t is in seconds. (a) Find the average acceleration in the time
interval t � 0 to t � 2.0 s.

vx � (40 � 5t2)

Figure 2.7 (a) Position–time graph for an object moving along
the x axis. (b) The velocity– time graph for the object is obtained by
measuring the slope of the position–time graph at each instant. 
(c) The acceleration–time graph for the object is obtained by mea-
suring the slope of the velocity– time graph at each instant.

Graphical Relationships Between x, vx , and axCONCEPTUAL EXAMPLE 2.3
The position of an object moving along the x axis varies with
time as in Figure 2.7a. Graph the velocity versus time and the
acceleration versus time for the object.

Solution The velocity at any instant is the slope of the tan-
gent to the x -t graph at that instant. Between t � 0 and 
t � tA , the slope of the x -t graph increases uniformly, and so
the velocity increases linearly, as shown in Figure 2.7b. Be-
tween tA and tB , the slope of the x -t graph is constant, and so
the velocity remains constant. At tD , the slope of the x -t graph
is zero, so the velocity is zero at that instant. Between tD and
tE , the slope of the x -t graph and thus the velocity are nega-
tive and decrease uniformly in this interval. In the interval tE

to tF , the slope of the x -t graph is still negative, and at tF it
goes to zero. Finally, after tF , the slope of the x -t graph is
zero, meaning that the object is at rest for 

The acceleration at any instant is the slope of the tangent
to the vx -t graph at that instant. The graph of acceleration
versus time for this object is shown in Figure 2.7c. The accel-
eration is constant and positive between 0 and tA, where the
slope of the vx -t graph is positive. It is zero between tA and tB

and for because the slope of the vx -t graph is zero at
these times. It is negative between tB and tE because the slope
of the vx -t graph is negative during this interval.

t � tF

t � tF .

(a)

(b)

(c)

x

t Ft Et Dt Ct Bt A

t Ft Et Dt Ct B

t
t AO

t
O

t
O t Ft Et Bt A

v x

a x

Make a velocity– time graph for the car in Figure 2.1a and use your graph to determine
whether the car ever exceeds the speed limit posted on the road sign (30 km/h).

Quick Quiz 2.1
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So far we have evaluated the derivatives of a function by starting with the defi-
nition of the function and then taking the limit of a specific ratio. Those of you fa-
miliar with calculus should recognize that there are specific rules for taking deriva-
tives. These rules, which are listed in Appendix B.6, enable us to evaluate
derivatives quickly. For instance, one rule tells us that the derivative of any con-
stant is zero. As another example, suppose x is proportional to some power of t,
such as in the expression

where A and n are constants. (This is a very common functional form.) The deriva-
tive of x with respect to t is

Applying this rule to Example 2.4, in which vx � 40 � 5t 2, we find that 
dvx/dt � �10t.

ax �

dx
dt

� nAtn�1

x � Atn

�

The negative sign is consistent with our expectations—
namely, that the average acceleration, which is represented by
the slope of the line (not shown) joining the initial and final
points on the velocity– time graph, is negative.

(b) Determine the acceleration at t � 2.0 s.

Solution The velocity at any time t is 
and the velocity at any later time t � �t is

Therefore, the change in velocity over the time interval �t is

Dividing this expression by �t and taking the limit of the re-
sult as �t approaches zero gives the acceleration at any time t:

Therefore, at t � 2.0 s,

What we have done by comparing the average acceleration
during the interval between � and � with the
instantaneous value at � is compare the slope of
the line (not shown) joining � and � with the slope of the
tangent at �.

Note that the acceleration is not constant in this example.
Situations involving constant acceleration are treated in Sec-
tion 2.5.

(�20 m/s2)
(�10 m/s2)

�20 m/s2ax � (�10)(2.0) m/s2 �

ax � lim
�t:0

 
�vx

�t
� lim

�t:0
 (�10t � 5�t) � �10t  m/s2

�vx � vxf � vxi � [�10t �t � 5(�t)2] m/s

vxf � 40 � 5(t � �t)2 � 40 � 5t2 � 10t �t � 5(�t)2

5t2) m/s,
vxi � (40 �

�10 m/s2

a x �
vxf � vxi

tf � ti
�

vxB � vxA

tB � tA
�

(20 � 40) m/s

(2.0 � 0) s

We find the velocities at ti � tA � 0 and tf � tB � 2.0 s by
substituting these values of t into the expression for the ve-
locity:

Therefore, the average acceleration in the specified time in-
terval is�t � tB � tA � 2.0 s

vxB � (40 � 5tB 

2) m/s � [40 � 5(2.0) 

2] m/s � �20 m/s

vxA � (40 � 5tA 

2) m/s � [40 � 5(0) 

2] m/s � �40 m/s

Figure 2.8 The velocity– time graph for a particle moving along
the x axis according to the expression m/s. The ac-
celeration at t � 2 s is equal to the slope of the blue tangent line at
that time.

vx � (40 � 5t2)
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MOTION DIAGRAMS
The concepts of velocity and acceleration are often confused with each other, but
in fact they are quite different quantities. It is instructive to use motion diagrams
to describe the velocity and acceleration while an object is in motion. In order not
to confuse these two vector quantities, for which both magnitude and direction
are important, we use red for velocity vectors and violet for acceleration vectors, as
shown in Figure 2.9. The vectors are sketched at several instants during the mo-
tion of the object, and the time intervals between adjacent positions are assumed
to be equal. This illustration represents three sets of strobe photographs of a car
moving from left to right along a straight roadway. The time intervals between
flashes are equal in each diagram. 

In Figure 2.9a, the images of the car are equally spaced, showing us that the
car moves the same distance in each time interval. Thus, the car moves with con-
stant positive velocity and has zero acceleration.

In Figure 2.9b, the images become farther apart as time progresses. In this
case, the velocity vector increases in time because the car’s displacement between
adjacent positions increases in time. The car is moving with a positive velocity and a
positive acceleration.

In Figure 2.9c, we can tell that the car slows as it moves to the right because its
displacement between adjacent images decreases with time. In this case, the car
moves to the right with a constant negative acceleration. The velocity vector de-
creases in time and eventually reaches zero. From this diagram we see that the ac-
celeration and velocity vectors are not in the same direction. The car is moving
with a positive velocity but with a negative acceleration.

You should be able to construct motion diagrams for a car that moves initially
to the left with a constant positive or negative acceleration. 

2.4

(a)

v

(b)

a

v

(c)

v

a

Figure 2.9 (a) Motion diagram for a car moving at constant velocity (zero acceleration). 
(b) Motion diagram for a car whose constant acceleration is in the direction of its velocity. The
velocity vector at each instant is indicated by a red arrow, and the constant acceleration by a vio-
let arrow. (c) Motion diagram for a car whose constant acceleration is in the direction opposite the
velocity at each instant.
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(a) If a car is traveling eastward, can its acceleration be westward? (b) If a car is slowing
down, can its acceleration be positive?

ONE-DIMENSIONAL MOTION WITH
CONSTANT ACCELERATION

If the acceleration of a particle varies in time, its motion can be complex and diffi-
cult to analyze. However, a very common and simple type of one-dimensional mo-
tion is that in which the acceleration is constant. When this is the case, the average
acceleration over any time interval equals the instantaneous acceleration at any in-
stant within the interval, and the velocity changes at the same rate throughout the
motion.

If we replace by ax in Equation 2.5 and take and tf to be any later time
t, we find that

or

(for constant ax) (2.8)

This powerful expression enables us to determine an object’s velocity at any time 
t if we know the object’s initial velocity and its (constant) acceleration. A
velocity– time graph for this constant-acceleration motion is shown in Figure
2.10a. The graph is a straight line, the (constant) slope of which is the acceleration
ax ; this is consistent with the fact that is a constant. Note that the slope
is positive; this indicates a positive acceleration. If the acceleration were negative,
then the slope of the line in Figure 2.10a would be negative.

When the acceleration is constant, the graph of acceleration versus time (Fig.
2.10b) is a straight line having a slope of zero.

Describe the meaning of each term in Equation 2.8.

Quick Quiz 2.3

ax � dvx/dt

vx f � vxi � axt

ax �
vx f � vxi

t

ti � 0a x

2.5

Quick Quiz 2.2

Figure 2.10 An object moving along the x axis with constant acceleration ax . (a) The
velocity– time graph. (b) The acceleration–time graph. (c) The position–time graph.

(a)

vxi

0

vxf

t

vxi

axt

t

(c)

x

0
t

xi

Slope = vxi

t

Slope = vxf

(b)

0
t

Slope = 0

vx ax

ax

Slope = ax

Velocity as a function of time
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Because velocity at constant acceleration varies linearly in time according to
Equation 2.8, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity vxi and the final velocity vxf :

(for constant ax) (2.9)

Note that this expression for average velocity applies only in situations in which the
acceleration is constant.

We can now use Equations 2.1, 2.2, and 2.9 to obtain the displacement of any
object as a function of time. Recalling that �x in Equation 2.2 represents xf � xi ,
and now using t in place of �t (because we take ti � 0), we can say

(for constant ax) (2.10)

We can obtain another useful expression for displacement at constant acceler-
ation by substituting Equation 2.8 into Equation 2.10:

(2.11)

The position–time graph for motion at constant (positive) acceleration shown in
Figure 2.10c is obtained from Equation 2.11. Note that the curve is a parabola. The
slope of the tangent line to this curve at equals the initial velocity vxi , and
the slope of the tangent line at any later time t equals the velocity at that time, vxf .

We can check the validity of Equation 2.11 by moving the xi term to the right-
hand side of the equation and differentiating the equation with respect to time: 

Finally, we can obtain an expression for the final velocity that does not contain
a time interval by substituting the value of t from Equation 2.8 into Equation 2.10:

(for constant ax) (2.12)

For motion at zero acceleration, we see from Equations 2.8 and 2.11 that 

That is, when acceleration is zero, velocity is constant and displacement changes
linearly with time.

In Figure 2.11, match each vx -t graph with the ax -t graph that best describes the motion.

Equations 2.8 through 2.12 are kinematic expressions that may be used to
solve any problem involving one-dimensional motion at constant accelera-

Quick Quiz 2.4

vx f � vxi � vx
x f � x i � vxt �  when ax � 0

vx f  

2 � vxi  

2 � 2ax(x f � x i)

x f � x i �
1
2

(vxi � vxf)� vx f � vxi

ax
� �

vx f  

2 � vxi  

2

2ax
    

vx f �
dxf

dt
�

d

dt
 �x i � vxi t �

1
2

axt2� � vxi � axt

t � ti � 0

x f � x i � vxit � 1
2axt2 

x f � x i � 1
2(vxi � vxi � axt)t

xf � xi � vxt � 1
2(vxi � vx f)t

vx �
vxi � vx f

2

Figure 2.11 Parts (a), (b), and
(c) are vx -t graphs of objects in
one-dimensional motion. The pos-
sible accelerations of each object as
a function of time are shown in
scrambled order in (d), (e), and
(f).
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tion. Keep in mind that these relationships were derived from the definitions of
velocity and acceleration, together with some simple algebraic manipulations and
the requirement that the acceleration be constant.

The four kinematic equations used most often are listed in Table 2.2 for con-
venience. The choice of which equation you use in a given situation depends on
what you know beforehand. Sometimes it is necessary to use two of these equations
to solve for two unknowns. For example, suppose initial velocity vxi and accelera-
tion ax are given. You can then find (1) the velocity after an interval t has elapsed,
using and (2) the displacement after an interval t has elapsed, us-
ing You should recognize that the quantities that vary dur-
ing the motion are velocity, displacement, and time.

You will get a great deal of practice in the use of these equations by solving a
number of exercises and problems. Many times you will discover that more than
one method can be used to obtain a solution. Remember that these equations of
kinematics cannot be used in a situation in which the acceleration varies with time.
They can be used only when the acceleration is constant.

x f � x i � vxit � 1
2axt2.

vx f � vxi � axt,

TABLE 2.2 Kinematic Equations for Motion in a Straight Line 
Under Constant Acceleration

Equation Information Given by Equation

vxf � vxi � axt Velocity as a function of time
xf � xi � (vxi � vxf)t Displacement as a function of velocity and time
xf � xi � vxit � axt 2 Displacement as a function of time
vxf

2 � vxi
2 � 2ax(xf � xi) Velocity as a function of displacement

Note: Motion is along the x axis.

1
2

1
2

The Velocity of Different ObjectsCONCEPTUAL EXAMPLE 2.5
fined as �x/�t.) There is one point at which the instanta-
neous velocity is zero—at the top of the motion.

(b) The car’s average velocity cannot be evaluated unambigu-
ously with the information given, but it must be some value
between 0 and 100 m/s. Because the car will have every in-
stantaneous velocity between 0 and 100 m/s at some time
during the interval, there must be some instant at which the
instantaneous velocity is equal to the average velocity.

(c) Because the spacecraft’s instantaneous velocity is con-
stant, its instantaneous velocity at any time and its average ve-
locity over any time interval are the same.

Consider the following one-dimensional motions: (a) A ball
thrown directly upward rises to a highest point and falls back
into the thrower’s hand. (b) A race car starts from rest and
speeds up to 100 m/s. (c) A spacecraft drifts through space at
constant velocity. Are there any points in the motion of these
objects at which the instantaneous velocity is the same as the
average velocity over the entire motion? If so, identify the
point(s).

Solution (a) The average velocity for the thrown ball is
zero because the ball returns to the starting point; thus its 
displacement is zero. (Remember that average velocity is de-

Entering the Traffic FlowEXAMPLE 2.6
of ax , but that value is hard to guess directly. The other three
variables involved in kinematics are position, velocity, and
time. Velocity is probably the easiest one to approximate. Let
us assume a final velocity of 100 km/h, so that you can merge
with traffic. We multiply this value by 1 000 to convert kilome-

(a) Estimate your average acceleration as you drive up the en-
trance ramp to an interstate highway.

Solution This problem involves more than our usual
amount of estimating! We are trying to come up with a value
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yields results that are not too different from those derived
from careful measurements.

(b) How far did you go during the first half of the time in-
terval during which you accelerated?

Solution We can calculate the distance traveled during
the first 5 s from Equation 2.11:

This result indicates that if you had not accelerated, your ini-
tial velocity of 10 m/s would have resulted in a 50-m move-
ment up the ramp during the first 5 s. The additional 25 m is
the result of your increasing velocity during that interval.

Do not be afraid to attempt making educated guesses and
doing some fairly drastic number rounding to simplify mental
calculations. Physicists engage in this type of thought analysis
all the time.

75 m� 50 m � 25 m �

x f � x i � vxit � 1
2axt2 � (10 m/s)(5 s) � 1

2(2 m/s2)(5 s)2

ters to meters and then divide by 3 600 to convert hours to
seconds. These two calculations together are roughly equiva-
lent to dividing by 3. In fact, let us just say that the final veloc-
ity is m/s. (Remember, you can get away with this
type of approximation and with dropping digits when per-
forming mental calculations. If you were starting with British
units, you could approximate 1 mi/h as roughly 
0.5 m/s and continue from there.) 

Now we assume that you started up the ramp at about one-
third your final velocity, so that m/s. Finally, we as-
sume that it takes about 10 s to get from vxi to vxf , basing this
guess on our previous experience in automobiles. We can
then find the acceleration, using Equation 2.8:

Granted, we made many approximations along the way, but
this type of mental effort can be surprisingly useful and often

2 m/s2ax �
vxf � vxi

t
�

30 m/s � 10 m/s
10 s

�

vxi � 10

vx f � 30

Carrier LandingEXAMPLE 2.7
(b) What is the displacement of the plane while it is stop-

ping?

Solution We can now use any of the other three equations
in Table 2.2 to solve for the displacement. Let us choose
Equation 2.10:

If the plane travels much farther than this, it might fall into
the ocean. Although the idea of using arresting cables to en-
able planes to land safely on ships originated at about the
time of the First World War, the cables are still a vital part of
the operation of modern aircraft carriers.

63 mx f � x i � 1
2(vxi � vx f)t � 1

2(63 m/s � 0)(2.0 s) �

A jet lands on an aircraft carrier at 140 mi/h (� 63 m/s). 
(a) What is its acceleration if it stops in 2.0 s?

Solution We define our x axis as the direction of motion
of the jet. A careful reading of the problem reveals that in ad-
dition to being given the initial speed of 63 m/s, we also
know that the final speed is zero. We also note that we are 
not given the displacement of the jet while it is slowing 
down. Equation 2.8 is the only equation in Table 2.2 that does
not involve displacement, and so we use it to find the accelera-
tion:

�31 m/s2ax �
vx f � vxi

t
�

0 � 63 m/s
2.0 s

�

Watch Out for the Speed Limit!EXAMPLE 2.8
catch up to the car. While all this is going on, the car contin-
ues to move. We should therefore expect our result to be well
over 15 s. A sketch (Fig. 2.12) helps clarify the sequence of
events.

First, we write expressions for the position of each vehicle
as a function of time. It is convenient to choose the position
of the billboard as the origin and to set as the time the
trooper begins moving. At that instant, the car has already
traveled a distance of 45.0 m because it has traveled at a con-
stant speed of vx � 45.0 m/s for 1 s. Thus, the initial position
of the speeding car is 

Because the car moves with constant speed, its accelera-
xB � 45.0 m.

tB � 0

A car traveling at a constant speed of 45.0 m/s passes a
trooper hidden behind a billboard. One second after the
speeding car passes the billboard, the trooper sets out 
from the billboard to catch it, accelerating at a constant
rate of 3.00 m/s2. How long does it take her to overtake the
car?

Solution A careful reading lets us categorize this as a con-
stant-acceleration problem. We know that after the 1-s delay
in starting, it will take the trooper 15 additional seconds to
accelerate up to 45.0 m/s. Of course, she then has to con-
tinue to pick up speed (at a rate of 3.00 m/s per second) to
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FREELY FALLING OBJECTS
It is now well known that, in the absence of air resistance, all objects dropped 
near the Earth’s surface fall toward the Earth with the same constant acceleration
under the influence of the Earth’s gravity. It was not until about 1600 that this 
conclusion was accepted. Before that time, the teachings of the great philos-
opher Aristotle (384–322 B.C.) had held that heavier objects fall faster than lighter
ones.

It was the Italian Galileo Galilei (1564 –1642) who originated our present-
day ideas concerning falling objects. There is a legend that he demonstrated the
law of falling objects by observing that two different weights dropped simultane-
ously from the Leaning Tower of Pisa hit the ground at approximately the same
time. Although there is some doubt that he carried out this particular experi-
ment, it is well established that Galileo performed many experiments on objects
moving on inclined planes. In his experiments he rolled balls down a slight in-
cline and measured the distances they covered in successive time intervals. The
purpose of the incline was to reduce the acceleration; with the acceleration re-
duced, Galileo was able to make accurate measurements of the time intervals. By
gradually increasing the slope of the incline, he was finally able to draw conclu-
sions about freely falling objects because a freely falling ball is equivalent to a
ball moving down a vertical incline. 

2.6

The trooper starts from rest at and accelerates at
3.00 m/s2 away from the origin. Hence, her position after any
time interval t can be found from Equation 2.11: 

The trooper overtakes the car at the instant her position
matches that of the car, which is position �:

This gives the quadratic equation

The positive solution of this equation is . 

(For help in solving quadratic equations, see Appendix B.2.)
Note that in this 31.0-s time interval, the trooper tra-
vels a distance of about 1440 m. [This distance can be calcu-
lated from the car’s constant speed: (45.0 m/s)(31 � 1) s �
1 440 m.]

Exercise This problem can be solved graphically. On the
same graph, plot position versus time for each vehicle, and
from the intersection of the two curves determine the time at
which the trooper overtakes the car.

31.0 st �

1.50t2 � 45.0t � 45.0 � 0

1
2(3.00 m/s2)t2 � 45.0 m � (45.0 m/s)t

 x trooper � x car 

x trooper � 0 � 0t � 1
2 axt2 � 1

2(3.00 m/s2)t2

 x f � x i � vxit � 1
2axt2 

t � 0

tion is zero, and applying Equation 2.11 (with gives
for the car’s position at any time t:

A quick check shows that at this expression gives the
car’s correct initial position when the trooper begins to
move: Looking at limiting cases to see
whether they yield expected values is a very useful way to
make sure that you are obtaining reasonable results. 

x car � xB � 45.0 m.

t � 0,

x car � xB � vx cart � 45.0 m � (45.0 m/s)t

ax � 0)

Figure 2.12 A speeding car passes a hidden police officer.

vx car = 45.0 m/s
ax car = 0
ax trooper = 3.00 m/s2

tC = ?

��

tA = �1.00 s tB = 0

�

Astronaut David Scott released a
hammer and a feather simultane-
ously, and they fell in unison to the
lunar surface. (Courtesy of NASA)
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You might want to try the following experiment. Simultaneously drop a coin
and a crumpled-up piece of paper from the same height. If the effects of air resis-
tance are negligible, both will have the same motion and will hit the floor at the
same time. In the idealized case, in which air resistance is absent, such motion is
referred to as free fall. If this same experiment could be conducted in a vacuum, in
which air resistance is truly negligible, the paper and coin would fall with the same
acceleration even when the paper is not crumpled. On August 2, 1971, such a
demonstration was conducted on the Moon by astronaut David Scott. He simulta-
neously released a hammer and a feather, and in unison they fell to the lunar sur-
face. This demonstration surely would have pleased Galileo!

When we use the expression freely falling object, we do not necessarily refer to
an object dropped from rest. A freely falling object is any object moving
freely under the influence of gravity alone, regardless of its initial motion.
Objects thrown upward or downward and those released from rest are all
falling freely once they are released. Any freely falling object experiences
an acceleration directed downward, regardless of its initial motion.

We shall denote the magnitude of the free-fall acceleration by the symbol g. The
value of g near the Earth’s surface decreases with increasing altitude. Furthermore,
slight variations in g occur with changes in latitude. It is common to define “up” as
the � y direction and to use y as the position variable in the kinematic equations.
At the Earth’s surface, the value of g is approximately 9.80 m/s2. Unless stated 
otherwise, we shall use this value for g when performing calculations. For making
quick estimates, use 

If we neglect air resistance and assume that the free-fall acceleration does not
vary with altitude over short vertical distances, then the motion of a freely falling
object moving vertically is equivalent to motion in one dimension under constant
acceleration. Therefore, the equations developed in Section 2.5 for objects moving
with constant acceleration can be applied. The only modification that we need to
make in these equations for freely falling objects is to note that the motion is in
the vertical direction (the y direction) rather than in the horizontal (x) direction
and that the acceleration is downward and has a magnitude of 9.80 m/s2. Thus, we
always take where the minus sign means that the accelera-
tion of a freely falling object is downward. In Chapter 14 we shall study how to deal
with variations in g with altitude.

ay � �g � �9.80 m/s2,

g � 10 m/s2.

The Daring Sky DiversCONCEPTUAL EXAMPLE 2.9
�t after this instant, however, the two divers increase their
speeds by the same amount because they have the same accel-
eration. Thus, the difference in their speeds remains the
same throughout the fall. 

The first jumper always has a greater speed than the sec-
ond. Thus, in a given time interval, the first diver covers a
greater distance than the second. Thus, the separation dis-
tance between them increases.

Once the distance between the divers reaches the length
of the bungee cord, the tension in the cord begins to in-
crease. As the tension increases, the distance between the
divers becomes greater and greater.

A sky diver jumps out of a hovering helicopter. A few seconds
later, another sky diver jumps out, and they both fall along
the same vertical line. Ignore air resistance, so that both sky
divers fall with the same acceleration. Does the difference in
their speeds stay the same throughout the fall? Does the verti-
cal distance between them stay the same throughout the fall?
If the two divers were connected by a long bungee cord,
would the tension in the cord increase, lessen, or stay the
same during the fall?

Solution At any given instant, the speeds of the divers are
different because one had a head start. In any time interval

Definition of free fall

Free-fall acceleration 
m/s2g � 9.80

QuickLab
Use a pencil to poke a hole in the
bottom of a paper or polystyrene cup.
Cover the hole with your finger and
fill the cup with water. Hold the cup
up in front of you and release it. Does
water come out of the hole while the
cup is falling? Why or why not?
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Describing the Motion of a Tossed BallEXAMPLE 2.10
The ball has gone as high as it will go. After the last half of
this 1-s interval, the ball is moving at � 5 m/s. (The minus
sign tells us that the ball is now moving in the negative direc-
tion, that is, downward. Its velocity has changed from �5 m/s
to � 5 m/s during that 1-s interval. The change in velocity is
still �5 � [�5] � �10 m/s in that second.) It continues
downward, and after another 1 s has elapsed, it is falling at a
velocity of �15 m/s. Finally, after another 1 s, it has reached
its original starting point and is moving downward at 
�25 m/s. If the ball had been tossed vertically off a cliff so
that it could continue downward, its velocity would continue
to change by about �10 m/s every second.

A ball is tossed straight up at 25 m/s. Estimate its velocity at 
1-s intervals.

Solution Let us choose the upward direction to be posi-
tive. Regardless of whether the ball is moving upward or
downward, its vertical velocity changes by approximately 
�10 m/s for every second it remains in the air. It starts out at
25 m/s. After 1 s has elapsed, it is still moving upward but at
15 m/s because its acceleration is downward (downward ac-
celeration causes its velocity to decrease). After another sec-
ond, its upward velocity has dropped to 5 m/s. Now comes
the tricky part—after another half second, its velocity is zero.

Follow the Bouncing BallCONCEPTUAL EXAMPLE 2.11
changes substantially during a very short time interval, and so
the acceleration must be quite great. This corresponds to the
very steep upward lines on the velocity– time graph and to
the spikes on the acceleration–time graph.

A tennis ball is dropped from shoulder height (about 1.5 m)
and bounces three times before it is caught. Sketch graphs of
its position, velocity, and acceleration as functions of time,
with the � y direction defined as upward.

Solution For our sketch let us stretch things out horizon-
tally so that we can see what is going on. (Even if the ball
were moving horizontally, this motion would not affect its ver-
tical motion.)

From Figure 2.13 we see that the ball is in contact with the
floor at points �, �, and �. Because the velocity of the ball
changes from negative to positive three times during these
bounces, the slope of the position–time graph must change
in the same way. Note that the time interval between bounces
decreases. Why is that?

During the rest of the ball’s motion, the slope of the
velocity– time graph should be � 9.80 m/s2. The accelera-
tion–time graph is a horizontal line at these times because
the acceleration does not change when the ball is in free fall.
When the ball is in contact with the floor, the velocity

(a)

1.0

0.0

0.5

1.5
�

�

�

� � �

Figure 2.13 (a) A ball is dropped from a height of 1.5 m and
bounces from the floor. (The horizontal motion is not considered
here because it does not affect the vertical motion.) (b) Graphs of
position, velocity, and acceleration versus time.
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Not a Bad Throw for a Rookie!EXAMPLE 2.12
A stone thrown from the top of a building is given an initial
velocity of 20.0 m/s straight upward. The building is 50.0 m
high, and the stone just misses the edge of the roof on its way
down, as shown in Figure 2.14. Using as the time the
stone leaves the thrower’s hand at position �, determine 
(a) the time at which the stone reaches its maximum height,
(b) the maximum height, (c) the time at which the stone re-
turns to the height from which it was thrown, (d) the velocity
of the stone at this instant, and (e) the velocity and position
of the stone at 

Solution (a) As the stone travels from � to �, its velocity
must change by 20 m/s because it stops at �. Because gravity
causes vertical velocities to change by about 10 m/s for every
second of free fall, it should take the stone about 2 s to go
from � to � in our drawing. (In a problem like this, a sketch
definitely helps you organize your thoughts.) To calculate the
time t B at which the stone reaches maximum height, we use
Equation 2.8, noting that and setting
the start of our clock readings at 

Our estimate was pretty close.

(b) Because the average velocity for this first interval is 
10 m/s (the average of 20 m/s and 0 m/s) and because it
travels for about 2 s, we expect the stone to travel about 20 m.
By substituting our time interval into Equation 2.11, we can
find the maximum height as measured from the position of
the thrower, where we set 

Our free-fall estimates are very accurate.

(c) There is no reason to believe that the stone’s motion
from � to � is anything other than the reverse of its motion

20.4 m�

 y B � (20.0 m/s)(2.04 s) � 1
2(�9.80 m/s2)(2.04 s)2

ymax � y B � vy A t � 1
2ayt2 

y i � yA � 0:

2.04 st � tB �
20.0 m/s
9.80 m/s2 �

20.0 m/s � (�9.80 m/s2)t � 0

tA � 0:
vy B � 0vy B � vy A � ayt,

t � 5.00 s.

tA � 0

�

�

�

�

�

tD = 5.00 s
yD = –22.5 s
vyD = –29.0 m/s

tC = 4.08 s
yC = 0
vyC = –20.0 m/s

tB = 2.04 s
yB = 20.4 m
vyB = 0

50.0 m

tE = 5.83 s
yE = –50.0 m
vyE = –37.1 m/s

tA = 0
yA = 0
vyA = 20.0 m/s

�

Figure 2.14 Position and velocity versus time for a freely falling
stone thrown initially upward with a velocity m/s.vyi � 20.0

Which values represent the ball’s velocity and acceleration at points �, �, and � in Figure
2.13?

(a)
(b)
(c)
(d) vy � �9.80 m/s, ay � 0

vy � 0, ay � �9.80 m/s2
vy � 0, ay � 9.80 m/s2
vy � 0, ay � 0

Quick Quiz 2.5
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Optional Section

KINEMATIC EQUATIONS DERIVED FROM CALCULUS
This is an optional section that assumes the reader is familiar with the techniques
of integral calculus. If you have not yet studied integration in your calculus course,
you should skip this section or cover it after you become familiar with integration.

The velocity of a particle moving in a straight line can be obtained if its position
as a function of time is known. Mathematically, the velocity equals the derivative of
the position coordinate with respect to time. It is also possible to find the displace-
ment of a particle if its velocity is known as a function of time. In calculus, the proce-
dure used to perform this task is referred to either as integration or as finding the 
antiderivative. Graphically, it is equivalent to finding the area under a curve.

Suppose the vx -t graph for a particle moving along the x axis is as shown in
Figure 2.15. Let us divide the time interval into many small intervals, each of
duration �tn . From the definition of average velocity we see that the displacement
during any small interval, such as the one shaded in Figure 2.15, is given by

where is the average velocity in that interval. Therefore, the dis-
placement during this small interval is simply the area of the shaded rectangle.

vxn�xn � vxn �tn ,

tf � ti

2.7

position �. Because the elapsed time for this part of the
motion is about 3 s, we estimate that the acceleration due
to gravity will have changed the speed by about 30 m/s. 
We can calculate this from Equation 2.8, where we take

We could just as easily have made our calculation between
positions � and � by making sure we use the correct time in-
terval, 

To demonstrate the power of our kinematic equations, we
can use Equation 2.11 to find the position of the stone at

by considering the change in position between a
different pair of positions, � and �. In this case, the time is

Exercise Find (a) the velocity of the stone just before it hits
the ground at � and (b) the total time the stone is in the air.

Answer (a) � 37.1 m/s (b) 5.83 s

�22.5 m  �

  � 1
2(�9.80 m/s2)(5.00 s � 4.08 s)2

 � 0 m � (�20.0 m/s)(5.00 s � 4.08 s)

yD � yC � vy Ct � 1
2ayt2 

tD � tC :

tD � 5.00 s

 � �29.0 m/s

vy D � vyA � ayt � 20.0 m/s � (�9.80 m/s2)(5.00 s)

t � tD � tA � 5.00 s:

�29.0 m/s�

vy D � vy B � ayt � 0 m/s � (�9.80 m/s2)(5.00 s � 2.04 s)

t � tD � tB :

from � to �. Thus, the time needed for it to go from � to
� should be twice the time needed for it to go from � to �.
When the stone is back at the height from which it was
thrown (position �), the y coordinate is again zero. Using
Equation 2.11, with we obtain

This is a quadratic equation and so has two solutions for
The equation can be factored to give

One solution is corresponding to the time the stone 

starts its motion. The other solution is which is 

the solution we are after. Notice that it is double the value we
calculated for tB .

(d) Again, we expect everything at � to be the same as it
is at �, except that the velocity is now in the opposite direc-
tion. The value for t found in (c) can be inserted into Equa-
tion 2.8 to give

�

The velocity of the stone when it arrives back at its original
height is equal in magnitude to its initial velocity but oppo-
site in direction. This indicates that the motion is symmetric.

(e) For this part we consider what happens as the stone
falls from position �, where it had zero vertical velocity, to

�20.0 m/s

vy C � vy A � ayt � 20.0 m/s � (�9.80 m/s2)(4.08 s)

t � 4.08 s,

t � 0,

t(20.0 � 4.90t) � 0

t � tC .

 0 � 20.0t � 4.90t2 

yC � y A � vy A t � 1
2ayt2 

y f � yC � 0 and y i � yA � 0,
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The total displacement for the interval is the sum of the areas of all the rec-
tangles:

where the symbol � (upper case Greek sigma) signifies a sum over all terms. In
this case, the sum is taken over all the rectangles from ti to tf . Now, as the intervals
are made smaller and smaller, the number of terms in the sum increases and the
sum approaches a value equal to the area under the velocity– time graph. There-
fore, in the limit or the displacement is

(2.13)

or

Note that we have replaced the average velocity with the instantaneous velocity
vxn in the sum. As you can see from Figure 2.15, this approximation is clearly valid
in the limit of very small intervals. We conclude that if we know the vx -t graph for
motion along a straight line, we can obtain the displacement during any time in-
terval by measuring the area under the curve corresponding to that time interval.

The limit of the sum shown in Equation 2.13 is called a definite integral and
is written

(2.14)

where vx(t) denotes the velocity at any time t. If the explicit functional form of 
vx(t) is known and the limits are given, then the integral can be evaluated.

Sometimes the vx -t graph for a moving particle has a shape much simpler than
that shown in Figure 2.15. For example, suppose a particle moves at a constant ve-

lim
�tn:0

 �
n

 vxn�tn � �tf

ti
 vx(t) dt

vxn

Displacement � area under the vx -t graph

�x � lim
�tn:0

 �
n

 vxn �tn

�tn : 0,n : 	,

�x � �
n

 vxn �tn

tf � ti

Definite integral

Figure 2.15 Velocity versus time for a particle moving along the x axis. The area of the shaded
rectangle is equal to the displacement �x in the time interval �tn , while the total area under the
curve is the total displacement of the particle.

vx

t

Area = vxn ∆ tn

∆t n

t i t f

vxn
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locity vxi . In this case, the vx -t graph is a horizontal line, as shown in Figure 2.16,
and its displacement during the time interval �t is simply the area of the shaded
rectangle:

As another example, consider a particle moving with a velocity that is propor-
tional to t, as shown in Figure 2.17. Taking where ax is the constant of pro-
portionality (the acceleration), we find that the displacement of the particle dur-
ing the time interval to is equal to the area of the shaded triangle in
Figure 2.17:

Kinematic Equations

We now use the defining equations for acceleration and velocity to derive two of
our kinematic equations, Equations 2.8 and 2.11.

The defining equation for acceleration (Eq. 2.6),

may be written as or, in terms of an integral (or antiderivative), as

vx � � ax dt � C1

dvx � axdt

ax �
dvx

dt

�x � 1
2(tA)(axtA) � 1

2 a xtA 

2

t � tAt � 0

vx � axt,

�x � vxi�t  (when vx f � vxi � constant)

Figure 2.16 The velocity– time curve
for a particle moving with constant veloc-
ity vxi . The displacement of the particle
during the time interval is equal to
the area of the shaded rectangle.

tf � ti

vx = vxi = constant

t f

vxi

t

∆t

t i

vx

vxi

Figure 2.17 The velocity– time curve for a
particle moving with a velocity that is propor-
tional to the time.

t

v x = a xt

v x

a xtA

t A

�
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where C1 is a constant of integration. For the special case in which the acceleration
is constant, the ax can be removed from the integral to give

(2.15)

The value of C1 depends on the initial conditions of the motion. If we take 
when and substitute these values into the last equation, we have

Calling vx � vxf the velocity after the time interval t has passed and substituting
this and the value just found for C1 into Equation 2.15, we obtain kinematic Equa-
tion 2.8:

(for constant ax)

Now let us consider the defining equation for velocity (Eq. 2.4):

We can write this as or in integral form as

where C2 is another constant of integration. Because this ex-
pression becomes

To find C2 , we make use of the initial condition that when This gives
Therefore, after substituting xf for x, we have

(for constant ax)

Once we move xi to the left side of the equation, we have kinematic Equation 2.11.
Recall that is equal to the displacement of the object, where xi is its initial
position.

x f � x i

x f � x i � vxit � 1
2axt2

C2 � x i .
t � 0.x � x i

x � vxit � 1
2axt2 � C 2 

x � � vxi dt � ax �t dt � C2

x � � (vxi � axt)dt � C2 

vx � vx f � vxi � axt,

x � � vx dt � C2

dx � vxdt

vx �
dx
dt

vxf � vxi � axt

 C1 � vxi 

vxi � ax(0) � C1

t � 0
vx � vxi

vx � ax � dt � C1 � axt � C1
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Besides what you might expect to learn about physics concepts, a very valuable skill
you should hope to take away from your physics course is the ability to solve compli-
cated problems. The way physicists approach complex situations and break them
down into manageable pieces is extremely useful. We have developed a memory aid to
help you easily recall the steps required for successful problem solving. When working
on problems, the secret is to keep your GOAL in mind!

GOAL PROBLEM-SOLVING STEPS

Gather information
The first thing to do when approaching a problem is to understand the situation.
Carefully read the problem statement, looking for key phrases like “at rest” or
“freely falls.” What information is given? Exactly what is the question asking? Don’t
forget to gather information from your own experiences and common sense. What
should a reasonable answer look like? You wouldn’t expect to calculate the speed
of an automobile to be 5 � 106 m/s. Do you know what units to expect? Are there
any limiting cases you can consider? What happens when an angle approaches 0°
or 90° or when a mass becomes huge or goes to zero? Also make sure you carefully
study any drawings that accompany the problem.

Organize your approach
Once you have a really good idea of what the problem is about, you need to think
about what to do next. Have you seen this type of question before? Being able to
classify a problem can make it much easier to lay out a plan to solve it. You should
almost always make a quick drawing of the situation. Label important events with
circled letters. Indicate any known values, perhaps in a table or directly on your
sketch. 

Analyze the problem
Because you have already categorized the problem, it should not be too difficult to
select relevant equations that apply to this type of situation. Use algebra (and cal-
culus, if necessary) to solve for the unknown variable in terms of what is given.
Substitute in the appropriate numbers, calculate the result, and round it to the
proper number of significant figures.

Learn from your efforts
This is the most important part. Examine your numerical answer. Does it meet
your expectations from the first step? What about the algebraic form of the re-
sult—before you plugged in numbers? Does it make sense? (Try looking at the
variables in it to see whether the answer would change in a physically meaningful
way if they were drastically increased or decreased or even became zero.) Think
about how this problem compares with others you have done. How was it similar?
In what critical ways did it differ? Why was this problem assigned? You should have
learned something by doing it. Can you figure out what?

When solving complex problems, you may need to identify a series of subprob-
lems and apply the GOAL process to each. For very simple problems, you probably
don’t need GOAL at all. But when you are looking at a problem and you don’t
know what to do next, remember what the letters in GOAL stand for and use that
as a guide. 

47
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SUMMARY

After a particle moves along the x axis from some initial position xi to some final
position xf, its displacement is

(2.1)

The average velocity of a particle during some time interval is the displace-
ment �x divided by the time interval �t during which that displacement occurred:

(2.2)

The average speed of a particle is equal to the ratio of the total distance it
travels to the total time it takes to travel that distance.

The instantaneous velocity of a particle is defined as the limit of the ratio
�x/�t as �t approaches zero. By definition, this limit equals the derivative of x with
respect to t, or the time rate of change of the position:

(2.4)

The instantaneous speed of a particle is equal to the magnitude of its velocity.
The average acceleration of a particle is defined as the ratio of the change in

its velocity �vx divided by the time interval �t during which that change occurred:

(2.5)

The instantaneous acceleration is equal to the limit of the ratio �vx/�t as
�t approaches 0. By definition, this limit equals the derivative of vx with respect to
t, or the time rate of change of the velocity:

(2.6)

The equations of kinematics for a particle moving along the x axis with uni-
form acceleration ax (constant in magnitude and direction) are

(2.8)

(2.10)

(2.11)

(2.12)

You should be able to use these equations and the definitions in this chapter to an-
alyze the motion of any object moving with constant acceleration.

An object falling freely in the presence of the Earth’s gravity experiences a
free-fall acceleration directed toward the center of the Earth. If air resistance is ne-
glected, if the motion occurs near the surface of the Earth, and if the range of the
motion is small compared with the Earth’s radius, then the free-fall acceleration g
is constant over the range of motion, where g is equal to 9.80 m/s2.

Complicated problems are best approached in an organized manner. You
should be able to recall and apply the steps of the GOAL strategy when you need
them.

  vx f  

2 � vxi  

2 � 2ax(x f � x i)

 x f � x i � vxit � 1
2axt2 

x f � x i � vxt � 1
2(vxi � vx f)t

 vx f � vxi � axt 

ax � lim
�t:0

 
�vx

�t
�

dvx

dt

a x �
�vx

�t
�

vx f � vxi

tf � ti

vx � lim
�t:0

 
�x
�t

�
dx
dt

vx �
�x
�t

�x � x f � x i
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QUESTIONS

building. At what time was the plant one-fourth the
height of the building?

13. Two cars are moving in the same direction in parallel lanes
along a highway. At some instant, the velocity of car A ex-
ceeds the velocity of car B. Does this mean that the acceler-
ation of car A is greater than that of car B? Explain.

14. An apple is dropped from some height above the Earth’s
surface. Neglecting air resistance, how much does the ap-
ple’s speed increase each second during its descent?

15. Consider the following combinations of signs and values
for velocity and acceleration of a particle with respect to a
one-dimensional x axis:

1. Average velocity and instantaneous velocity are generally
different quantities. Can they ever be equal for a specific
type of motion? Explain.

2. If the average velocity is nonzero for some time interval,
does this mean that the instantaneous velocity is never
zero during this interval? Explain.

3. If the average velocity equals zero for some time interval �t
and if vx(t) is a continuous function, show that the instan-
taneous velocity must go to zero at some time in this inter-
val. (A sketch of x versus t might be useful in your proof.)

4. Is it possible to have a situation in which the velocity and
acceleration have opposite signs? If so, sketch a
velocity– time graph to prove your point.

5. If the velocity of a particle is nonzero, can its acceleration
be zero? Explain.

6. If the velocity of a particle is zero, can its acceleration be
nonzero? Explain.

7. Can an object having constant acceleration ever stop and
stay stopped?

8. A stone is thrown vertically upward from the top of a build-
ing. Does the stone’s displacement depend on the location
of the origin of the coordinate system? Does the stone’s ve-
locity depend on the origin? (Assume that the coordinate
system is stationary with respect to the building.) Explain.

9. A student at the top of a building of height h throws one
ball upward with an initial speed vyi and then throws a
second ball downward with the same initial speed. How
do the final speeds of the balls compare when they reach
the ground?

10. Can the magnitude of the instantaneous velocity of an ob-
ject ever be greater than the magnitude of its average ve-
locity? Can it ever be less?

11. If the average velocity of an object is zero in some time in-
terval, what can you say about the displacement of the ob-
ject for that interval?

12. A rapidly growing plant doubles in height each week. At
the end of the 25th day, the plant reaches the height of a

Velocity Acceleration

a. Positive Positive
b. Positive Negative
c. Positive Zero
d. Negative Positive
e. Negative Negative
f. Negative Zero
g. Zero Positive
h. Zero Negative

Figure Q2.16

Describe what the particle is doing in each case, and
give a real-life example for an automobile on an east-west
one-dimensional axis, with east considered to be the posi-
tive direction.

16. A pebble is dropped into a water well, and the splash is
heard 16 s later, as illustrated in Figure Q2.16. Estimate the
distance from the rim of the well to the water’s surface.

17. Average velocity is an entirely contrived quantity, and
other combinations of data may prove useful in other
contexts. For example, the ratio �t/�x, called the “slow-
ness” of a moving object, is used by geophysicists when
discussing the motion of continental plates. Explain what
this quantity means.
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WEB

6. A person first walks at a constant speed v1 along a
straight line from A to B and then back along the line
from B to A at a constant speed v2 . What are (a) her av-
erage speed over the entire trip and (b) her average ve-
locity over the entire trip?

Section 2.2 Instantaneous Velocity and Speed
7. At a particle moving with constant velocity is

located at and at the particle is
located at (a) From this information, plot
the position as a function of time. (b) Determine the
velocity of the particle from the slope of this graph.

8. The position of a particle moving along the x axis varies
in time according to the expression where x is
in meters and t is in seconds. Evaluate its position (a) at

and (b) at 3.00 s � �t. (c) Evaluate the limit
of �x/�t as �t approaches zero to find the velocity at

9. A position–time graph for a particle moving along the
x axis is shown in Figure P2.9. (a) Find the average 
velocity in the time interval to 
(b) Determine the instantaneous velocity at by
measuring the slope of the tangent line shown in the
graph. (c) At what value of t is the velocity zero?

t � 2.0 s
t � 4.0 s.t � 1.5 s

t � 3.00 s.

t � 3.00 s

x � 3t2,

x � 5.00 m.
t � 6.00 sx � �3.00 m,

t � 1.00 s,

Figure P2.9

Figure P2.3 Problems 3 and 11.
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2. A motorist drives north for 35.0 min at 85.0 km/h and
then stops for 15.0 min. He then continues north, trav-
eling 130 km in 2.00 h. (a) What is his total displace-
ment? (b) What is his average velocity?

3. The displacement versus time for a certain particle mov-
ing along the x axis is shown in Figure P2.3. Find the av-
erage velocity in the time intervals (a) 0 to 2 s, (b) 0 to
4 s, (c) 2 s to 4 s, (d) 4 s to 7 s, (e) 0 to 8 s.

4. A particle moves according to the equation ,
where x is in meters and t is in seconds. (a) Find the av-
erage velocity for the time interval from 2.0 s to 3.0 s.
(b) Find the average velocity for the time interval from
2.0 s to 2.1 s.

5. A person walks first at a constant speed of 5.00 m/s
along a straight line from point A to point B and then
back along the line from B to A at a constant speed of
3.00 m/s. What are (a) her average speed over the entire
trip and (b) her average velocity over the entire trip?

x � 10t2

10. (a) Use the data in Problem 1 to construct a smooth
graph of position versus time. (b) By constructing tan-
gents to the x(t) curve, find the instantaneous velocity
of the car at several instants. (c) Plot the instantaneous
velocity versus time and, from this, determine the aver-
age acceleration of the car. (d) What was the initial ve-
locity of the car?

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Section 2.1 Displacement, Velocity, and Speed
1. The position of a pinewood derby car was observed at

various times; the results are summarized in the table
below. Find the average velocity of the car for (a) the
first second, (b) the last 3 s, and (c) the entire period 
of observation.
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11. Find the instantaneous velocity of the particle described
in Figure P2.3 at the following times: (a) t � 1.0 s, 
(b) t � 3.0 s, (c) t � 4.5 s, and (d) t � 7.5 s.

Section 2.3 Acceleration
12. A particle is moving with a velocity of 60.0 m/s in the

positive x direction at t � 0. Between t � 0 and t �
15.0 s, the velocity decreases uniformly to zero. What 
was the acceleration during this 15.0-s interval? What is
the significance of the sign of your answer?

13. A 50.0-g superball traveling at 25.0 m/s bounces off a
brick wall and rebounds at 22.0 m/s. A high-speed cam-
era records this event. If the ball is in contact with the
wall for 3.50 ms, what is the magnitude of the average
acceleration of the ball during this time interval? (Note:
1 ms � 10�3 s.)

14. A particle starts from rest and accelerates as shown in
Figure P2.14. Determine: (a) the particle’s speed at 
t � 10 s and at t � 20 s, and (b) the distance traveled in
the first 20 s.

numerical values of x and ax for all points of inflection.
(c) What is the acceleration at t � 6 s? (d) Find the po-
sition (relative to the starting point) at t � 6 s. (e) What
is the moped’s final position at t � 9 s?

17. A particle moves along the x axis according to the equa-
tion where x is in meters and t is
in seconds. At t � 3.00 s, find (a) the position of the
particle, (b) its velocity, and (c) its acceleration.

18. An object moves along the x axis according to the equa-
tion m. Determine 
(a) the average speed between t � 2.00 s and t � 3.00 s,
(b) the instantaneous speed at t � 2.00 s and at t �
3.00 s, (c) the average acceleration between t � 2.00 s
and t � 3.00 s, and (d) the instantaneous acceleration
at t � 2.00 s and t � 3.00 s.

19. Figure P2.19 shows a graph of vx versus t for the motion
of a motorcyclist as he starts from rest and moves along
the road in a straight line. (a) Find the average acceler-
ation for the time interval t � 0 to t � 6.00 s. (b) Esti-
mate the time at which the acceleration has its greatest
positive value and the value of the acceleration at that
instant. (c) When is the acceleration zero? (d) Estimate
the maximum negative value of the acceleration and
the time at which it occurs.

x � (3.00t2 � 2.00t � 3.00)

x � 2.00 � 3.00t � t2,

Figure P2.14
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15. A velocity– time graph for an object moving along the x
axis is shown in Figure P2.15. (a) Plot a graph of the ac-
celeration versus time. (b) Determine the average accel-
eration of the object in the time intervals t � 5.00 s to 
t � 15.0 s and t � 0 to t � 20.0 s.

16. A student drives a moped along a straight road as de-
scribed by the velocity– time graph in Figure P2.16.
Sketch this graph in the middle of a sheet of graph pa-
per. (a) Directly above your graph, sketch a graph of
the position versus time, aligning the time coordinates
of the two graphs. (b) Sketch a graph of the accelera-
tion versus time directly below the vx -t graph, again
aligning the time coordinates. On each graph, show the

Figure P2.16
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Section 2.4 Motion Diagrams
20. Draw motion diagrams for (a) an object moving to the

right at constant speed, (b) an object moving to the
right and speeding up at a constant rate, (c) an object
moving to the right and slowing down at a constant
rate, (d) an object moving to the left and speeding up
at a constant rate, and (e) an object moving to the left
and slowing down at a constant rate. (f) How would
your drawings change if the changes in speed were not
uniform; that is, if the speed were not changing at a
constant rate?

Section 2.5 One-Dimensional Motion with 
Constant Acceleration

21. Jules Verne in 1865 proposed sending people to the
Moon by firing a space capsule from a 220-m-long can-
non with a final velocity of 10.97 km/s. What would
have been the unrealistically large acceleration experi-
enced by the space travelers during launch? Compare
your answer with the free-fall acceleration, 9.80 m/s2.

22. A certain automobile manufacturer claims that its super-
deluxe sports car will accelerate from rest to a speed of
42.0 m/s in 8.00 s. Under the (improbable) assumption
that the acceleration is constant, (a) determine the ac-
celeration of the car. (b) Find the distance the car trav-
els in the first 8.00 s. (c) What is the speed of the car
10.0 s after it begins its motion, assuming it continues to
move with the same acceleration?

23. A truck covers 40.0 m in 8.50 s while smoothly slowing
down to a final speed of 2.80 m/s. (a) Find its original
speed. (b) Find its acceleration.

24. The minimum distance required to stop a car moving at
35.0 mi/h is 40.0 ft. What is the minimum stopping dis-
tance for the same car moving at 70.0 mi/h, assuming
the same rate of acceleration?

25. A body moving with uniform acceleration has a velocity
of 12.0 cm/s in the positive x direction when its x coor-
dinate is 3.00 cm. If its x coordinate 2.00 s later is � 5.00
cm, what is the magnitude of its acceleration?

26. Figure P2.26 represents part of the performance data
of a car owned by a proud physics student. (a) Calcu-
late from the graph the total distance traveled. 
(b) What distance does the car travel between the
times t � 10 s and t � 40 s? (c) Draw a graph of its ac-

celeration versus time between t � 0 and t � 50 s. 
(d) Write an equation for x as a function of time for
each phase of the motion, represented by (i) 0a, (ii)
ab, (iii) bc. (e) What is the average velocity of the car
between t � 0 and t � 50 s?

27. A particle moves along the x axis. Its position is given by
the equation with x in meters
and t in seconds. Determine (a) its position at the in-
stant it changes direction and (b) its velocity when it re-
turns to the position it had at t � 0.

28. The initial velocity of a body is 5.20 m/s. What is its veloc-
ity after 2.50 s (a) if it accelerates uniformly at 3.00 m/s2

and (b) if it accelerates uniformly at � 3.00 m/s2?
29. A drag racer starts her car from rest and accelerates at

10.0 m/s2 for the entire distance of 400 m mi). (a) How
long did it take the race car to travel this distance? 
(b) What is the speed of the race car at the end of the run?

30. A car is approaching a hill at 30.0 m/s when its engine
suddenly fails, just at the bottom of the hill. The car
moves with a constant acceleration of � 2.00 m/s2 while
coasting up the hill. (a) Write equations for the position
along the slope and for the velocity as functions of time,
taking x � 0 at the bottom of the hill, where vi �

30.0 m/s. (b) Determine the maximum distance the car
travels up the hill. 

31. A jet plane lands with a speed of 100 m/s and can accel-
erate at a maximum rate of � 5.00 m/s2 as it comes to
rest. (a) From the instant the plane touches the runway,
what is the minimum time it needs before it can come
to rest? (b) Can this plane land at a small tropical island
airport where the runway is 0.800 km long?

32. The driver of a car slams on the brakes when he sees a
tree blocking the road. The car slows uniformly with an
acceleration of � 5.60 m/s2 for 4.20 s, making straight
skid marks 62.4 m long ending at the tree. With what
speed does the car then strike the tree?

33. Help! One of our equations is missing! We describe con-
stant-acceleration motion with the variables and para-
meters vxi , vxf , ax , t, and xf � xi . Of the equations in
Table 2.2, the first does not involve The second
does not contain ax , the third omits vxf , and the last

x f � x i .

(1
4

x � 2.00 � 3.00t � 4.00t2

Figure P2.26
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(a) What is the speed of the ball at the bottom of the
first plane? (b) How long does it take to roll down 
the first plane? (c) What is the acceleration along the
second plane? (d) What is the ball’s speed 8.00 m along
the second plane?

40. Speedy Sue, driving at 30.0 m/s, enters a one-lane tun-
nel. She then observes a slow-moving van 155 m ahead
traveling at 5.00 m/s. Sue applies her brakes but can ac-
celerate only at �2.00 m/s2 because the road is wet.
Will there be a collision? If so, determine how far into
the tunnel and at what time the collision occurs. If not,
determine the distance of closest approach between
Sue’s car and the van.

Section 2.6 Freely Falling Objects
Note: In all problems in this section, ignore the effects of air
resistance.

41. A golf ball is released from rest from the top of a very
tall building. Calculate (a) the position and (b) the ve-
locity of the ball after 1.00 s, 2.00 s, and 3.00 s.

42. Every morning at seven o’clock
There’s twenty terriers drilling on the rock.
The boss comes around and he says, “Keep still
And bear down heavy on the cast-iron drill
And drill, ye terriers, drill.” And drill, ye terriers, drill.
It’s work all day for sugar in your tea . . .
And drill, ye terriers, drill.

One day a premature blast went off
And a mile in the air went big Jim Goff. And drill . . .

Then when next payday came around
Jim Goff a dollar short was found.
When he asked what for, came this reply:
“You were docked for the time you were up in the sky.” And
drill . . .

—American folksong

What was Goff’s hourly wage? State the assumptions you
make in computing it.

Problems 53

leaves out t. So to complete the set there should be an
equation not involving vxi . Derive it from the others.
Use it to solve Problem 32 in one step.

34. An indestructible bullet 2.00 cm long is fired straight
through a board that is 10.0 cm thick. The bullet strikes
the board with a speed of 420 m/s and emerges with a
speed of 280 m/s. (a) What is the average acceleration
of the bullet as it passes through the board? (b) What is
the total time that the bullet is in contact with the
board? (c) What thickness of board (calculated to 
0.1 cm) would it take to stop the bullet, assuming 
the bullet’s acceleration through all parts of the board
is the same?

35. A truck on a straight road starts from rest, accelerating
at 2.00 m/s2 until it reaches a speed of 20.0 m/s. Then
the truck travels for 20.0 s at constant speed until the
brakes are applied, stopping the truck in a uniform
manner in an additional 5.00 s. (a) How long is the
truck in motion? (b) What is the average velocity of the
truck for the motion described?

36. A train is traveling down a straight track at 20.0 m/s
when the engineer applies the brakes. This results in an
acceleration of � 1.00 m/s2 as long as the train is in mo-
tion. How far does the train move during a 40.0-s time
interval starting at the instant the brakes are applied?

37. For many years the world’s land speed record was held
by Colonel John P. Stapp, USAF (Fig. P2.37). On March
19, 1954, he rode a rocket-propelled sled that moved
down the track at 632 mi/h. He and the sled were safely
brought to rest in 1.40 s. Determine (a) the negative ac-
celeration he experienced and (b) the distance he trav-
eled during this negative acceleration.

38. An electron in a cathode-ray tube (CRT) accelerates
uniformly from 2.00 � 104 m/s to 6.00 � 106 m/s over
1.50 cm. (a) How long does the electron take to travel
this 1.50 cm? (b) What is its acceleration?

39. A ball starts from rest and accelerates at 0.500 m/s2

while moving down an inclined plane 9.00 m long.
When it reaches the bottom, the ball rolls up another
plane, where, after moving 15.0 m, it comes to rest. 

Figure P2.37 (Left) Col. John Stapp on rocket sled. (Courtesy of the U.S. Air Force)
(Right) Col. Stapp’s face is contorted by the stress of rapid negative acceleration. (Photri, Inc.)



54 C H A P T E R  2 Motion in One Dimension

43. A student throws a set of keys vertically upward to her
sorority sister, who is in a window 4.00 m above. The
keys are caught 1.50 s later by the sister’s outstretched
hand. (a) With what initial velocity were the keys
thrown? (b) What was the velocity of the keys just be-
fore they were caught?

44. A ball is thrown directly downward with an initial speed
of 8.00 m/s from a height of 30.0 m. How many sec-
onds later does the ball strike the ground?

45. Emily challenges her friend David to catch a dollar bill as
follows: She holds the bill vertically, as in Figure P2.45,
with the center of the bill between David’s index finger
and thumb. David must catch the bill after Emily releases
it without moving his hand downward. If his reaction
time is 0.2 s, will he succeed? Explain your reasoning.

49. A daring ranch hand sitting on a tree limb wishes to
drop vertically onto a horse galloping under the tree.
The speed of the horse is 10.0 m/s, and the distance
from the limb to the saddle is 3.00 m. (a) What must be
the horizontal distance between the saddle and limb
when the ranch hand makes his move? (b) How long is
he in the air?

50. A ball thrown vertically upward is caught by the thrower
after 20.0 s. Find (a) the initial velocity of the ball and
(b) the maximum height it reaches.

51. A ball is thrown vertically upward from the ground with
an initial speed of 15.0 m/s. (a) How long does it take
the ball to reach its maximum altitude? (b) What is its
maximum altitude? (c) Determine the velocity and ac-
celeration of the ball at t � 2.00 s.

52. The height of a helicopter above the ground is given by
h � 3.00t3, where h is in meters and t is in seconds. Af-
ter 2.00 s, the helicopter releases a small mailbag. How
long after its release does the mailbag reach the
ground?

(Optional)
2.7 Kinematic Equations Derived from Calculus

53. Automotive engineers refer to the time rate of change
of acceleration as the “jerk.” If an object moves in one
dimension such that its jerk J is constant, (a) determine
expressions for its acceleration ax, velocity vx, and posi-
tion x, given that its initial acceleration, speed, and posi-
tion are axi , vxi , and xi , respectively. (b) Show that

54. The speed of a bullet as it travels down the barrel of a ri-
fle toward the opening is given by the expression

where v is in me-
ters per second and t is in seconds. The acceleration of
the bullet just as it leaves the barrel is zero. (a) Deter-
mine the acceleration and position of the bullet as a
function of time when the bullet is in the barrel. 
(b) Determine the length of time the bullet is acceler-
ated. (c) Find the speed at which the bullet leaves the
barrel. (d) What is the length of the barrel?

55. The acceleration of a marble in a certain fluid is pro-
portional to the speed of the marble squared and is
given (in SI units) by a � � 3.00v2 for If the mar-
ble enters this fluid with a speed of 1.50 m/s, how long
will it take before the marble’s speed is reduced to half
of its initial value?

ADDITIONAL PROBLEMS

56. A motorist is traveling at 18.0 m/s when he sees a deer
in the road 38.0 m ahead. (a) If the maximum negative
acceleration of the vehicle is � 4.50 m/s2, what is the
maximum reaction time �t of the motorist that will al-
low him to avoid hitting the deer? (b) If his reaction
time is actually 0.300 s, how fast will he be traveling
when he hits the deer?

v � 0.

v � (�5.0 � 107)t2 � (3.0 � 105)t,

ax 

2 � axi 

2 � 2J(vx � vxi).

WEB

Figure P2.45 (George Semple)

WEB

46. A ball is dropped from rest from a height h above the
ground. Another ball is thrown vertically upward from
the ground at the instant the first ball is released. Deter-
mine the speed of the second ball if the two balls are to
meet at a height h/2 above the ground.

47. A baseball is hit so that it travels straight upward after
being struck by the bat. A fan observes that it takes 
3.00 s for the ball to reach its maximum height. Find
(a) its initial velocity and (b) the maximum height it
reaches.

48. A woman is reported to have fallen 144 ft from the 17th
floor of a building, landing on a metal ventilator box,
which she crushed to a depth of 18.0 in. She suffered
only minor injuries. Calculate (a) the speed of the
woman just before she collided with the ventilator box,
(b) her average acceleration while in contact with the
box, and (c) the time it took to crush the box.
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1 cm. Compute an order-of-magnitude estimate for 
the maximum acceleration of the ball while it is in con-
tact with the pavement. State your assumptions, the
quantities you estimate, and the values you estimate for
them.

65. A teenager has a car that speeds up at 3.00 m/s2 and
slows down at � 4.50 m/s2. On a trip to the store, he ac-
celerates from rest to 12.0 m/s, drives at a constant
speed for 5.00 s, and then comes to a momentary stop
at an intersection. He then accelerates to 18.0 m/s, 
drives at a constant speed for 20.0 s, slows down for 
2.67 s, continues for 4.00 s at this speed, and then
comes to a stop. (a) How long does the trip take? 
(b) How far has he traveled? (c) What is his average
speed for the trip? (d) How long would it take to walk
to the store and back if he walks at 1.50 m/s?

66. A rock is dropped from rest into a well. (a) If the sound
of the splash is heard 2.40 s later, how far below the top
of the well is the surface of the water? The speed of
sound in air (at the ambient temperature) is 336 m/s.
(b) If the travel time for the sound is neglected, what
percentage error is introduced when the depth of the
well is calculated?

67. An inquisitive physics student and mountain climber
climbs a 50.0-m cliff that overhangs a calm pool of wa-
ter. He throws two stones vertically downward, 1.00 s
apart, and observes that they cause a single splash. The
first stone has an initial speed of 2.00 m/s. (a) How
long after release of the first stone do the two stones hit
the water? (b) What was the initial velocity of the sec-
ond stone? (c) What is the velocity of each stone at the
instant the two hit the water?

68. A car and train move together along parallel paths at
25.0 m/s, with the car adjacent to the rear of the train.
Then, because of a red light, the car undergoes a uni-
form acceleration of � 2.50 m/s2 and comes to rest. It
remains at rest for 45.0 s and then accelerates back to a
speed of 25.0 m/s at a rate of 2.50 m/s2. How far be-
hind the rear of the train is the car when it reaches the
speed of 25.0 m/s, assuming that the speed of the train
has remained 25.0 m/s?

69. Kathy Kool buys a sports car that can accelerate at the
rate of 4.90 m/s2. She decides to test the car by racing
with another speedster, Stan Speedy. Both start from
rest, but experienced Stan leaves the starting line 1.00 s
before Kathy. If Stan moves with a constant acceleration
of 3.50 m/s2 and Kathy maintains an acceleration of
4.90 m/s2, find (a) the time it takes Kathy to overtake
Stan, (b) the distance she travels before she catches up
with him, and (c) the speeds of both cars at the instant
she overtakes him.

70. To protect his food from hungry bears, a boy scout
raises his food pack with a rope that is thrown over a
tree limb at height h above his hands. He walks away
from the vertical rope with constant velocity v boy , hold-
ing the free end of the rope in his hands (Fig. P2.70).

57. Another scheme to catch the roadrunner has failed. A
safe falls from rest from the top of a 25.0-m-high cliff to-
ward Wile E. Coyote, who is standing at the base. Wile
first notices the safe after it has fallen 15.0 m. How long
does he have to get out of the way?

58. A dog’s hair has been cut and is now getting longer by
1.04 mm each day. With winter coming on, this rate of
hair growth is steadily increasing by 0.132 mm/day
every week. By how much will the dog’s hair grow dur-
ing five weeks?

59. A test rocket is fired vertically upward from a well. A cat-
apult gives it an initial velocity of 80.0 m/s at ground
level. Subsequently, its engines fire and it accelerates
upward at 4.00 m/s2 until it reaches an altitude of 
1000 m. At that point its engines fail, and the rocket
goes into free fall, with an acceleration of � 9.80 m/s2.
(a) How long is the rocket in motion above the ground?
(b) What is its maximum altitude? (c) What is its veloc-
ity just before it collides with the Earth? (Hint: Consider
the motion while the engine is operating separate from
the free-fall motion.)

60. A motorist drives along a straight road at a constant
speed of 15.0 m/s. Just as she passes a parked motorcy-
cle police officer, the officer starts to accelerate at 
2.00 m/s2 to overtake her. Assuming the officer main-
tains this acceleration, (a) determine the time it takes
the police officer to reach the motorist. Also find 
(b) the speed and (c) the total displacement of the 
officer as he overtakes the motorist.

61. In Figure 2.10a, the area under the velocity– time curve
between the vertical axis and time t (vertical dashed
line) represents the displacement. As shown, this area
consists of a rectangle and a triangle. Compute their ar-
eas and compare the sum of the two areas with the ex-
pression on the righthand side of Equation 2.11.

62. A commuter train travels between two downtown sta-
tions. Because the stations are only 1.00 km apart, the
train never reaches its maximum possible cruising
speed. The engineer minimizes the time t between the
two stations by accelerating at a rate a1 � 0.100 m/s2

for a time t1 and then by braking with acceleration 
a2 � � 0.500 m/s2 for a time t2 . Find the minimum
time of travel t and the time t1 .

63. In a 100-m race, Maggie and Judy cross the finish line in
a dead heat, both taking 10.2 s. Accelerating uniformly,
Maggie took 2.00 s and Judy 3.00 s to attain maximum
speed, which they maintained for the rest of the race.
(a) What was the acceleration of each sprinter? 
(b) What were their respective maximum speeds? 
(c) Which sprinter was ahead at the 6.00-s mark, and by
how much?

64. A hard rubber ball, released at chest height, falls to 
the pavement and bounces back to nearly the same
height. When it is in contact with the pavement, the
lower side of the ball is temporarily flattened. Suppose
the maximum depth of the dent is on the order of 
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ANSWERS TO QUICK QUIZZES

2.1 Your graph should look something like the one in (a).
This vx-t graph shows that the maximum speed is 
about 5.0 m/s, which is 18 km/h (� 11 mi/h), and 
so the driver was not speeding. Can you derive the accel-
eration–time graph from the velocity– time graph? It
should look something like the one in (b).

2.2 (a) Yes. This occurs when the car is slowing down, so that
the direction of its acceleration is opposite the direction
of its motion. (b) Yes. If the motion is in the direction

(a) Show that the speed v of the food pack is
v boy , where x is the distance he has

walked away from the vertical rope. (b) Show that the
acceleration a of the food pack is 
(c) What values do the acceleration and velocity have
shortly after he leaves the point under the pack 
(x � 0)? (d) What values do the pack’s velocity and ac-
celeration approach as the distance x continues to in-
crease?

71. In Problem 70, let the height h equal 6.00 m and the
speed v boy equal 2.00 m/s. Assume that the food pack
starts from rest. (a) Tabulate and graph the speed–time
graph. (b) Tabulate and graph the acceleration–time
graph. (Let the range of time be from 0 to 5.00 s and
the time intervals be 0.500 s.)

72. Astronauts on a distant planet toss a rock into the air.
With the aid of a camera that takes pictures at a steady
rate, they record the height of the rock as a function of
time as given in Table P2.72. (a) Find the average veloc-
ity of the rock in the time interval between each mea-
surement and the next. (b) Using these average veloci-

h2(x2 � h2)�3/2 vboy 

2.

x(x2 � h2)�1/2

ties to approximate instantaneous velocities at the mid-
points of the time intervals, make a graph of velocity as
a function of time. Does the rock move with constant
acceleration? If so, plot a straight line of best fit on the
graph and calculate its slope to find the acceleration.

73. Two objects, A and B, are connected by a rigid rod that
has a length L. The objects slide along perpendicular
guide rails, as shown in Figure P2.73. If A slides to the
left with a constant speed v, find the speed of B when 

 � 60.0°.

Figure P2.73

α

L

y

x

v

A

B

xO

y

chosen as negative, a positive acceleration causes a de-
crease in speed.

2.3 The left side represents the final velocity of an object.
The first term on the right side is the velocity that the ob-
ject had initially when we started watching it. The second
term is the change in that initial velocity that is caused by
the acceleration. If this second term is positive, then the
initial velocity has increased If this term is neg-
ative, then the initial velocity has decreased (vxf � vx i).

(vxf � vx i).

TABLE P2.72 Height of a Rock versus Time

Time (s) Height (m) Time (s) Height (m)

0.00 5.00 2.75 7.62
0.25 5.75 3.00 7.25
0.50 6.40 3.25 6.77
0.75 6.94 3.50 6.20
1.00 7.38 3.75 5.52
1.25 7.72 4.00 4.73
1.50 7.96 4.25 3.85
1.75 8.10 4.50 2.86
2.00 8.13 4.75 1.77
2.25 8.07 5.00 0.58
2.50 7.90

x

h

m

�

vboy

av

Figure P2.70
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2.4 Graph (a) has a constant slope, indicating a constant ac-
celeration; this is represented by graph (e).

Graph (b) represents a speed that is increasing con-
stantly but not at a uniform rate. Thus, the acceleration must
be increasing, and the graph that best indicates this is (d).

Graph (c) depicts a velocity that first increases at a
constant rate, indicating constant acceleration. Then the

vx(m/s)

t(s)

6.0

4.0

2.0

0.0

–2.0

–4.0

–6.0

20 30 40 5010

ax(m/s2)

t(s)

0.60

0.40

0.20

0.00

–0.20

–0.40

–0.60

30 4010 5020

velocity stops increasing and becomes constant, indicat-
ing zero acceleration. The best match to this situation is
graph (f).

2.5 (c). As can be seen from Figure 2.13b, the ball is at rest for
an infinitesimally short time at these three points.
Nonetheless, gravity continues to act even though the ball
is instantaneously not moving.

(a) (b)
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Vectors
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When this honeybee gets back to its
hive, it will tell the other bees how to re-
turn to the food it has found. By moving
in a special, very precisely defined pat-
tern, the bee conveys to other workers
the information they need to find a flower
bed. Bees communicate by “speaking in
vectors.” What does the bee have to tell
the other bees in order to specify where
the flower bed is located relative to the
hive? (E. Webber/Visuals Unlimited)
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e often need to work with physical quantities that have both numerical and
directional properties. As noted in Section 2.1, quantities of this nature are

represented by vectors. This chapter is primarily concerned with vector alge-
bra and with some general properties of vector quantities. We discuss the addition
and subtraction of vector quantities, together with some common applications to
physical situations.

Vector quantities are used throughout this text, and it is therefore imperative
that you master both their graphical and their algebraic properties.

COORDINATE SYSTEMS
Many aspects of physics deal in some form or other with locations in space. In
Chapter 2, for example, we saw that the mathematical description of an object’s
motion requires a method for describing the object’s position at various times.
This description is accomplished with the use of coordinates, and in Chapter 2 we
used the cartesian coordinate system, in which horizontal and vertical axes inter-
sect at a point taken to be the origin (Fig. 3.1). Cartesian coordinates are also
called rectangular coordinates.

Sometimes it is more convenient to represent a point in a plane by its plane po-
lar coordinates (r, �), as shown in Figure 3.2a. In this polar coordinate system, r is the
distance from the origin to the point having cartesian coordinates (x, y), and � is
the angle between r and a fixed axis. This fixed axis is usually the positive x axis,
and � is usually measured counterclockwise from it. From the right triangle in Fig-
ure 3.2b, we find that sin � � y/r and that cos � � x/r. (A review of trigonometric
functions is given in Appendix B.4.) Therefore, starting with the plane polar coor-
dinates of any point, we can obtain the cartesian coordinates, using the equations

(3.1)

(3.2)

Furthermore, the definitions of trigonometry tell us that

(3.3)

(3.4)

These four expressions relating the coordinates (x, y) to the coordinates (r, �)
apply only when � is defined, as shown in Figure 3.2a—in other words, when posi-
tive � is an angle measured counterclockwise from the positive x axis. (Some scientific
calculators perform conversions between cartesian and polar coordinates based on
these standard conventions.) If the reference axis for the polar angle � is chosen
to be one other than the positive x axis or if the sense of increasing � is chosen dif-
ferently, then the expressions relating the two sets of coordinates will change.

Would the honeybee at the beginning of the chapter use cartesian or polar coordinates
when specifying the location of the flower? Why? What is the honeybee using as an origin of
coordinates?

Quick Quiz 3.1

 r � √x2 � y2

tan � �
y
x

 

y � r sin � 

x � r cos �

3.1

W

2.2

Q
P

(–3, 4) (5, 3)

(x, y)

y

x
O

O

(x, y)

y

x

r

θ

(a)

θ

(b)

x

r
y

sin θ =
y
r

cos θ = x
r

tan θ = x
y

θ

θ

θ

Figure 3.1 Designation of points
in a cartesian coordinate system.
Every point is labeled with coordi-
nates (x, y).

Figure 3.2 (a) The plane polar
coordinates of a point are repre-
sented by the distance r and the an-
gle �, where � is measured counter-
clockwise from the positive x axis.
(b) The right triangle used to re-
late (x, y) to (r, �).

You may want to read Talking Apes
and Dancing Bees (1997) by Betsy
Wyckoff.
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VECTOR AND SCALAR QUANTITIES
As noted in Chapter 2, some physical quantities are scalar quantities whereas oth-
ers are vector quantities. When you want to know the temperature outside so that
you will know how to dress, the only information you need is a number and the
unit “degrees C” or “degrees F.” Temperature is therefore an example of a scalar
quantity, which is defined as a quantity that is completely specified by a number
and appropriate units. That is,

3.2

Polar CoordinatesEXAMPLE 3.1
The cartesian coordinates of a point in the xy plane are 
(x, y) � (� 3.50, � 2.50) m, as shown in Figure 3.3. Find the
polar coordinates of this point.

A scalar quantity is specified by a single value with an appropriate unit and has
no direction.

A vector quantity has both magnitude and direction.

Solution

Note that you must use the signs of x and y to find that the
point lies in the third quadrant of the coordinate system.
That is, � � 216° and not 35.5°.

216°    � �

tan � �
y

x
�

�2.50 m
�3.50 m

� 0.714 

4.30 m r � √x2 � y2 � √(�3.50 m)2 � (�2.50 m)2 �

Other examples of scalar quantities are volume, mass, and time intervals. The
rules of ordinary arithmetic are used to manipulate scalar quantities.

If you are getting ready to pilot a small plane and need to know the wind ve-
locity, you must know both the speed of the wind and its direction. Because direc-
tion is part of the information it gives, velocity is a vector quantity, which is de-
fined as a physical quantity that is completely specified by a number and
appropriate units plus a direction. That is,

2.3

Figure 3.4 As a particle moves
from � to � along an arbitrary
path represented by the broken
line, its displacement is a vector
quantity shown by the arrow drawn
from � to �.

Figure 3.3 Finding polar coordinates when cartesian coordinates
are given.

x(m)

y(m)

–3.50, –2.50

θ

r

Another example of a vector quantity is displacement, as you know from Chap-
ter 2. Suppose a particle moves from some point � to some point � along a
straight path, as shown in Figure 3.4. We represent this displacement by drawing
an arrow from � to �, with the tip of the arrow pointing away from the starting
point. The direction of the arrowhead represents the direction of the displace-
ment, and the length of the arrow represents the magnitude of the displacement.
If the particle travels along some other path from � to �, such as the broken line
in Figure 3.4, its displacement is still the arrow drawn from � to �.

�

�
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In this text, we use a boldface letter, such as A, to represent a vector quantity.
Another common method for vector notation that you should be aware of is the
use of an arrow over a letter, such as The magnitude of the vector A is written
either A or The magnitude of a vector has physical units, such as meters for
displacement or meters per second for velocity.

SOME PROPERTIES OF VECTORS

Equality of Two Vectors

For many purposes, two vectors A and B may be defined to be equal if they have
the same magnitude and point in the same direction. That is, A � B only if A � B
and if A and B point in the same direction along parallel lines. For example, all
the vectors in Figure 3.5 are equal even though they have different starting points.
This property allows us to move a vector to a position parallel to itself in a diagram
without affecting the vector.

Adding Vectors

The rules for adding vectors are conveniently described by geometric methods. To
add vector B to vector A, first draw vector A, with its magnitude represented by a
convenient scale, on graph paper and then draw vector B to the same scale with its
tail starting from the tip of A, as shown in Figure 3.6. The resultant vector R �
A � B is the vector drawn from the tail of A to the tip of B. This procedure is
known as the triangle method of addition.

For example, if you walked 3.0 m toward the east and then 4.0 m toward the
north, as shown in Figure 3.7, you would find yourself 5.0 m from where you

3.3

� A �.
A
:

.

Figure 3.5 These four vectors are
equal because they have equal
lengths and point in the same di-
rection.

Figure 3.6 When vector B is
added to vector A, the resultant R
is the vector that runs from the tail
of A to the tip of B.

(a) The number of apples in the basket is one example of a scalar quantity. Can you think of
other examples? (Superstock) (b) Jennifer pointing to the right. A vector quantity is one that must
be specified by both magnitude and direction. (Photo by Ray Serway) (c) An anemometer is a de-
vice meteorologists use in weather forecasting. The cups spin around and reveal the magnitude
of the wind velocity. The pointer indicates the direction. (Courtesy of Peet Bros.Company, 1308 Doris
Avenue, Ocean, NJ 07712)

O

y

x

B

A

R  =  A  +  B

2.4

(a) (b) (c)
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started, measured at an angle of 53° north of east. Your total displacement is the
vector sum of the individual displacements.

A geometric construction can also be used to add more than two vectors. This
is shown in Figure 3.8 for the case of four vectors. The resultant vector R � A �
B � C � D is the vector that completes the polygon. In other words, R is the 
vector drawn from the tail of the first vector to the tip of the last vector.

An alternative graphical procedure for adding two vectors, known as the par-
allelogram rule of addition, is shown in Figure 3.9a. In this construction, the
tails of the two vectors A and B are joined together and the resultant vector R is
the diagonal of a parallelogram formed with A and B as two of its four sides.

When two vectors are added, the sum is independent of the order of the addi-
tion. (This fact may seem trivial, but as you will see in Chapter 11, the order is im-
portant when vectors are multiplied). This can be seen from the geometric con-
struction in Figure 3.9b and is known as the commutative law of addition:

(3.5)

When three or more vectors are added, their sum is independent of the way in
which the individual vectors are grouped together. A geometric proof of this rule

A � B � B � A

4.0 m

3.0 m

|R
| =

   
 (3

.0
 m

)2
 +

 (4
.0

 m
)2

 =
 5

.0
 m

(      )4.0
3.0θ = tan–1θ = 53°

A

B

C

D

R
  =

  A
  +

  B
  +

  C
  +

  D

Figure 3.7 Vector addition. Walk-
ing first 3.0 m due east and then 
4.0 m due north leaves you 
5.0 m from your starting point.

� R � �

Figure 3.8 Geometric con-
struction for summing four vec-
tors. The resultant vector R is by
definition the one that completes
the polygon.

Figure 3.9 (a) In this construc-
tion, the resultant R is the diagonal
of a parallelogram having sides A
and B. (b) This construction shows
that A � B � B � A—in other
words, that vector addition is com-
mutative.

Commutative Law

A

B

A

B

R  =
  B

  +
  A

(b)

A

B

R  =
  A

  +
  B

(a)

Commutative law
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for three vectors is given in Figure 3.10. This is called the associative law of addi-
tion:

(3.6)

In summary, a vector quantity has both magnitude and direction and also
obeys the laws of vector addition as described in Figures 3.6 to 3.10. When two
or more vectors are added together, all of them must have the same units. It would
be meaningless to add a velocity vector (for example, 60 km/h to the east) to a dis-
placement vector (for example, 200 km to the north) because they represent dif-
ferent physical quantities. The same rule also applies to scalars. For example, it
would be meaningless to add time intervals to temperatures.

Negative of a Vector

The negative of the vector A is defined as the vector that when added to A gives
zero for the vector sum. That is, A � (� A) � 0. The vectors A and � A have the
same magnitude but point in opposite directions.

Subtracting Vectors

The operation of vector subtraction makes use of the definition of the negative of
a vector. We define the operation A � B as vector � B added to vector A:

A � B � A � (� B) (3.7)

The geometric construction for subtracting two vectors in this way is illustrated in
Figure 3.11a.

Another way of looking at vector subtraction is to note that the difference 
A � B between two vectors A and B is what you have to add to the second vector
to obtain the first. In this case, the vector A � B points from the tip of the second
vector to the tip of the first, as Figure 3.11b shows.

A � (B � C) � (A � B) � C

Figure 3.10 Geometric construc-
tions for verifying the associative
law of addition.

Figure 3.11 (a) This construc-
tion shows how to subtract vector B
from vector A. The vector � B is
equal in magnitude to vector B and
points in the opposite direction. To
subtract B from A, apply the rule of
vector addition to the combination
of A and � B: Draw A along some
convenient axis, place the tail of
� B at the tip of A, and C is the dif-
ference A � B. (b) A second way
of looking at vector subtraction.
The difference vector C � A � B is
the vector that we must add to B to
obtain A.

Associative law

A

B

B + C

C

A + 
(B

 + 
C)

A

B

A + B

C

(A
 + 

B) +
 C

Associative Law

C = A – B

A

B

C = A – B
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Vector Subtraction

(a) (b)
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Multiplying a Vector by a Scalar

If vector A is multiplied by a positive scalar quantity m, then the product mA is 
a vector that has the same direction as A and magnitude mA. If vector A is 
multiplied by a negative scalar quantity � m, then the product � mA is directed op-
posite A. For example, the vector 5A is five times as long as A and points in the
same direction as A; the vector � A is one-third the length of A and points in the
direction opposite A.

If vector B is added to vector A, under what condition does the resultant vector A � B have
magnitude A � B? Under what conditions is the resultant vector equal to zero?

COMPONENTS OF A VECTOR AND UNIT VECTORS
The geometric method of adding vectors is not recommended whenever great ac-
curacy is required or in three-dimensional problems. In this section, we describe a
method of adding vectors that makes use of the projections of vectors along coordi-
nate axes. These projections are called the components of the vector. Any vector
can be completely described by its components.

Consider a vector A lying in the xy plane and making an arbitrary angle � with
the positive x axis, as shown in Figure 3.13. This vector can be expressed as the

3.4

Quick Quiz 3.2

1
3

2.5

A Vacation TripEXAMPLE 3.2
ing out a calculation, you should sketch the vectors to check
your results.) The displacement R is the resultant when the
two individual displacements A and B are added.

To solve the problem algebraically, we note that the magni-
tude of R can be obtained from the law of cosines as applied
to the triangle (see Appendix B.4). With � � 180° � 60° �
120° and cos �, we find that

�

The direction of R measured from the northerly direction
can be obtained from the law of sines (Appendix B.4):

The resultant displacement of the car is 48.2 km in a direc-
tion 38.9° west of north. This result matches what we found
graphically.

38.9°  � �

sin � �
B
R

 sin � �
35.0 km
48.2 km

 sin 120° � 0.629

 
sin �

B
�

sin �

R
 

48.2 km 

R � √A2 � B2 � 2AB cos� 

R2 � A2 � B2 � 2AB

A car travels 20.0 km due north and then 35.0 km in a direc-
tion 60.0° west of north, as shown in Figure 3.12. Find the
magnitude and direction of the car’s resultant displacement.

Solution In this example, we show two ways to find the re-
sultant of two vectors. We can solve the problem geometri-
cally, using graph paper and a protractor, as shown in Figure
3.12. (In fact, even when you know you are going to be carry-

� √(20.0 km)2 � (35.0 km)2 � 2(20.0 km)(35.0 km)cos 120°

Figure 3.13 Any vector A lying in
the xy plane can be represented by
a vector Ax lying along the x axis
and by a vector Ay lying along the y
axis, where A � Ax � Ay .

Figure 3.12 Graphical method for finding the resultant displace-
ment vector R � A � B.
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sum of two other vectors Ax and Ay . From Figure 3.13, we see that the three vec-
tors form a right triangle and that A � Ax � Ay . (If you cannot see why this equal-
ity holds, go back to Figure 3.9 and review the parallelogram rule.) We shall often
refer to the “components of a vector A,” written Ax and Ay (without the boldface
notation). The component Ax represents the projection of A along the x axis, and
the component Ay represents the projection of A along the y axis. These compo-
nents can be positive or negative. The component Ax is positive if Ax points in the
positive x direction and is negative if Ax points in the negative x direction. The
same is true for the component Ay .

From Figure 3.13 and the definition of sine and cosine, we see that cos � �
Ax/A and that sin � � Ay/A. Hence, the components of A are

(3.8)

(3.9)

These components form two sides of a right triangle with a hypotenuse of length
A. Thus, it follows that the magnitude and direction of A are related to its compo-
nents through the expressions

(3.10)

(3.11)

Note that the signs of the components Ax and Ay depend on the angle �.
For example, if � � 120°, then Ax is negative and Ay is positive. If � � 225°, then
both Ax and Ay are negative. Figure 3.14 summarizes the signs of the components
when A lies in the various quadrants.

When solving problems, you can specify a vector A either with its components
Ax and Ay or with its magnitude and direction A and �.

Can the component of a vector ever be greater than the magnitude of the vector?

Suppose you are working a physics problem that requires resolving a vector
into its components. In many applications it is convenient to express the compo-
nents in a coordinate system having axes that are not horizontal and vertical but are
still perpendicular to each other. If you choose reference axes or an angle other
than the axes and angle shown in Figure 3.13, the components must be modified
accordingly. Suppose a vector B makes an angle �� with the x� axis defined in Fig-
ure 3.15. The components of B along the x� and y� axes are Bx� � B cos �� and 
By� � B sin ��, as specified by Equations 3.8 and 3.9. The magnitude and direction
of B are obtained from expressions equivalent to Equations 3.10 and 3.11. Thus,
we can express the components of a vector in any coordinate system that is conve-
nient for a particular situation.

Unit Vectors

Vector quantities often are expressed in terms of unit vectors. A unit vector is a
dimensionless vector having a magnitude of exactly 1. Unit vectors are used
to specify a given direction and have no other physical significance. They are used
solely as a convenience in describing a direction in space. We shall use the symbols

Quick Quiz 3.3

� � tan�1� Ay

Ax
�

A � √Ax 

2 � Ay 

2 

Ay � A sin�

Ax � A cos�

Figure 3.14 The signs of the
components of a vector A depend
on the quadrant in which the vec-
tor is located.

Components of the vector A

Magnitude of A

Direction of A

Figure 3.15 The component vec-
tors of B in a coordinate system
that is tilted.
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i, j, and k to represent unit vectors pointing in the positive x, y, and z directions,
respectively. The unit vectors i, j, and k form a set of mutually perpendicular vec-
tors in a right-handed coordinate system, as shown in Figure 3.16a. The magnitude
of each unit vector equals 1; that is, 

Consider a vector A lying in the xy plane, as shown in Figure 3.16b. The prod-
uct of the component Ax and the unit vector i is the vector Axi, which lies on the x
axis and has magnitude (The vector Ax i is an alternative representation of
vector Ax .) Likewise, Ay j is a vector of magnitude lying on the y axis. (Again, 
vector Ay j is an alternative representation of vector Ay .) Thus, the unit–vector no-
tation for the vector A is

(3.12)

For example, consider a point lying in the xy plane and having cartesian coordi-
nates (x, y), as in Figure 3.17. The point can be specified by the position vector r,
which in unit–vector form is given by

(3.13)

This notation tells us that the components of r are the lengths x and y.
Now let us see how to use components to add vectors when the geometric

method is not sufficiently accurate. Suppose we wish to add vector B to vector A,
where vector B has components Bx and By . All we do is add the x and y compo-
nents separately. The resultant vector R � A � B is therefore

or

(3.14)

Because R � Rx i � Ry j, we see that the components of the resultant vector are

(3.15)
R y � Ay � By

R x � Ax � Bx

R � (Ax � Bx)i � (Ay � By)j

R � (Ax i � Ay j) � (Bx i � By j)

r � x i � y j

A � Ax i � Ay j

� Ay �
� Ax �.

� i � � � j � � � k � � 1.

Position vector

Figure 3.18 This geometric construction
for the sum of two vectors shows the rela-
tionship between the components of the re-
sultant R and the components of the indi-
vidual vectors.

Figure 3.17 The point whose
cartesian coordinates are (x, y) can
be represented by the position vec-
tor r � xi � y j.

Figure 3.16 (a) The unit vectors
i, j, and k are directed along the x,
y, and z axes, respectively. (b) Vec-
tor A � Axi � Ay j lying in the xy
plane has components Ax and Ay .
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Problem-Solving Hints
Adding Vectors
When you need to add two or more vectors, use this step-by-step procedure:

• Select a coordinate system that is convenient. (Try to reduce the number of
components you need to find by choosing axes that line up with as many
vectors as possible.)

• Draw a labeled sketch of the vectors described in the problem.
• Find the x and y components of all vectors and the resultant components

(the algebraic sum of the components) in the x and y directions.
• If necessary, use the Pythagorean theorem to find the magnitude of the re-

sultant vector and select a suitable trigonometric function to find the angle
that the resultant vector makes with the x axis.

We obtain the magnitude of R and the angle it makes with the x axis from its com-
ponents, using the relationships

(3.16)

(3.17)

We can check this addition by components with a geometric construction, as
shown in Figure 3.18. Remember that you must note the signs of the components
when using either the algebraic or the geometric method.

At times, we need to consider situations involving motion in three compo-
nent directions. The extension of our methods to three-dimensional vectors is
straightforward. If A and B both have x, y, and z components, we express them in
the form

(3.18)

(3.19)

The sum of A and B is

(3.20)

Note that Equation 3.20 differs from Equation 3.14: in Equation 3.20, the resultant
vector also has a z component 

If one component of a vector is not zero, can the magnitude of the vector be zero? Explain.

If A � B � 0, what can you say about the components of the two vectors?

Quick Quiz 3.5

Quick Quiz 3.4

R z � Az � Bz .

R � (Ax � Bx)i � (Ay � By)j � (Az � Bz)k

B � Bxi � By j � Bzk

A � Axi � Ay j � Azk

 tan � �
R y

R x
�

Ay � By

Ax � Bx
 

R � √R x 

2 � R y 

2 � √(Ax � Bx)2 � (Ay � By)2

QuickLab
Write an expression for the vector de-
scribing the displacement of a fly that
moves from one corner of the floor
of the room that you are in to the op-
posite corner of the room, near the
ceiling.
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Taking a HikeEXAMPLE 3.5
A hiker begins a trip by first walking 25.0 km southeast from
her car. She stops and sets up her tent for the night. On the sec-
ond day, she walks 40.0 km in a direction 60.0° north of east, at
which point she discovers a forest ranger’s tower. (a) Deter-
mine the components of the hiker’s displacement for each day.

Solution If we denote the displacement vectors on the
first and second days by A and B, respectively, and use the car
as the origin of coordinates, we obtain the vectors shown in
Figure 3.19. Displacement A has a magnitude of 25.0 km and
is directed 45.0° below the positive x axis. From Equations 3.8
and 3.9, its components are

�17.7 kmAy � A sin(�45.0°) � �(25.0 km)(0.707) �

17.7 km Ax � A cos(�45.0°) � (25.0 km)(0.707) �

The Sum of Two VectorsEXAMPLE 3.3
The magnitude of R is given by Equation 3.16:

�

We can find the direction of R from Equation 3.17:

Your calculator likely gives the answer � 27° for � �
tan�1(� 0.50). This answer is correct if we interpret it to
mean 27° clockwise from the x axis. Our standard form has
been to quote the angles measured counterclockwise from 

the � x axis, and that angle for this vector is � � 333°.

tan � �
Ry

Rx
�

�2.0 m

4.0 m
� �0.50

4.5 m

R � √Rx 

2 � Ry 

2 � √(4.0 m)2 � (�2.0 m)2 � √20 m

Find the sum of two vectors A and B lying in the xy plane and
given by

Solution Comparing this expression for A with the gen-
eral expression we see that and
that Likewise, and We
obtain the resultant vector R, using Equation 3.14:

or

Rx � 4.0 m  Ry � �2.0 m

 � (4.0i � 2.0j) m 

R � A � B � (2.0 � 2.0)i m � (2.0 � 4.0)j m

By � �4.0 m.Bx � 2.0 mAy � 2.0 m.
Ax � 2.0 mA � Ax i � Ay j,

A � (2.0i � 2.0j) m  and  B � (2.0i � 4.0j) m

The Resultant DisplacementEXAMPLE 3.4
mathematical calculation keeps track of this motion along
the three perpendicular axes:

The resultant displacement has components cm,
cm, and cm. Its magnitude is

40 cm� √(25 cm)2 � (31 cm)2 � (7.0 cm)2 �

R � √Rx 

2 � Ry 

2 � Rz 

2

Rz � 7.0Ry � 31
Rx � 25

 � (25i � 31j � 7.0k) cm 

 � � (12 � 5.0 � 0)k cm 

 � (15 � 23 � 13)i cm � (30 � 14 � 15)j cm

R � d1 � d2 � d3 

A particle undergoes three consecutive displacements: d1 �
(15i � 30j � 12k) cm, d2 � (23i � 14 j � 5.0k) cm, and 
d3 � (� 13i � 15j) cm. Find the components of the resultant
displacement and its magnitude.

Solution Rather than looking at a sketch on flat paper, vi-
sualize the problem as follows: Start with your fingertip at the
front left corner of your horizontal desktop. Move your fin-
gertip 15 cm to the right, then 30 cm toward the far side of
the desk, then 12 cm vertically upward, then 23 cm to the
right, then 14 cm horizontally toward the front edge of the
desk, then 5.0 cm vertically toward the desk, then 13 cm to
the left, and (finally!) 15 cm toward the back of the desk. The

Figure 3.19 The total displacement of the hiker is the vector 
R � A � B.
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Let’s Fly Away!EXAMPLE 3.6
Displacement b, whose magnitude is 153 km, has the compo-
nents

Finally, displacement c, whose magnitude is 195 km, has the
components

Therefore, the components of the position vector R from the
starting point to city C are

In unit–vector notation, That

is, the airplane can reach city C from the starting point by
first traveling 95.3 km due west and then by traveling 232 km
due north.

Exercise Find the magnitude and direction of R.

Answer 251 km, 22.3° west of north.

R � (�95.3i � 232j) km.

232 km �

R y � ay � by � cy � 87.5 km � 144 km � 0 

�95.3 km  �

R x � ax � bx � cx � 152 km � 52.3 km � 195 km

cy � c sin(180°) � 0 

cx � c cos(180°) � (195 km)(�1) � �195 km

by � b sin(110°) � (153 km)(0.940) � 144 km 

bx � b cos(110°) � (153 km)(�0.342) � �52.3 km

A commuter airplane takes the route shown in Figure 3.20.
First, it flies from the origin of the coordinate system shown
to city A, located 175 km in a direction 30.0° north of east.
Next, it flies 153 km 20.0° west of north to city B. Finally, it
flies 195 km due west to city C. Find the location of city C rel-
ative to the origin.

Solution It is convenient to choose the coordinate system
shown in Figure 3.20, where the x axis points to the east and
the y axis points to the north. Let us denote the three consec-
utive displacements by the vectors a, b, and c. Displacement a
has a magnitude of 175 km and the components

ay � a sin(30.0°) � (175 km)(0.500) � 87.5 km

ax � a cos(30.0°) � (175 km)(0.866) � 152 km

In unit–vector form, we can write the total displacement as 

Exercise Determine the magnitude and direction of the to-
tal displacement.

Answer 41.3 km, 24.1° north of east from the car.

R � (37.7i � 16.9j) km

16.9 kmR y � Ay � By � �17.7 km � 34.6 km �

37.7 km R x � Ax � Bx � 17.7 km � 20.0 km �
The negative value of Ay indicates that the hiker walks in the
negative y direction on the first day. The signs of Ax and Ay
also are evident from Figure 3.19.

The second displacement B has a magnitude of 40.0 km
and is 60.0° north of east. Its components are

(b) Determine the components of the hiker’s resultant
displacement R for the trip. Find an expression for R in
terms of unit vectors.

Solution The resultant displacement for the trip R � A � B
has components given by Equation 3.15:

34.6 kmBy � B sin 60.0° � (40.0 km)(0.866) �

20.0 kmBx � B cos 60.0° � (40.0 km)(0.500) �

Figure 3.20 The airplane starts at the origin, flies first to city A,
then to city B, and finally to city C.
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SUMMARY

Scalar quantities are those that have only magnitude and no associated direc-
tion. Vector quantities have both magnitude and direction and obey the laws of
vector addition. 

We can add two vectors A and B graphically, using either the triangle method
or the parallelogram rule. In the triangle method (Fig. 3.21a), the resultant vector
R � A � B runs from the tail of A to the tip of B. In the parallelogram method
(Fig. 3.21b), R is the diagonal of a parallelogram having A and B as two of its sides.
You should be able to add or subtract vectors, using these graphical methods.

The x component Ax of the vector A is equal to the projection of A along the x
axis of a coordinate system, as shown in Figure 3.22, where Ax � A cos �. The y
component Ay of A is the projection of A along the y axis, where Ay � A sin �. Be
sure you can determine which trigonometric functions you should use in all situa-
tions, especially when � is defined as something other than the counterclockwise
angle from the positive x axis.

If a vector A has an x component Ax and a y component Ay , the vector can be
expressed in unit–vector form as A � Ax i � Ay j. In this notation, i is a unit vector
pointing in the positive x direction, and j is a unit vector pointing in the positive y
direction. Because i and j are unit vectors, 

We can find the resultant of two or more vectors by resolving all vectors into
their x and y components, adding their resultant x and y components, and then
using the Pythagorean theorem to find the magnitude of the resultant vector. We
can find the angle that the resultant vector makes with respect to the x axis by us-
ing a suitable trigonometric function.

� i � � � j � � 1.

QUESTIONS

B is zero, what can you conclude about these two vectors?
6. Can the magnitude of a vector have a negative value? Ex-

plain.
7. Which of the following are vectors and which are not:

force, temperature, volume, ratings of a television show,
height, velocity, age?

8. Under what circumstances would a nonzero vector lying in
the xy plane ever have components that are equal in mag-
nitude?

9. Is it possible to add a vector quantity to a scalar quantity?
Explain.

1. Two vectors have unequal magnitudes. Can their sum be
zero? Explain. 

2. Can the magnitude of a particle’s displacement be greater
than the distance traveled? Explain.

3. The magnitudes of two vectors A and B are A � 5 units
and B � 2 units. Find the largest and smallest values possi-
ble for the resultant vector R � A � B.

4. Vector A lies in the xy plane. For what orientations of vec-
tor A will both of its components be negative? For what
orientations will its components have opposite signs?

5. If the component of vector A along the direction of vector

Figure 3.22 The addition of the
two vectors Ax and Ay gives vector A.
Note that Ax � Axi and Ay � Ay j,
where Ax and Ay are the components of
vector A.

Figure 3.21 (a) Vector addition by the triangle method. (b) Vector addition by the
parallelogram rule.

R = A + B
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PROBLEMS

ative x axis. Using graphical methods, find (a) the vec-
tor sum A � B and (b) the vector difference A � B.

12. A force F1 of magnitude 6.00 units acts at the origin in a
direction 30.0° above the positive x axis. A second force
F2 of magnitude 5.00 units acts at the origin in the di-
rection of the positive y axis. Find graphically the mag-
nitude and direction of the resultant force F1 + F2 .

13. A person walks along a circular path of radius 5.00 m. If
the person walks around one half of the circle, find 
(a) the magnitude of the displacement vector and 
(b) how far the person walked. (c) What is the magni-
tude of the displacement if the person walks all the way
around the circle?

14. A dog searching for a bone walks 3.50 m south, then
8.20 m at an angle 30.0° north of east, and finally 
15.0 m west. Using graphical techniques, find the dog’s
resultant displacement vector.

15. Each of the displacement vectors A and B shown in Fig-
ure P3.15 has a magnitude of 3.00 m. Find graphically
(a) A � B, (b) A � B, (c) B � A, (d) A � 2B. Report
all angles counterclockwise from the positive x axis.

Section 3.1 Coordinate Systems
1. The polar coordinates of a point are r � 5.50 m and 

� � 240°. What are the cartesian coordinates of this
point?

2. Two points in the xy plane have cartesian coordinates
(2.00, � 4.00) m and (� 3.00, 3.00) m. Determine 
(a) the distance between these points and (b) their po-
lar coordinates.

3. If the cartesian coordinates of a point are given by (2, y)
and its polar coordinates are (r, 30°), determine y and r.

4. Two points in a plane have polar coordinates (2.50 m,
30.0°) and (3.80 m, 120.0°). Determine (a) the carte-
sian coordinates of these points and (b) the distance
between them.

5. A fly lands on one wall of a room. The lower left-hand
corner of the wall is selected as the origin of a two-
dimensional cartesian coordinate system. If the fly is lo-
cated at the point having coordinates (2.00, 1.00) m,
(a) how far is it from the corner of the room? (b) what
is its location in polar coordinates?

6. If the polar coordinates of the point (x, y) are (r, �), 
determine the polar coordinates for the points 
(a) (� x, y), (b) (� 2x, � 2y), and (c) (3x, � 3y).

Section 3.2 Vector and Scalar Quantities

Section 3.3 Some Properties of Vectors
7. An airplane flies 200 km due west from city A to city B

and then 300 km in the direction 30.0° north of west
from city B to city C. (a) In straight-line distance, how
far is city C from city A? (b) Relative to city A, in what
direction is city C?

8. A pedestrian moves 6.00 km east and then 13.0 km
north. Using the graphical method, find the magnitude
and direction of the resultant displacement vector. 

9. A surveyor measures the distance across a straight river
by the following method: Starting directly across from a
tree on the opposite bank, she walks 100 m along the
riverbank to establish a baseline. Then she sights across
to the tree. The angle from her baseline to the tree is
35.0°. How wide is the river?

10. A plane flies from base camp to lake A, a distance of
280 km at a direction 20.0° north of east. After drop-
ping off supplies, it flies to lake B, which is 190 km and
30.0° west of north from lake A. Graphically determine
the distance and direction from lake B to the base
camp.

11. Vector A has a magnitude of 8.00 units and makes an
angle of 45.0° with the positive x axis. Vector B also has
a magnitude of 8.00 units and is directed along the neg-

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Figure P3.15 Problems 15 and 39.
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x

16. Arbitrarily define the “instantaneous vector height” of a
person as the displacement vector from the point
halfway between the feet to the top of the head. Make
an order-of-magnitude estimate of the total vector
height of all the people in a city of population 100 000
(a) at 10 a.m. on a Tuesday and (b) at 5 a.m. on a Satur-
day. Explain your reasoning. 

17. A roller coaster moves 200 ft horizontally and then rises
135 ft at an angle of 30.0° above the horizontal. It then
travels 135 ft at an angle of 40.0° downward. What is its
displacement from its starting point? Use graphical
techniques.

18. The driver of a car drives 3.00 km north, 2.00 km north-
east (45.0° east of north), 4.00 km west, and then 

WEB

WEB

WEB
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3.00 km southeast (45.0° east of south). Where does he
end up relative to his starting point? Work out your an-
swer graphically. Check by using components. (The car
is not near the North Pole or the South Pole.)

19. Fox Mulder is trapped in a maze. To find his way out, he
walks 10.0 m, makes a 90.0° right turn, walks 5.00 m,
makes another 90.0° right turn, and walks 7.00 m. What
is his displacement from his initial position?

Section 3.4 Components of a Vector and Unit Vectors
20. Find the horizontal and vertical components of the 100-m

displacement of a superhero who flies from the top of a
tall building following the path shown in Figure P3.20.

lying in an east–west vertical plane. The robot then
moves the object upward along a second arc that forms
one quarter of a circle having a radius of 3.70 cm and
lying in a north–south vertical plane. Find (a) the mag-
nitude of the total displacement of the object and 
(b) the angle the total displacement makes with the 
vertical.

24. Vector B has x, y, and z components of 4.00, 6.00, and
3.00 units, respectively. Calculate the magnitude of B
and the angles that B makes with the coordinate axes.

25. A vector has an x component of � 25.0 units and a y
component of 40.0 units. Find the magnitude and di-
rection of this vector.

26. A map suggests that Atlanta is 730 mi in a direction
5.00° north of east from Dallas. The same map shows
that Chicago is 560 mi in a direction 21.0° west of north
from Atlanta. Assuming that the Earth is flat, use this in-
formation to find the displacement from Dallas to
Chicago.

27. A displacement vector lying in the xy plane has a magni-
tude of 50.0 m and is directed at an angle of 120° to the
positive x axis. Find the x and y components of this vec-
tor and express the vector in unit–vector notation.

28. If A � 2.00i � 6.00j and B � 3.00i � 2.00j, (a) sketch
the vector sum C � A � B and the vector difference 
D � A � B. (b) Find solutions for C and D, first in
terms of unit vectors and then in terms of polar coordi-
nates, with angles measured with respect to the � x axis.

29. Find the magnitude and direction of the resultant of
three displacements having x and y components (3.00,
2.00) m, (� 5.00, 3.00) m, and (6.00, 1.00) m.

30. Vector A has x and y components of � 8.70 cm and 
15.0 cm, respectively; vector B has x and y components
of 13.2 cm and � 6.60 cm, respectively. If A � B �
3C � 0, what are the components of C?

31. Consider two vectors A � 3i � 2j and B � � i � 4j.
Calculate (a) A � B, (b) A � B, (c) 
(d) (e) the directions of A � B and A � B.

32. A boy runs 3.00 blocks north, 4.00 blocks northeast, and
5.00 blocks west. Determine the length and direction of
the displacement vector that goes from the starting
point to his final position.

33. Obtain expressions in component form for the position
vectors having polar coordinates (a) 12.8 m, 150°; 
(b) 3.30 cm, 60.0°; (c) 22.0 in., 215°.

34. Consider the displacement vectors A � (3i � 3j) m, 
B � (i � 4j) m, and C � (� 2i � 5j) m. Use the com-
ponent method to determine (a) the magnitude and di-
rection of the vector D � A � B � C and (b) the mag-
nitude and direction of E � � A � B � C.

35. A particle undergoes the following consecutive displace-
ments: 3.50 m south, 8.20 m northeast, and 15.0 m west.
What is the resultant displacement?

36. In a game of American football, a quarterback takes the
ball from the line of scrimmage, runs backward for 10.0
yards, and then sideways parallel to the line of scrim-
mage for 15.0 yards. At this point, he throws a forward

� A � B �,
� A � B �,

Figure P3.23

Figure P3.20

100 m

x

y

30.0°

21. A person walks 25.0° north of east for 3.10 km. How far
would she have to walk due north and due east to arrive
at the same location?

22. While exploring a cave, a spelunker starts at the en-
trance and moves the following distances: She goes 
75.0 m north, 250 m east, 125 m at an angle 30.0° north
of east, and 150 m south. Find the resultant displace-
ment from the cave entrance.

23. In the assembly operation illustrated in Figure P3.23, a
robot first lifts an object upward along an arc that forms
one quarter of a circle having a radius of 4.80 cm and

WEB
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Figure P3.37

38. A novice golfer on the green takes three strokes to sink
the ball. The successive displacements are 4.00 m to the
north, 2.00 m northeast, and 1.00 m 30.0° west of south.
Starting at the same initial point, an expert golfer could
make the hole in what single displacement?

39. Find the x and y components of the vectors A and B
shown in Figure P3.15; then derive an expression for
the resultant vector A � B in unit–vector notation. 

40. You are standing on the ground at the origin of a coor-
dinate system. An airplane flies over you with constant
velocity parallel to the x axis and at a constant height of
7.60 � 103 m. At t � 0, the airplane is directly above
you, so that the vector from you to it is given by P0 �
(7.60 � 103 m)j. At t � 30.0 s, the position vector lead-
ing from you to the airplane is P30 � (8.04 � 103 m)i �
(7.60 � 103 m)j. Determine the magnitude and orienta-
tion of the airplane’s position vector at t � 45.0 s.

41. A particle undergoes two displacements. The first has a
magnitude of 150 cm and makes an angle of 120° with
the positive x axis. The resultant displacement has a mag-
nitude of 140 cm and is directed at an angle of 35.0° to
the positive x axis. Find the magnitude and direction of
the second displacement.

pass 50.0 yards straight downfield perpendicular to the
line of scrimmage. What is the magnitude of the foot-
ball’s resultant displacement?

37. The helicopter view in Figure P3.37 shows two people
pulling on a stubborn mule. Find (a) the single force
that is equivalent to the two forces shown and (b) the
force that a third person would have to exert on the
mule to make the resultant force equal to zero. The
forces are measured in units of newtons.

42. Vectors A and B have equal magnitudes of 5.00. If the
sum of A and B is the vector 6.00 j, determine the angle
between A and B.

43. The vector A has x, y, and z components of 8.00, 12.0,
and � 4.00 units, respectively. (a) Write a vector expres-
sion for A in unit–vector notation. (b) Obtain a
unit–vector expression for a vector B one-fourth the
length of A pointing in the same direction as A. (c) Ob-
tain a unit–vector expression for a vector C three times
the length of A pointing in the direction opposite the
direction of A.

44. Instructions for finding a buried treasure include the
following: Go 75.0 paces at 240°, turn to 135° and walk
125 paces, then travel 100 paces at 160°. The angles are
measured counterclockwise from an axis pointing to
the east, the � x direction. Determine the resultant dis-
placement from the starting point.

45. Given the displacement vectors A � (3i � 4j � 4k) m
and B � (2i � 3j � 7k) m, find the magnitudes of the
vectors (a) C � A � B and (b) D � 2A � B, also ex-
pressing each in terms of its x, y, and z components.

46. A radar station locates a sinking ship at range 17.3 km
and bearing 136° clockwise from north. From the same
station a rescue plane is at horizontal range 19.6 km,
153° clockwise from north, with elevation 2.20 km. 
(a) Write the vector displacement from plane to ship,
letting i represent east, j north, and k up. (b) How far
apart are the plane and ship? 

47. As it passes over Grand Bahama Island, the eye of a hur-
ricane is moving in a direction 60.0° north of west with
a speed of 41.0 km/h. Three hours later, the course of
the hurricane suddenly shifts due north and its speed
slows to 25.0 km/h. How far from Grand Bahama is the
eye 4.50 h after it passes over the island?

48. (a) Vector E has magnitude 17.0 cm and is directed
27.0° counterclockwise from the � x axis. Express it in
unit–vector notation. (b) Vector F has magnitude 
17.0 cm and is directed 27.0° counterclockwise from the
� y axis. Express it in unit–vector notation. (c) Vector
G has magnitude 17.0 cm and is directed 27.0° clockwise
from the � y axis. Express it in unit–vector notation.

49. Vector A has a negative x component 3.00 units in
length and a positive y component 2.00 units in length.
(a) Determine an expression for A in unit–vector nota-
tion. (b) Determine the magnitude and direction of A.
(c) What vector B, when added to vector A, gives a re-
sultant vector with no x component and a negative y
component 4.00 units in length?

50. An airplane starting from airport A flies 300 km east,
then 350 km at 30.0° west of north, and then 150 km
north to arrive finally at airport B. (a) The next day, an-
other plane flies directly from airport A to airport B in a
straight line. In what direction should the pilot travel in
this direct flight? (b) How far will the pilot travel in this
direct flight? Assume there is no wind during these
flights.

y

x
75.0˚ 60.0˚

F2 =
      80.0 N

F1 =
      120 N



51. Three vectors are oriented as shown in Figure P3.51,
where units, units, and

units. Find (a) the x and y components of
the resultant vector (expressed in unit–vector notation)
and (b) the magnitude and direction of the resultant
vector.

� C � � 30.0
� B � � 40.0� A � � 20.0

origin to the location of the object. Suppose that for a
certain object the position vector is a function of time,
given by P � 4i � 3j � 2t j, where P is in meters and t is
in seconds. Evaluate dP/dt. What does this derivative
represent about the object?

59. A jet airliner, moving initially at 300 mi/h to the east,
suddenly enters a region where the wind is blowing at
100 mi/h in a direction 30.0° north of east. What are
the new speed and direction of the aircraft relative to
the ground?

60. A pirate has buried his treasure on an island with five
trees located at the following points: A(30.0 m, 
� 20.0 m), B(60.0 m, 80.0 m), C(� 10.0 m, � 10.0 m),
D(40.0 m, � 30.0 m), and E(� 70.0 m, 60.0 m). All
points are measured relative to some origin, as in Fig-
ure P3.60. Instructions on the map tell you to start at A
and move toward B, but to cover only one-half the dis-
tance between A and B. Then, move toward C, covering
one-third the distance between your current location
and C. Next, move toward D, covering one-fourth the
distance between where you are and D. Finally, move to-
ward E, covering one-fifth the distance between you and
E, stop, and dig. (a) What are the coordinates of the
point where the pirate’s treasure is buried? (b) Re-
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Figure P3.60

Figure P3.57

Figure P3.51
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52. If A � (6.00i � 8.00j) units, B � (� 8.00i � 3.00j)
units, and C � (26.0i � 19.0j) units, determine a and b
such that aA � bB � C � 0.

ADDITIONAL PROBLEMS

53. Two vectors A and B have precisely equal magnitudes.
For the magnitude of A � B to be 100 times greater
than the magnitude of A � B, what must be the angle
between them?

54. Two vectors A and B have precisely equal magnitudes.
For the magnitude of A � B to be greater than the
magnitude of A � B by the factor n, what must be the
angle between them?

55. A vector is given by R � 2.00i � 1.00j � 3.00k. Find 
(a) the magnitudes of the x, y, and z components, 
(b) the magnitude of R, and (c) the angles between R
and the x, y, and z axes.

56. Find the sum of these four vector forces: 12.0 N to the
right at 35.0° above the horizontal, 31.0 N to the left at
55.0° above the horizontal, 8.40 N to the left at 35.0° be-
low the horizontal, and 24.0 N to the right at 55.0° be-
low the horizontal. (Hint: Make a drawing of this situa-
tion and select the best axes for x and y so that you have
the least number of components. Then add the vectors,
using the component method.)

57. A person going for a walk follows the path shown in Fig-
ure P3.57. The total trip consists of four straight-line
paths. At the end of the walk, what is the person’s resul-
tant displacement measured from the starting point?

58. In general, the instantaneous position of an object is
specified by its position vector P leading from a fixed
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ANSWERS TO QUICK QUIZZES
longer than either side. Problem 61 extends this concept
to three dimensions.

3.4 No. The magnitude of a vector A is equal to 

Therefore, if any component is non-
zero, A cannot be zero. This generalization of the Pythag-
orean theorem is left for you to prove in Problem 61.

3.5 The fact that A � B � 0 tells you that A � � B. There-
fore, the components of the two vectors must have oppo-
site signs and equal magnitudes: 
and Az � �Bz .

Ay � �By ,Ax � �Bx ,

√Ax 

2 � Ay 

2 � Az 

2.

3.1 The honeybee needs to communicate to the other honey-
bees how far it is to the flower and in what direction they
must fly. This is exactly the kind of information that polar
coordinates convey, as long as the origin of the coordi-
nates is the beehive.

3.2 The resultant has magnitude A � B when vector A is ori-
ented in the same direction as vector B. The resultant
vector is A � B � 0 when vector A is oriented in the di-
rection opposite vector B and A � B.

3.3 No. In two dimensions, a vector and its components form
a right triangle. The vector is the hypotenuse and must be

Figure P3.63Figure P3.61

arrange the order of the trees, (for instance, B(30.0 m,
� 20.0 m), A(60.0 m, 80.0 m), E(� 10.0 m, � 10.0 m),
C(40.0 m, � 30.0 m), and D(� 70.0 m, 60.0 m), and re-
peat the calculation to show that the answer does not
depend on the order of the trees.

61. A rectangular parallelepiped has dimensions a, b, and c,
as in Figure P3.61. (a) Obtain a vector expression for
the face diagonal vector R1 . What is the magnitude of
this vector? (b) Obtain a vector expression for the body
diagonal vector R2 . Note that R1 , ck, and R2 make a
right triangle, and prove that the magnitude of R2 is 

√a2 � b2 � c 2.

62. A point lying in the xy plane and having coordinates 
(x, y) can be described by the position vector given by 
r � x i � y j. (a) Show that the displacement vector for a
particle moving from (x1 , y1) to (x2 , y2) is given by 
d � (x2 � x1)i � (y2 � y1)j. (b) Plot the position vec-
tors r1 and r2 and the displacement vector d, and verify
by the graphical method that d � r2 � r1 .

63. A point P is described by the coordinates (x, y) with re-
spect to the normal cartesian coordinate system shown
in Figure P3.63. Show that (x�, y�), the coordinates of
this point in the rotated coordinate system, are related
to (x, y) and the rotation angle 	 by the expressions

y� � �x sin 	 � y cos 	

x� � x cos 	 � y sin 	 
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c h a p t e r

Motion in Two Dimensions

4.1 The Displacement, Velocity, and
Acceleration Vectors

4.2 Two-Dimensional Motion with
Constant Acceleration

4.3 Projectile Motion

4.4 Uniform Circular Motion

4.5 Tangential and Radial Acceleration

4.6 Relative Velocity and Relative 
Acceleration

C h a p t e r  O u t l i n e

This airplane is used by NASA for astro-
naut training. When it flies along a cer-
tain curved path, anything inside the
plane that is not strapped down begins to
float. What causes this strange effect?
(NASA)

web
For more information on microgravity in
general and on this airplane, visit
http://microgravity.msfc.nasa.gov/ 
and http://www.jsc.nasa.gov/coop/
kc135/kc135.html
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4.1 The Displacement, Velocity, and Acceleration Vectors 77

n this chapter we deal with the kinematics of a particle moving in two dimen-
sions. Knowing the basics of two-dimensional motion will allow us to examine—
in future chapters—a wide variety of motions, ranging from the motion of satel-

lites in orbit to the motion of electrons in a uniform electric field. We begin by
studying in greater detail the vector nature of displacement, velocity, and accelera-
tion. As in the case of one-dimensional motion, we derive the kinematic equations
for two-dimensional motion from the fundamental definitions of these three quan-
tities. We then treat projectile motion and uniform circular motion as special cases
of motion in two dimensions. We also discuss the concept of relative motion,
which shows why observers in different frames of reference may measure different
displacements, velocities, and accelerations for a given particle.

THE DISPLACEMENT, VELOCITY, AND
ACCELERATION VECTORS

In Chapter 2 we found that the motion of a particle moving along a straight line is
completely known if its position is known as a function of time. Now let us extend
this idea to motion in the xy plane. We begin by describing the position of a parti-
cle by its position vector r, drawn from the origin of some coordinate system to the
particle located in the xy plane, as in Figure 4.1. At time ti the particle is at point
�, and at some later time tf it is at point �. The path from � to � is not neces-
sarily a straight line. As the particle moves from � to � in the time interval

its position vector changes from ri to rf . As we learned in Chapter 2,
displacement is a vector, and the displacement of the particle is the difference be-
tween its final position and its initial position. We now formally define the dis-
placement vector �r for the particle of Figure 4.1 as being the difference be-
tween its final position vector and its initial position vector:

(4.1)

The direction of �r is indicated in Figure 4.1. As we see from the figure, the mag-
nitude of �r is less than the distance traveled along the curved path followed by
the particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the
ratio of a displacement divided by the time interval during which that displace-
ment occurred. In two-dimensional (or three-dimensional) kinematics, everything
is the same as in one-dimensional kinematics except that we must now use vectors
rather than plus and minus signs to indicate the direction of motion.

�r � rf � ri

�t � tf � ti ,

4.1

We define the average velocity of a particle during the time interval �t as the
displacement of the particle divided by that time interval:

(4.2)v �
�r
�t

I

Multiplying or dividing a vector quantity by a scalar quantity changes only the mag-
nitude of the vector, not its direction. Because displacement is a vector quantity
and the time interval is a scalar quantity, we conclude that the average velocity is a
vector quantity directed along �r.

Note that the average velocity between points is independent of the path taken.
This is because average velocity is proportional to displacement, which depends

Path of
particle

x

y

� ti

ri

∆r
� t f

rf

O

Displacement vector

Average velocity

Figure 4.1 A particle moving in
the xy plane is located with the po-
sition vector r drawn from the ori-
gin to the particle. The displace-
ment of the particle as it moves
from � to � in the time interval
�t � t f � ti is equal to the vector 
�r � rf � ri .



only on the initial and final position vectors and not on the path taken. As we did
with one-dimensional motion, we conclude that if a particle starts its motion at
some point and returns to this point via any path, its average velocity is zero for
this trip because its displacement is zero.

Consider again the motion of a particle between two points in the xy plane, as
shown in Figure 4.2. As the time interval over which we observe the motion be-
comes smaller and smaller, the direction of the displacement approaches that of
the line tangent to the path at �.

78 C H A P T E R  4 Motion in Two Dimensions

The instantaneous velocity v is defined as the limit of the average velocity 
�r/�t as �t approaches zero:

(4.3)v � lim
�t:0

 
�r
�t

�
dr
dt

That is, the instantaneous velocity equals the derivative of the position vector with
respect to time. The direction of the instantaneous velocity vector at any point in a
particle’s path is along a line tangent to the path at that point and in the direction
of motion (Fig. 4.3).

The magnitude of the instantaneous velocity vector is called the speed,
which, as you should remember, is a scalar quantity.

v � � v �

Instantaneous velocity

Figure 4.2 As a particle moves be-
tween two points, its average velocity is
in the direction of the displacement vec-
tor �r. As the end point of the path is
moved from � to �� to ��, the respec-
tive displacements and corresponding
time intervals become smaller and
smaller. In the limit that the end point
approaches �, �t approaches zero, and
the direction of �r approaches that of
the line tangent to the curve at �. By
definition, the instantaneous velocity at
� is in the direction of this tangent
line.

Figure 4.3 A particle moves
from position � to position �.
Its velocity vector changes from
vi to vf . The vector diagrams at
the upper right show two ways
of determining the vector �v
from the initial and final
velocities.
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The average acceleration of a particle as it moves from one position to an-
other is defined as the change in the instantaneous velocity vector �v divided by
the time �t during which that change occurred:

(4.4)a �
vf � vi

tf � ti
�

�v
�t

The instantaneous acceleration a is defined as the limiting value of the ratio
�v/�t as �t approaches zero:

(4.5)a � lim
�t:0

 
�v
�t

�
dv
dt

Because it is the ratio of a vector quantity �v and a scalar quantity �t, we conclude
that average acceleration is a vector quantity directed along �v. As indicated in
Figure 4.3, the direction of �v is found by adding the vector � vi (the negative of
vi) to the vector vf , because by definition 

When the average acceleration of a particle changes during different time in-
tervals, it is useful to define its instantaneous acceleration a:

�v � vf � vi .

a

In other words, the instantaneous acceleration equals the derivative of the velocity
vector with respect to time.

It is important to recognize that various changes can occur when a particle ac-
celerates. First, the magnitude of the velocity vector (the speed) may change with
time as in straight-line (one-dimensional) motion. Second, the direction of the ve-
locity vector may change with time even if its magnitude (speed) remains constant,
as in curved-path (two-dimensional) motion. Finally, both the magnitude and the
direction of the velocity vector may change simultaneously.

The gas pedal in an automobile is called the accelerator. (a) Are there any other controls in an
automobile that can be considered accelerators? (b) When is the gas pedal not an accelerator?

TWO-DIMENSIONAL MOTION WITH
CONSTANT ACCELERATION

Let us consider two-dimensional motion during which the acceleration remains
constant in both magnitude and direction.

The position vector for a particle moving in the xy plane can be written

(4.6)

where x, y, and r change with time as the particle moves while i and j remain con-
stant. If the position vector is known, the velocity of the particle can be obtained
from Equations 4.3 and 4.6, which give

(4.7)v � vx i � vy j

r � x i � y j

4.2

Quick Quiz 4.1

3.5

Average acceleration

As a particle moves from one point to another along some path, its instanta-
neous velocity vector changes from vi at time ti to vf at time tf . Knowing the veloc-
ity at these points allows us to determine the average acceleration of the particle:

Instantaneous acceleration
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Because a is assumed constant, its components ax and ay also are constants. There-
fore, we can apply the equations of kinematics to the x and y components of the
velocity vector. Substituting and into Equation 4.7 to
determine the final velocity at any time t, we obtain

(4.8)

This result states that the velocity of a particle at some time t equals the vector sum
of its initial velocity vi and the additional velocity at acquired in the time t as a re-
sult of constant acceleration.

Similarly, from Equation 2.11 we know that the x and y coordinates of a parti-
cle moving with constant acceleration are

Substituting these expressions into Equation 4.6 (and labeling the final position
vector rf ) gives

(4.9)

This equation tells us that the displacement vector is the vector sum
of a displacement vit arising from the initial velocity of the particle and a displace-
ment resulting from the uniform acceleration of the particle.

Graphical representations of Equations 4.8 and 4.9 are shown in Figure 4.4.
For simplicity in drawing the figure, we have taken ri � 0 in Figure 4.4a. That is,
we assume the particle is at the origin at Note from Figure 4.4a that rf is
generally not along the direction of either vi or a because the relationship be-
tween these quantities is a vector expression. For the same reason, from Figure
4.4b we see that vf is generally not along the direction of vi or a. Finally, note that
vf and rf are generally not in the same direction.

t � ti � 0.

1
2at2

�r � rf � ri

rf � ri � vit � 1
2at2 

 � (x i i � y i j) � (vxi i � vyi j)t � 1
2(ax i � ay j)t2

rf � (x i � vxit � 1
2a xt2)i � (y i � vyit � 1

2a yt2)j

y f � y i � vyit � 1
2ayt2x f � x i � vxit � 1

2axt2

vf � vi � at 

 � (vxi i � vyi j) � (ax i � ay j)t

vf � (vxi � axt)i � (vyi � ayt)j

vy f � vyi � aytvx f � vxi � axt

Figure 4.4 Vector representations and components of (a) the displacement and (b) the veloc-
ity of a particle moving with a uniform acceleration a. To simplify the drawing, we have set ri � 0.
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Because Equations 4.8 and 4.9 are vector expressions, we may write them in
component form:

(4.8a)

(4.9a) 

These components are illustrated in Figure 4.4. The component form of the equa-
tions for vf and rf show us that two-dimensional motion at constant acceleration is
equivalent to two independent motions—one in the x direction and one in the y di-
rection—having constant accelerations ax and ay .

rf � ri � vit � 1
2at2  � x f � x i � vxit � 1

2axt2

y f � y i � vyit � 1
2ayt2

�vxf � vxi � axt
vyf � vyi � ayt 

vf � vi � at 

Motion in a PlaneEXAMPLE 4.1
We could also obtain this result using Equation 4.8 di-

rectly, noting that a � 4.0i m/s2 and vi � (20i � 15j) m/s.
According to this result, the x component of velocity in-
creases while the y component remains constant; this is con-
sistent with what we predicted. After a long time, the x com-
ponent will be so great that the y component will be
negligible. If we were to extend the object’s path in Figure
4.5, eventually it would become nearly parallel to the x axis. It
is always helpful to make comparisons between final answers
and initial stated conditions. 

(b) Calculate the velocity and speed of the particle at t �
5.0 s.

Solution With t � 5.0 s, the result from part (a) gives

This result tells us that at t � 5.0 s, vxf � 40 m/s and vyf �
� 15 m/s. Knowing these two components for this two-
dimensional motion, we can find both the direction and the
magnitude of the velocity vector. To determine the angle �
that v makes with the x axis at t � 5.0 s, we use the fact that
tan � � vyf /vxf :

where the minus sign indicates an angle of 21° below the pos-
itive x axis. The speed is the magnitude of vf :

In looking over our result, we notice that if we calculate vi
from the x and y components of vi , we find that Does
this make sense?

(c) Determine the x and y coordinates of the particle at
any time t and the position vector at this time.

vf � vi .

43 m/svf � �vf � � √vxf  
2 � vyf  

2 � √(40)2 � (�15)2 m/s �

�21°� � tan�1 � vyf

vx f
� � tan�1 � �15 m/s

40 m/s � �

(40i � 15j) m/svf � {[20 � 4.0(5.0)]i � 15j} m/s �

A particle starts from the origin at with an initial veloc-
ity having an x component of 20 m/s and a y component of
� 15 m/s. The particle moves in the xy plane with an x com-
ponent of acceleration only, given by ax � 4.0 m/s2. (a) De-
termine the components of the velocity vector at any time
and the total velocity vector at any time.

Solution After carefully reading the problem, we realize
we can set vxi � 20 m/s, vyi � � 15 m/s, ax � 4.0 m/s2, and
ay � 0. This allows us to sketch a rough motion diagram of
the situation. The x component of velocity starts at 20 m/s
and increases by 4.0 m/s every second. The y component of
velocity never changes from its initial value of � 15 m/s.
From this information we sketch some velocity vectors as
shown in Figure 4.5. Note that the spacing between successive
images increases as time goes on because the velocity is in-
creasing.

The equations of kinematics give

Therefore,

[(20 � 4.0t)i � 15j] m/svf � vx f i � vyf j �

vy f � vyi � ayt � �15 m/s � 0 � �15 m/s

vx f � vxi � axt � (20 � 4.0t) m/s 

t � 0

Figure 4.5 Motion diagram for the particle.
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PROJECTILE MOTION
Anyone who has observed a baseball in motion (or, for that matter, any other ob-
ject thrown into the air) has observed projectile motion. The ball moves in a
curved path, and its motion is simple to analyze if we make two assumptions: 
(1) the free-fall acceleration g is constant over the range of motion and is directed
downward,1 and (2) the effect of air resistance is negligible.2 With these assump-
tions, we find that the path of a projectile, which we call its trajectory, is always a
parabola. We use these assumptions throughout this chapter.

To show that the trajectory of a projectile is a parabola, let us choose our refer-
ence frame such that the y direction is vertical and positive is upward. Because air
resistance is neglected, we know that (as in one-dimensional free fall)
and that Furthermore, let us assume that at t � 0, the projectile leaves the
origin ) with speed vi , as shown in Figure 4.6. The vector vi makes an
angle �i with the horizontal, where �i is the angle at which the projectile leaves the
origin. From the definitions of the cosine and sine functions we have

Therefore, the initial x and y components of velocity are

Substituting the x component into Equation 4.9a with xi � 0 and ax � 0, we find
that

(4.10)

Repeating with the y component and using yi � 0 and ay � � g, we obtain

(4.11)

Next, we solve Equation 4.10 for t � xf/(vi cos �i) and substitute this expression
for t into Equation 4.11; this gives

(4.12)y � (tan �i)x � � g

2vi 

2 cos2 �i
�x2

y f � vyit � 1
2ayt2 � (vi sin �i)t � 1

2gt2

x f � vxit � (vi cos �i)t

vxi � vi cos �i  vyi � vi sin �i

cos �i � vxi/vi  sin �i � vyi/vi

(x i � y i � 0
ax � 0.

ay � �g

4.3

3.5

Solution Because at t � 0, Equation 2.11 gives

Therefore, the position vector at any time t is

[(20t � 2.0t2)i � 15t j] mrf � x f i � y f j �

(�15t) m y f � vyit �

(20t � 2.0t2) mx f � vxit � 1
2axt2 �

x i � y i � 0 (Alternatively, we could obtain rf by applying Equation 4.9 di-
rectly, with m/s and a � 4.0i m/s2. Try it!)
Thus, for example, at t � 5.0 s, x � 150 m, y � � 75 m, and
rf � (150i � 75j) m. The magnitude of the displacement of
the particle from the origin at t � 5.0 s is the magnitude of rf
at this time:

Note that this is not the distance that the particle travels in
this time! Can you determine this distance from the available
data?

rf � � rf � � √(150)2 � (�75)2 m � 170 m

vi � (20i � 15j)

1 This assumption is reasonable as long as the range of motion is small compared with the radius of the
Earth (6.4 	 106 m). In effect, this assumption is equivalent to assuming that the Earth is flat over the
range of motion considered.
2 This assumption is generally not justified, especially at high velocities. In addition, any spin imparted
to a projectile, such as that applied when a pitcher throws a curve ball, can give rise to some very inter-
esting effects associated with aerodynamic forces, which will be discussed in Chapter 15.

Assumptions of projectile motion

Horizontal position component

Vertical position component
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This equation is valid for launch angles in the range We have left
the subscripts off the x and y because the equation is valid for any point (x, y)
along the path of the projectile. The equation is of the form which is
the equation of a parabola that passes through the origin. Thus, we have shown
that the trajectory of a projectile is a parabola. Note that the trajectory is com-
pletely specified if both the initial speed vi and the launch angle �i are known.

The vector expression for the position vector of the projectile as a function of
time follows directly from Equation 4.9, with ri � 0 and a � g:

This expression is plotted in Figure 4.7.

r � vit � 1
2 gt2

y � ax � bx2,

0 
 �i 
 �/2.

x
vxi

vyi v

vxi

θ
vy v

gvxivy = 0

vxi

vy
v

vi

vyi

vxi

y

θ

θiθ

θiθ�

�

�
�

�

Figure 4.6 The parabolic path of a projectile that leaves the origin with a velocity vi . The veloc-
ity vector v changes with time in both magnitude and direction. This change is the result of accel-
eration in the negative y direction. The x component of velocity remains constant in time be-
cause there is no acceleration along the horizontal direction. The y component of velocity is zero
at the peak of the path.

r

x

(x,y)

gt2

vit

O

y

1
2

Figure 4.7 The position vector r of a projectile whose initial velocity at the origin is vi . The vec-
tor vit would be the displacement of the projectile if gravity were absent, and the vector is its
vertical displacement due to its downward gravitational acceleration.

1
2 gt 2

A welder cuts holes through a heavy metal
construction beam with a hot torch. The
sparks generated in the process follow para-
bolic paths.

QuickLab
Place two tennis balls at the edge of a
tabletop. Sharply snap one ball hori-
zontally off the table with one hand
while gently tapping the second ball
off with your other hand. Compare
how long it takes the two to reach the
floor. Explain your results.
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It is interesting to realize that the motion of a particle can be considered the
superposition of the term vit, the displacement if no acceleration were present,
and the term which arises from the acceleration due to gravity. In other
words, if there were no gravitational acceleration, the particle would continue to
move along a straight path in the direction of vi . Therefore, the vertical distance

through which the particle “falls” off the straight-line path is the same dis-
tance that a freely falling body would fall during the same time interval. We con-
clude that projectile motion is the superposition of two motions: (1) con-
stant-velocity motion in the horizontal direction and (2) free-fall motion in
the vertical direction. Except for t, the time of flight, the horizontal and vertical
components of a projectile’s motion are completely independent of each other.

1
2 gt2

1
2 gt2,

Approximating Projectile MotionEXAMPLE 4.2
A ball is thrown in such a way that its initial vertical and hori-
zontal components of velocity are 40 m/s and 20 m/s, re-
spectively. Estimate the total time of flight and the distance
the ball is from its starting point when it lands.

Solution We start by remembering that the two velocity
components are independent of each other. By considering
the vertical motion first, we can determine how long the ball
remains in the air. Then, we can use the time of flight to esti-
mate the horizontal distance covered.

A motion diagram like Figure 4.8 helps us organize what
we know about the problem. The acceleration vectors are all
the same, pointing downward with a magnitude of nearly 
10 m/s2. The velocity vectors change direction. Their hori- Figure 4.8 Motion diagram for a projectile.

Multiflash exposure of a tennis
player executing a forehand swing.
Note that the ball follows a para-
bolic path characteristic of a pro-
jectile. Such photographs can be
used to study the quality of sports
equipment and the performance of
an athlete.
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Horizontal Range and Maximum Height of a Projectile

Let us assume that a projectile is fired from the origin at ti � 0 with a positive vyi com-
ponent, as shown in Figure 4.9. Two points are especially interesting to analyze: the
peak point �, which has cartesian coordinates (R/2, h), and the point �, which has
coordinates (R, 0). The distance R is called the horizontal range of the projectile, and
the distance h is its maximum height. Let us find h and R in terms of vi , �i , and g.

We can determine h by noting that at the peak, vyA � 0. Therefore, we can use
Equation 4.8a to determine the time tA it takes the projectile to reach the peak:

Substituting this expression for tA into the y part of Equation 4.9a and replacing
with h, we obtain an expression for h in terms of the magnitude and direc-

tion of the initial velocity vector: 

(4.13)

The range R is the horizontal distance that the projectile travels in twice the time
it takes to reach its peak, that is, in a time Using the x part of Equation 4.9a,
noting that cos �i , and setting at we find that

Using the identity sin 2� � 2 sin � cos � (see Appendix B.4), we write R in the
more compact form

(4.14)

Keep in mind that Equations 4.13 and 4.14 are useful for calculating h and R
only if vi and �i are known (which means that only vi has to be specified) and if
the projectile lands at the same height from which it started, as it does in Fig-
ure 4.9.

The maximum value of R from Equation 4.14 is This result fol-
lows from the fact that the maximum value of sin 2�i is 1, which occurs when 2�i �
90°. Therefore, R is a maximum when �i � 45°.

R max � vi 

2/g.

R �
vi 

2 sin 2�i

g

 � (vi cos �i) 
2vi sin �i

g
�

2vi 

2 sin �i cos �i

g

R � vxit B � (vi cos �i)2tA 

t � 2tA ,R � xBvxi � vx B � vi

tB � 2tA .

h �
vi 

2 sin2 �i

2g

h � (vi sin �i) 
vi sin �i

g
� 1

2g  � vi sin �i

g �
2

y f � yA

 tA �
v i sin �i

g
 

 0 � vi sin �i � gtA

vy f � vyi � ayt 

zontal components are all the same: 20 m/s. Because the ver-
tical motion is free fall, the vertical components of the veloc-
ity vectors change, second by second, from 40 m/s to roughly
30, 20, and 10 m/s in the upward direction, and then to 
0 m/s. Subsequently, its velocity becomes 10, 20, 30, and 
40 m/s in the downward direction. Thus it takes the ball

Figure 4.9 A projectile fired
from the origin at ti � 0 with an
initial velocity vi . The maximum
height of the projectile is h, and
the horizontal range is R. At �, the
peak of the trajectory, the particle
has coordinates (R/2, h).

Maximum height of projectile

Range of projectile

about 4 s to go up and another 4 s to come back down, for a
total time of flight of approximately 8 s. Because the horizon-
tal component of velocity is 20 m/s, and because the ball
travels at this speed for 8 s, it ends up approximately 160 m
from its starting point.

R

x

y

h

vi

vyA = 0

�

�θ i

O
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Figure 4.10 illustrates various trajectories for a projectile having a given initial
speed but launched at different angles. As you can see, the range is a maximum
for �i � 45°. In addition, for any �i other than 45°, a point having cartesian coordi-
nates (R, 0) can be reached by using either one of two complementary values of �i ,
such as 75° and 15°. Of course, the maximum height and time of flight for one of
these values of �i are different from the maximum height and time of flight for the
complementary value.

As a projectile moves in its parabolic path, is there any point along the path where the ve-
locity and acceleration vectors are (a) perpendicular to each other? (b) parallel to each
other? (c) Rank the five paths in Figure 4.10 with respect to time of flight, from the shortest
to the longest.

Quick Quiz 4.2

Problem-Solving Hints
Projectile Motion
We suggest that you use the following approach to solving projectile motion
problems:

• Select a coordinate system and resolve the initial velocity vector into x and y
components.

• Follow the techniques for solving constant-velocity problems to analyze the
horizontal motion. Follow the techniques for solving constant-acceleration
problems to analyze the vertical motion. The x and y motions share the
same time of flight t.

Figure 4.10 A projectile fired from the origin with an initial speed of 50 m/s at various angles
of projection. Note that complementary values of �i result in the same value of x (range of the
projectile).

x(m)

50

100

150

y(m)

75°

60°

45°

30°

15°

vi = 50 m/s

50 100 150 200 250

QuickLab
To carry out this investigation, you
need to be outdoors with a small ball,
such as a tennis ball, as well as a wrist-
watch. Throw the ball straight up as
hard as you can and determine the
initial speed of your throw and the
approximate maximum height of the
ball, using only your watch. What
happens when you throw the ball at
some angle � � 90°? Does this
change the time of flight (perhaps
because it is easier to throw)? Can
you still determine the maximum
height and initial speed?
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The Long-JumpEXAMPLE 4.3
takeoff point and label the peak as � and the landing point
as �. The horizontal motion is described by Equation 4.10:

The value of xB can be found if the total time of the jump
is known. We are able to find t B by remembering that

and by using the y part of Equation 4.8a. We also
note that at the top of the jump the vertical component of ve-
locity vyA is zero:

This is the time needed to reach the top of the jump. Be-
cause of the symmetry of the vertical motion, an identical
time interval passes before the jumper returns to the ground.
Therefore, the total time in the air is Sub-
stituting this value into the above expression for xf gives

This is a reasonable distance for a world-class athlete.

(b) What is the maximum height reached?

Solution We find the maximum height reached by using
Equation 4.11:

Treating the long-jumper as a particle is an oversimplifica-
tion. Nevertheless, the values obtained are reasonable. 

Exercise To check these calculations, use Equations 4.13
and 4.14 to find the maximum height and horizontal range.

0.722 m�

  �1
2(9.80 m/s2)(0.384 s)2 

 � (11.0 m/s)(sin 20.0°)(0.384 s) 

ymax � yA � (vi sin � i)t A � 1
2gt A 

2 

7.94 mx f � xB � (11.0 m/s)(cos 20.0°)(0.768 s) �

t B � 2t A � 0.768 s.

  t A � 0.384 s  

  0 � (11.0 m/s) sin 20.0° � (9.80 m/s2)t A

vy f � vyA � vi sin � i � gt A  

ay � �g

x f � xB � (vi cos � i)t B � (11.0 m/s)(cos 20.0°)t B

A long-jumper leaves the ground at an angle of 20.0° above
the horizontal and at a speed of 11.0 m/s. (a) How far does
he jump in the horizontal direction? (Assume his motion is
equivalent to that of a particle.)

Solution Because the initial speed and launch angle are
given, the most direct way of solving this problem is to use
the range formula given by Equation 4.14. However, it is
more instructive to take a more general approach and use
Figure 4.9. As before, we set our origin of coordinates at the

A Bull’s-Eye Every TimeEXAMPLE 4.4
tion First, note from Figure 4.11b that the initial y
coordinate of the target is x T tan �i and that it falls through a
distance in a time t. Therefore, the y coordinate of the
target at any moment after release is 

Now if we use Equation 4.9a to write an expression for the y
coordinate of the projectile at any moment, we obtain

yP � xP tan � i � 1
2gt2

y T � x T tan � i � 1
2gt2

1
2gt2

ay � �g.In a popular lecture demonstration, a projectile is fired at a
target in such a way that the projectile leaves the gun at the
same time the target is dropped from rest, as shown in Figure
4.11. Show that if the gun is initially aimed at the stationary
target, the projectile hits the target.

Solution We can argue that a collision results under the
conditions stated by noting that, as soon as they are released,
the projectile and the target experience the same accelera-

In a long-jump event, 1993 United States champion Mike Powell
can leap horizontal distances of at least 8 m.
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1
2

Target

Line of si
ght

y

x

Point of
collision

gt 
2

xT tan θi

yT

Gun
0

vi

xT

θ

θiθ

(b)

Figure 4.11 (a) Multiflash photograph of projectile– target demonstration. If the gun is aimed directly at the target and is fired at the same
instant the target begins to fall, the projectile will hit the target. Note that the velocity of the projectile (red arrows) changes in direction and
magnitude, while the downward acceleration (violet arrows) remains constant. (Central Scientific Company.) (b) Schematic diagram of the pro-
jectile– target demonstration. Both projectile and target fall through the same vertical distance in a time t because both experience the same
acceleration ay � �g.

Thus, by comparing the two previous equations, we see that
when the y coordinates of the projectile and target are the
same, their x coordinates are the same and a collision results.
That is, when You can obtain the same re-
sult, using expressions for the position vectors for the projec-
tile and target.

yP � y T , xP � x T .

Note that a collision will not always take place owing to a
further restriction: A collision can result only when 
vi sin �i where d is the initial elevation of the target
above the floor. If vi sin �i is less than this value, the projectile
will strike the floor before reaching the target.

 √gd/2,

(a)

That’s Quite an Arm!EXAMPLE 4.5
A stone is thrown from the top of a building upward at an
angle of 30.0° to the horizontal and with an initial speed of
20.0 m/s, as shown in Figure 4.12. If the height of the build-
ing is 45.0 m, (a) how long is it before the stone hits the
ground?

Solution We have indicated the various parameters in Fig-
ure 4.12. When working problems on your own, you should
always make a sketch such as this and label it.

The initial x and y components of the stone’s velocity are

To find t, we can use (Eq. 4.9a) with
m, and m/s (there is a minus

sign on the numerical value of yf because we have chosen the
top of the building as the origin):

Solving the quadratic equation for t gives, for the positive 

root, t � Does the negative root have any physical 4.22 s.

�45.0 m � (10.0 m/s)t � 1
2(9.80 m/s2)t2

vyi � 10.0ay � �g,y f � �45.0
y f � vyit � 1

2ayt2

vyi � vi sin �i � (20.0 m/s)(sin 30.0°) � 10.0 m/s

vxi � vi cos �i � (20.0 m/s)(cos 30.0°) � 17.3 m/s

�

45.0 m

(0, 0)

y

x

vi = 20.0 m/s

θi = 30.0°

yf  = – 45.0 m

xf = ?

xf

Figure 4.12
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meaning? (Can you think of another way of finding t from
the information given?)

(b) What is the speed of the stone just before it strikes the
ground?

Solution We can use Equation 4.8a, , with 
t � 4.22 s to obtain the y component of the velocity just be-
fore the stone strikes the ground:

vy f � vyi � ayt

The Stranded ExplorersEXAMPLE 4.6
velocity is the same as that of the plane when the package is
released: 40.0 m/s. Thus, we have

If we know t, the length of time the package is in the air,
then we can determine xf , the distance the package travels in
the horizontal direction. To find t, we use the equations that
describe the vertical motion of the package. We know that at
the instant the package hits the ground, its y coordinate is

m. We also know that the initial vertical compo-
nent of the package velocity vyi is zero because at the mo-
ment of release, the package had only a horizontal compo-
nent of velocity.

From Equation 4.9a, we have

Substitution of this value for the time of flight into the
equation for the x coordinate gives

The package hits the ground 181 m to the right of the drop
point.

Exercise What are the horizontal and vertical components
of the velocity of the package just before it hits the ground?

Answer

Exercise Where is the plane when the package hits the
ground? (Assume that the plane does not change its speed or
course.)

Answer Directly over the package.

vxf � 40.0 m/s; vy f � �44.3 m/s.

181 mx f � (40.0 m/s)(4.52 s) �

 t � 4.52 s 

�100 m � �1
2(9.80 m/s2)t2

 y f � �1
2gt2 

y f � �100

x f � (40.0 m/s)t

An Alaskan rescue plane drops a package of emergency ra-
tions to a stranded party of explorers, as shown in Figure
4.13. If the plane is traveling horizontally at 40.0 m/s and is
100 m above the ground, where does the package strike the
ground relative to the point at which it was released?

Solution For this problem we choose the coordinate sys-
tem shown in Figure 4.13, in which the origin is at the point
of release of the package. Consider first the horizontal mo-
tion of the package. The only equation available to us for
finding the distance traveled along the horizontal direction is

(Eq. 4.9a). The initial x component of the packagex f � vxit

The negative sign indicates that the stone is moving down-
ward. Because m/s, the required speed is

Exercise Where does the stone strike the ground?

Answer 73.0 m from the base of the building.

35.9 m/svf � √vx f 

2 � vy f  

2 � √(17.3)2 � (�31.4)2 m/s �

vx f � vxi � 17.3

vyf � 10.0 m/s � (9.80 m/s2)(4.22 s) � �31.4 m/s

Figure 4.13

100 m

x

40.0 m/s

y
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The End of the Ski JumpEXAMPLE 4.7
d cos 35.0° and sin 35.0°. Substituting these relation-
ships into (1) and (2), we obtain

(3) d cos 35.0° � (25.0 m/s)t

(4) � d sin 35.0° � m/s2)t2

Solving (3) for t and substituting the result into (4), we find
that d � 109 m. Hence, the x and y coordinates of the point
at which he lands are

Exercise Determine how long the jumper is airborne and
his vertical component of velocity just before he lands.

Answer 3.57 s; � 35.0 m/s.

�62.5 my f � �d sin 35.0° � �(109 m) sin 35.0° �

89.3 m x f � d cos 35.0° � (109 m) cos 35.0° �

�1
2(9.80

y f � �dA ski jumper leaves the ski track moving in the horizontal di-
rection with a speed of 25.0 m/s, as shown in Figure 4.14.
The landing incline below him falls off with a slope of 35.0°. 
Where does he land on the incline?

Solution It is reasonable to expect the skier to be air-
borne for less than 10 s, and so he will not go farther than
250 m horizontally. We should expect the value of d, the dis-
tance traveled along the incline, to be of the same order of
magnitude. It is convenient to select the beginning of the
jump as the origin . Because 
and the x and y component forms of Equation 4.9a
are

(1)

(2)

From the right triangle in Figure 4.14, we see that the
jumper’s x and y coordinates at the landing point are x f �

y f � 1
2ayt2 � �1

2(9.80 m/s2)t2

x f � vxit � (25.0 m/s)t

v yi � 0,
vxi � 25.0 m/s(x i � 0, y i � 0)

Figure 4.14

y d

25.0 m/s

θ

(0, 0)

x

= 35.0°

What would have occurred if the skier in the last example happened to be car-
rying a stone and let go of it while in midair? Because the stone has the same ini-
tial velocity as the skier, it will stay near him as he moves—that is, it floats along-
side him. This is a technique that NASA uses to train astronauts. The plane
pictured at the beginning of the chapter flies in the same type of projectile path
that the skier and stone follow. The passengers and cargo in the plane fall along-
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side each other; that is, they have the same trajectory. An astronaut can release a
piece of equipment and it will float freely alongside her hand. The same thing
happens in the space shuttle. The craft and everything in it are falling as they orbit
the Earth.

UNIFORM CIRCULAR MOTION
Figure 4.16a shows a car moving in a circular path with constant linear speed v.
Such motion is called uniform circular motion. Because the car’s direction of mo-
tion changes, the car has an acceleration, as we learned in Section 4.1. For any mo-
tion, the velocity vector is tangent to the path. Consequently, when an object moves
in a circular path, its velocity vector is perpendicular to the radius of the circle.

We now show that the acceleration vector in uniform circular motion is always
perpendicular to the path and always points toward the center of the circle. An ac-

4.4

3.6

Figure 4.15 This multiflash photo-
graph of two balls released simultane-
ously illustrates both free fall (red ball)
and projectile motion (yellow ball). The
yellow ball was projected horizontally,
while the red ball was released from
rest. (Richard Megna/Fundamental Pho-
tographs)

Figure 4.16 (a) A car moving along a circular path at constant speed experiences uniform cir-
cular motion. (b) As a particle moves from � to �, its velocity vector changes from vi to vf . 
(c) The construction for determining the direction of the change in velocity �v, which is toward
the center of the circle for small �r.

QuickLab
Armed with nothing but a ruler and
the knowledge that the time between
images was 1/30 s, find the horizon-
tal speed of the yellow ball in Figure
4.15. (Hint: Start by analyzing the mo-
tion of the red ball. Because you
know its vertical acceleration, you can
calibrate the distances depicted in
the photograph. Then you can find
the horizontal speed of the yellow
ball.)

(b)

∆r

vi

vf

r∆θr

O

� �

θ

(a)

v
r

O

(c)

∆v∆θθ
vf

vi
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celeration of this nature is called a centripetal (center-seeking) acceleration, and
its magnitude is 

(4.15)

where r is the radius of the circle and the notation ar is used to indicate that the
centripetal acceleration is along the radial direction.

To derive Equation 4.15, consider Figure 4.16b, which shows a particle first at
point � and then at point �. The particle is at � at time ti , and its velocity at that
time is vi . It is at � at some later time tf , and its velocity at that time is vf . Let us as-
sume here that vi and vf differ only in direction; their magnitudes (speeds) are the
same (that is, To calculate the acceleration of the particle, let us be-
gin with the defining equation for average acceleration (Eq. 4.4):

This equation indicates that we must subtract vi from vf , being sure to treat them
as vectors, where is the change in the velocity. Because 
we can find the vector �v, using the vector triangle in Figure 4.16c.

Now consider the triangle in Figure 4.16b, which has sides �r and r. This trian-
gle and the one in Figure 4.16c, which has sides �v and v, are similar. This fact en-
ables us to write a relationship between the lengths of the sides:

This equation can be solved for �v and the expression so obtained substituted into
(Eq. 4.4) to give

Now imagine that points � and � in Figure 4.16b are extremely close to-
gether. In this case �v points toward the center of the circular path, and because
the acceleration is in the direction of �v, it too points toward the center. Further-
more, as � and � approach each other, �t approaches zero, and the ratio �r/�t
approaches the speed v. Hence, in the limit �t : 0, the magnitude of the acceler-
ation is

Thus, we conclude that in uniform circular motion, the acceleration is directed to-
ward the center of the circle and has a magnitude given by v2/r, where v is the
speed of the particle and r is the radius of the circle. You should be able to show
that the dimensions of ar are L/T2. We shall return to the discussion of circular
motion in Section 6.1.

TANGENTIAL AND RADIAL ACCELERATION
Now let us consider a particle moving along a curved path where the velocity
changes both in direction and in magnitude, as shown in Figure 4.17. As is always
the case, the velocity vector is tangent to the path, but now the direction of the ac-

4.5

ar �
v2

r

a �
v �r
r �t

a � �v/�t

�v
v

�
�r
r

vi � �v � vf ,�v � vf � vi

a �
vf � vi

tf � ti
�

�v
�t

v i � vf � v).

ar �
v2

r

3.6
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celeration vector a changes from point to point. This vector can be resolved into
two component vectors: a radial component vector ar and a tangential component
vector at . Thus, a can be written as the vector sum of these component vectors:

(4.16)

The tangential acceleration causes the change in the speed of the particle. It
is parallel to the instantaneous velocity, and its magnitude is

(4.17)

The radial acceleration arises from the change in direction of the velocity
vector as described earlier and has an absolute magnitude given by

(4.18)

where r is the radius of curvature of the path at the point in question. Because ar
and at are mutually perpendicular component vectors of a, it follows that 

As in the case of uniform circular motion, ar in nonuniform circu-
lar motion always points toward the center of curvature, as shown in Figure 4.17.
Also, at a given speed, ar is large when the radius of curvature is small (as at points
� and � in Figure 4.17) and small when r is large (such as at point �). The direc-
tion of at is either in the same direction as v (if v is increasing) or opposite v (if v
is decreasing).

In uniform circular motion, where v is constant, at � 0 and the acceleration is
always completely radial, as we described in Section 4.4. (Note: Eq. 4.18 is identical
to Eq. 4.15.) In other words, uniform circular motion is a special case of motion
along a curved path. Furthermore, if the direction of v does not change, then
there is no radial acceleration and the motion is one-dimensional (in this case, 
ar � 0, but at may not be zero).

(a) Draw a motion diagram showing velocity and acceleration vectors for an object moving
with constant speed counterclockwise around a circle. Draw similar diagrams for an object
moving counterclockwise around a circle but (b) slowing down at constant tangential accel-
eration and (c) speeding up at constant tangential acceleration. 

It is convenient to write the acceleration of a particle moving in a circular path
in terms of unit vectors. We do this by defining the unit vectors and shown in�̂r̂

Quick Quiz 4.3

a � √ar 

2 � at 

2
 .

ar �
v2

r

at �
d � v �
dt

a � a r � a t

Figure 4.17 The motion of a particle along an arbitrary curved path lying in the xy plane. If
the velocity vector v (always tangent to the path) changes in direction and magnitude, the com-
ponent vectors of the acceleration a are a tangential component at and a radial component ar .

Total acceleration

Tangential acceleration

Radial acceleration

Path of
particle

at

ar

a

atar

aat

ar a

�

�

�
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Figure 4.18a, where is a unit vector lying along the radius vector and directed ra-
dially outward from the center of the circle and is a unit vector tangent to the
circle. The direction of is in the direction of increasing �, where � is measured
counterclockwise from the positive x axis. Note that both and “move along with
the particle” and so vary in time. Using this notation, we can express the total ac-
celeration as

(4.19)

These vectors are described in Figure 4.18b. The negative sign on the v2/r term in
Equation 4.19 indicates that the radial acceleration is always directed radially in-
ward, opposite

Based on your experience, draw a motion diagram showing the position, velocity, and accel-
eration vectors for a pendulum that, from an initial position 45° to the right of a central ver-
tical line, swings in an arc that carries it to a final position 45° to the left of the central verti-
cal line. The arc is part of a circle, and you should use the center of this circle as the origin
for the position vectors.

Quick Quiz 4.4

r̂.

a � a t � a r �
d� v �
dt

 �̂ �
v2

r
 r̂

�̂r̂
�̂

�̂
r̂

The Swinging BallEXAMPLE 4.8
ure 4.19 lets us take a closer look at the situation. The radial
acceleration is given by Equation 4.18. With m/s and

m, we find that

(b) What is the magnitude of the tangential acceleration
when � � 20°?

4.5 m/s2ar �
v2

r
�

(1.5 m/s)2

0.50 m
�

r � 0.50
v � 1.5

A ball tied to the end of a string 0.50 m in length swings in a
vertical circle under the influence of gravity, as shown in Fig-
ure 4.19. When the string makes an angle � � 20° with the
vertical, the ball has a speed of 1.5 m/s. (a) Find the magni-
tude of the radial component of acceleration at this instant.

Solution The diagram from the answer to Quick Quiz 4.4
(p. 109) applies to this situation, and so we have a good idea
of how the acceleration vector varies during the motion. Fig-

Figure 4.18 (a) Descriptions of the unit vectors and (b) The total acceleration a of a parti-
cle moving along a curved path (which at any instant is part of a circle of radius r) is the sum of
radial and tangential components. The radial component is directed toward the center of curva-
ture. If the tangential component of acceleration becomes zero, the particle follows uniform cir-
cular motion.

�̂.r̂

ˆ

ˆ

θ
x

y

O

r

r

(a)

O

(b)

ar

a

at

a  =  ar  +  at

�
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RELATIVE VELOCITY AND RELATIVE ACCELERATION
In this section, we describe how observations made by different observers in differ-
ent frames of reference are related to each other. We find that observers in differ-
ent frames of reference may measure different displacements, velocities, and accel-
erations for a given particle. That is, two observers moving relative to each other
generally do not agree on the outcome of a measurement.

For example, suppose two cars are moving in the same direction with speeds
of 50 mi/h and 60 mi/h. To a passenger in the slower car, the speed of the faster
car is 10 mi/h. Of course, a stationary observer will measure the speed of the faster
car to be 60 mi/h, not 10 mi/h. Which observer is correct? They both are! This
simple example demonstrates that the velocity of an object depends on the frame
of reference in which it is measured.

Suppose a person riding on a skateboard (observer A) throws a ball in such a
way that it appears in this person’s frame of reference to move first straight upward
and then straight downward along the same vertical line, as shown in Figure 4.20a.
A stationary observer B sees the path of the ball as a parabola, as illustrated in Fig-
ure 4.20b. Relative to observer B, the ball has a vertical component of velocity (re-
sulting from the initial upward velocity and the downward acceleration of gravity)
and a horizontal component.

Another example of this concept that of is a package dropped from an air-
plane flying with a constant velocity; this is the situation we studied in Example
4.6. An observer on the airplane sees the motion of the package as a straight line
toward the Earth. The stranded explorer on the ground, however, sees the trajec-
tory of the package as a parabola. If, once it drops the package, the airplane con-

4.6

3.7

g

θ

r

v  ≠  0

ar

at

a
φ

Figure 4.19 Motion of a ball suspended by a string of length r.
The ball swings with nonuniform circular motion in a vertical plane,
and its acceleration a has a radial component ar and a tangential
component at .

Solution When the ball is at an angle � to the vertical, it
has a tangential acceleration of magnitude g sin � (the com-
ponent of g tangent to the circle). Therefore, at � � 20°,

at � g sin 20° �

(c) Find the magnitude and direction of the total acceler-
ation a at � � 20°.

Solution Because a � ar � at , the magnitude of a at � �
20° is

If � is the angle between a and the string, then

Note that a, at , and ar all change in direction and magni-
tude as the ball swings through the circle. When the ball is at
its lowest elevation (� � 0), at � 0 because there is no tan-
gential component of g at this angle; also, ar is a maximum be-
cause v is a maximum. If the ball has enough speed to reach
its highest position (� � 180°), then at is again zero but ar is a
minimum because v is now a minimum. Finally, in the two

37°� � tan�1 
at

ar
� tan�1 � 3.4 m/s2

4.5 m/s2 � �

5.6 m/s2a � √ar 

2 � at 

2 � √(4.5)2 � (3.4)2 m/s2 �

3.4 m/s2.

horizontal positions (� � 90° and 270°), and ar has a
value between its minimum and maximum values.

� a t � � g



tinues to move horizontally with the same velocity, then the package hits the
ground directly beneath the airplane (if we assume that air resistance is ne-
glected)!

In a more general situation, consider a particle located at point � in Figure
4.21. Imagine that the motion of this particle is being described by two observers,
one in reference frame S, fixed relative to the Earth, and another in reference
frame S�, moving to the right relative to S (and therefore relative to the Earth)
with a constant velocity v0 . (Relative to an observer in S�, S moves to the left with a
velocity � v0 .) Where an observer stands in a reference frame is irrelevant in this
discussion, but for purposes of this discussion let us place each observer at her or
his respective origin.

We label the position of the particle relative to the S frame with the position
vector r and that relative to the S� frame with the position vector r�, both after
some time t. The vectors r and r� are related to each other through the expression
r � r� � v0t, or

(4.20)r� � r � v0t
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(a) (b)

Path seen
by observer B

AA

Path seen
by observer A

B

Figure 4.20 (a) Observer A on a moving vehicle throws a ball upward and sees it rise and fall
in a straight-line path. (b) Stationary observer B sees a parabolic path for the same ball. 

Figure 4.21 A particle located at � is
described by two observers, one in the
fixed frame of reference S, and the other
in the frame S�, which moves to the right
with a constant velocity v0 . The vector r is
the particle’s position vector relative to S,
and r� is its position vector relative to S�.

S

r

r′

v0t

S ′

O ′O
v0

�

Galilean coordinate
transformation
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That is, after a time t, the S� frame is displaced to the right of the S frame by an
amount v0t.

If we differentiate Equation 4.20 with respect to time and note that v0 is con-
stant, we obtain

(4.21)

where v� is the velocity of the particle observed in the S� frame and v is its velocity
observed in the S frame. Equations 4.20 and 4.21 are known as Galilean transfor-
mation equations. They relate the coordinates and velocity of a particle as mea-
sured in a frame fixed relative to the Earth to those measured in a frame moving
with uniform motion relative to the Earth.

Although observers in two frames measure different velocities for the particle,
they measure the same acceleration when v0 is constant. We can verify this by taking
the time derivative of Equation 4.21:

Because v0 is constant, dv0/dt � 0. Therefore, we conclude that a� � a because
and That is, the acceleration of the particle measured

by an observer in the Earth’s frame of reference is the same as that mea-
sured by any other observer moving with constant velocity relative to the
Earth’s frame.

A passenger in a car traveling at 60 mi/h pours a cup of coffee for the tired driver. Describe
the path of the coffee as it moves from a Thermos bottle into a cup as seen by (a) the pas-
senger and (b) someone standing beside the road and looking in the window of the car as
it drives past. (c) What happens if the car accelerates while the coffee is being poured?

Quick Quiz 4.5

a � dv/dt.a� � dv�/dt

dv�

dt
�

dv
dt

�
dv0

dt

  v� � v � v0  

dr�

dt
�

dr
dt

� v0

Galilean velocity transformation

The woman standing on the beltway sees the walking man pass by at a slower speed than the
woman standing on the stationary floor does.
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A Boat Crossing a RiverEXAMPLE 4.9
The boat is moving at a speed of 11.2 km/h in the direction
26.6° east of north relative to the Earth.

Exercise If the width of the river is 3.0 km, find the time it
takes the boat to cross it.

Answer 18 min.

A boat heading due north crosses a wide river with a speed of
10.0 km/h relative to the water. The water in the river has a uni-
form speed of 5.00 km/h due east relative to the Earth. Deter-
mine the velocity of the boat relative to an observer standing on
either bank.

Solution We know vbr , the velocity of the boat relative to
the river, and vrE , the velocity of the river relative to the Earth.
What we need to find is vbE , the velocity of the boat relative to
the Earth. The relationship between these three quantities is

The terms in the equation must be manipulated as vector
quantities; the vectors are shown in Figure 4.22. The quantity
vbr is due north, vrE is due east, and the vector sum of the
two, vbE , is at an angle �, as defined in Figure 4.22. Thus, we
can find the speed vbE of the boat relative to the Earth by us-
ing the Pythagorean theorem:

The direction of vbE is

� � tan�1 � v rE

vbr
� � tan�1 � 5.00

10.0 � � 26.6°

11.2 km/h�

vbE � √vbr 

2 � v rE 

2 � √(10.0)2 � (5.00)2 km/h

vbE � vbr � vrE

Which Way Should We Head?EXAMPLE 4.10
If the boat of the preceding example travels with the same
speed of 10.0 km/h relative to the river and is to travel 
due north, as shown in Figure 4.23, what should its heading
be?

Solution As in the previous example, we know vrE and the
magnitude of the vector vbr , and we want vbE to be directed
across the river. Figure 4.23 shows that the boat must head
upstream in order to travel directly northward across the
river. Note the difference between the triangle in Figure 4.22
and the one in Figure 4.23—specifically, that the hypotenuse
in Figure 4.23 is no longer vbE . Therefore, when we use the
Pythagorean theorem to find vbE this time, we obtain

Now that we know the magnitude of vbE , we can find the di-
rection in which the boat is heading:

The boat must steer a course 30.0° west of north.

30.0°� � tan�1 � v rE

vbE
� � tan�1 � 5.00

8.66 � �

vbE � √vbr 

2 � v rE 

2 � √(10.0)2 � (5.00)2 km/h � 8.66 km/h

Figure 4.22

Figure 4.23

E

N

S

W

vrE

vbr

vbE

θ

E

N

S

W

vrE

vbr

vbE

θ

Exercise If the width of the river is 3.0 km, find the time it
takes the boat to cross it.

Answer 21 min.
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SUMMARY

If a particle moves with constant acceleration a and has velocity vi and position ri at
t � 0, its velocity and position vectors at some later time t are

(4.8)

(4.9)

For two-dimensional motion in the xy plane under constant acceleration, each of
these vector expressions is equivalent to two component expressions—one for the
motion in the x direction and one for the motion in the y direction. You should be
able to break the two-dimensional motion of any object into these two compo-
nents.

Projectile motion is one type of two-dimensional motion under constant ac-
celeration, where and It is useful to think of projectile motion as
the superposition of two motions: (1) constant-velocity motion in the x direction
and (2) free-fall motion in the vertical direction subject to a constant downward
acceleration of magnitude g � 9.80 m/s2. You should be able to analyze the mo-
tion in terms of separate horizontal and vertical components of velocity, as shown
in Figure 4.24.

A particle moving in a circle of radius r with constant speed v is in uniform
circular motion. It undergoes a centripetal (or radial) acceleration ar because the
direction of v changes in time. The magnitude of ar is

(4.18)

and its direction is always toward the center of the circle.
If a particle moves along a curved path in such a way that both the magnitude

and the direction of v change in time, then the particle has an acceleration vector
that can be described by two component vectors: (1) a radial component vector ar
that causes the change in direction of v and (2) a tangential component vector 
at that causes the change in magnitude of v. The magnitude of ar is v2/r, and the
magnitude of at is You should be able to sketch motion diagrams for an
object following a curved path and show how the velocity and acceleration vectors
change as the object’s motion varies.

The velocity v of a particle measured in a fixed frame of reference S can be re-
lated to the velocity v� of the same particle measured in a moving frame of refer-
ence S� by

(4.21)

where v0 is the velocity of S� relative to S. You should be able to translate back and
forth between different frames of reference.

v� � v � v0

d � v �/dt.

ar �
v2

r

ay � �g.ax � 0

rf � ri � vit � 1
2 at2

vf � vi � at  

Figure 4.24 Analyzing projectile motion in terms of horizontal and vertical components.

Projectile motion
is equivalent to…

vi

i

(x, y)
y

x x

i

Horizontal
motion at
constant velocity

vy i

Vertical motion
at constant
acceleration

θvxf = vx i = vi cos

θ

and…

y
vy f



100 C H A P T E R  4 Motion in Two Dimensions

QUESTIONS

and therefore has no acceleration. The professor claims
that the student is wrong because the satellite must have a
centripetal acceleration as it moves in its circular orbit.
What is wrong with the student’s argument?

12. What is the fundamental difference between the unit vec-
tors and and the unit vectors i and j?

13. At the end of its arc, the velocity of a pendulum is zero. Is
its acceleration also zero at this point? 

14. If a rock is dropped from the top of a sailboat’s mast, will
it hit the deck at the same point regardless of whether the
boat is at rest or in motion at constant velocity?

15. A stone is thrown upward from the top of a building.
Does the stone’s displacement depend on the location of
the origin of the coordinate system? Does the stone’s ve-
locity depend on the location of the origin?

16. Is it possible for a vehicle to travel around a curve without
accelerating? Explain.

17. A baseball is thrown with an initial velocity of (10i � 15j)
m/s. When it reaches the top of its trajectory, what are
(a) its velocity and (b) its acceleration? Neglect the effect
of air resistance.

18. An object moves in a circular path with constant speed v.
(a) Is the velocity of the object constant? (b) Is its acceler-
ation constant? Explain.

19. A projectile is fired at some angle to the horizontal with
some initial speed vi , and air resistance is neglected. Is
the projectile a freely falling body? What is its accelera-
tion in the vertical direction? What is its acceleration in
the horizontal direction?

20. A projectile is fired at an angle of 30° from the horizontal
with some initial speed. Firing at what other projectile an-
gle results in the same range if the initial speed is the
same in both cases? Neglect air resistance.

21. A projectile is fired on the Earth with some initial velocity.
Another projectile is fired on the Moon with the same ini-
tial velocity. If air resistance is neglected, which projectile
has the greater range? Which reaches the greater alti-
tude? (Note that the free-fall acceleration on the Moon is
about 1.6 m/s2.)

22. As a projectile moves through its parabolic trajectory,
which of these quantities, if any, remain constant: 
(a) speed, (b) acceleration, (c) horizontal component of
velocity, (d) vertical component of velocity?

23. A passenger on a train that is moving with constant veloc-
ity drops a spoon. What is the acceleration of the spoon
relative to (a) the train and (b) the Earth?

�̂r̂

1. Can an object accelerate if its speed is constant? Can an
object accelerate if its velocity is constant? 

2. If the average velocity of a particle is zero in some time in-
terval, what can you say about the displacement of the
particle for that interval?

3. If you know the position vectors of a particle at two points
along its path and also know the time it took to get from
one point to the other, can you determine the particle’s
instantaneous velocity? Its average velocity? Explain.

4. Describe a situation in which the velocity of a particle is
always perpendicular to the position vector.

5. Explain whether or not the following particles have an ac-
celeration: (a) a particle moving in a straight line with
constant speed and (b) a particle moving around a curve
with constant speed.

6. Correct the following statement: “The racing car rounds
the turn at a constant velocity of 90 mi/h.’’

7. Determine which of the following moving objects have an
approximately parabolic trajectory: (a) a ball thrown in
an arbitrary direction, (b) a jet airplane, (c) a rocket leav-
ing the launching pad, (d) a rocket whose engines fail a
few minutes after launch, (e) a tossed stone moving to
the bottom of a pond.

8. A rock is dropped at the same instant that a ball at the
same initial elevation is thrown horizontally. Which will
have the greater speed when it reaches ground level?

9. A spacecraft drifts through space at a constant velocity.
Suddenly, a gas leak in the side of the spacecraft causes a
constant acceleration of the spacecraft in a direction per-
pendicular to the initial velocity. The orientation of the
spacecraft does not change, and so the acceleration re-
mains perpendicular to the original direction of the ve-
locity. What is the shape of the path followed by the
spacecraft in this situation? 

10. A ball is projected horizontally from the top of a building.
One second later another ball is projected horizontally
from the same point with the same velocity. At what point
in the motion will the balls be closest to each other? Will
the first ball always be traveling faster than the second
ball? How much time passes between the moment the
first ball hits the ground and the moment the second one
hits the ground? Can the horizontal projection velocity of
the second ball be changed so that the balls arrive at the
ground at the same time?

11. A student argues that as a satellite orbits the Earth in a
circular path, the satellite moves with a constant velocity
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PROBLEMS

6. The vector position of a particle varies in time accord-
ing to the expression r � (3.00i � 6.00t 2 j) m. (a) Find
expressions for the velocity and acceleration as func-
tions of time. (b) Determine the particle’s position and
velocity at t � 1.00 s.

7. A fish swimming in a horizontal plane has velocity 
vi � (4.00i � 1.00j) m/s at a point in the ocean whose
displacement from a certain rock is ri � (10.0i � 4.00j)
m. After the fish swims with constant acceleration for
20.0 s, its velocity is v � (20.0i � 5.00j) m/s. (a) What
are the components of the acceleration? (b) What is the
direction of the acceleration with respect to the unit vec-
tor i? (c) Where is the fish at t � 25.0 s if it maintains its
original acceleration and in what direction is it moving?

8. A particle initially located at the origin has an accelera-
tion of a � 3.00j m/s2 and an initial velocity of vi �
5.00i m/s. Find (a) the vector position and velocity at
any time t and (b) the coordinates and speed of the
particle at t � 2.00 s.

Section 4.3 Projectile Motion
(Neglect air resistance in all problems and take g �
9.80 m/s2.)

9. In a local bar, a customer slides an empty beer mug
down the counter for a refill. The bartender is momen-
tarily distracted and does not see the mug, which slides
off the counter and strikes the floor 1.40 m from the
base of the counter. If the height of the counter is 
0.860 m, (a) with what velocity did the mug leave the
counter and (b) what was the direction of the mug’s 
velocity just before it hit the floor?

10. In a local bar, a customer slides an empty beer mug
down the counter for a refill. The bartender is momen-
tarily distracted and does not see the mug, which slides
off the counter and strikes the floor at distance d from
the base of the counter. If the height of the counter is h,
(a) with what velocity did the mug leave the counter
and (b) what was the direction of the mug’s velocity just
before it hit the floor?

11. One strategy in a snowball fight is to throw a first snow-
ball at a high angle over level ground. While your oppo-
nent is watching the first one, you throw a second one
at a low angle and timed to arrive at your opponent be-
fore or at the same time as the first one. Assume both
snowballs are thrown with a speed of 25.0 m/s. The first
one is thrown at an angle of 70.0° with respect to the
horizontal. (a) At what angle should the second (low-
angle) snowball be thrown if it is to land at the same
point as the first? (b) How many seconds later should

Section 4.1 The Displacement, Velocity, and Acceleration
Vectors

1. A motorist drives south at 20.0 m/s for 3.00 min, then
turns west and travels at 25.0 m/s for 2.00 min, and fi-
nally travels northwest at 30.0 m/s for 1.00 min. For this
6.00-min trip, find (a) the total vector displacement,
(b) the average speed, and (c) the average velocity. Use
a coordinate system in which east is the positive x axis.

2. Suppose that the position vector for a particle is given
as with and where

m/s, m, m/s2, and 
m. (a) Calculate the average velocity during the time in-
terval from s to s. (b) Determine the
velocity and the speed at s.

3. A golf ball is hit off a tee at the edge of a cliff. Its x and y
coordinates versus time are given by the following ex-
pressions: 

and

(a) Write a vector expression for the ball’s position as a
function of time, using the unit vectors i and j. By taking
derivatives of your results, write expressions for (b) the
velocity vector as a function of time and (c) the accelera-
tion vector as a function of time. Now use unit vector no-
tation to write expressions for (d) the position, (e) the
velocity, and (f) the acceleration of the ball, all at 
t � 3.00 s.

4. The coordinates of an object moving in the xy plane
vary with time according to the equations

and

where t is in seconds and � has units of seconds�1. 
(a) Determine the components of velocity and compo-
nents of acceleration at t � 0. (b) Write expressions for
the position vector, the velocity vector, and the accelera-
tion vector at any time (c) Describe the path of
the object on an xy graph.

Section 4.2 Two-Dimensional Motion 
with Constant Acceleration

5. At t � 0, a particle moving in the xy plane with constant
acceleration has a velocity of 
when it is at the origin. At t � 3.00 s, the particle’s ve-
locity is v � (9.00i � 7.00 j) m/s. Find (a) the accelera-
tion of the particle and (b) its coordinates at any time t .

vi � (3.00i � 2.00 j) m/s

t � 0.

y � (4.00 m) � (5.00 m)cos �t

x � �(5.00 m) sin �t

y � (4.00 m/s)t �(4.90 m/s2)t2

x � (18.0 m/s)t

t � 2.00
t � 4.00t � 2.00

d � 1.00c � 0.125b � 1.00a � 1.00
y � ct2 � d,x � at � br � x i � y j,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

WEB
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the second snowball be thrown if it is to land at the
same time as the first?

12. A tennis player standing 12.6 m from the net hits the
ball at 3.00° above the horizontal. To clear the net, the
ball must rise at least 0.330 m. If the ball just clears the
net at the apex of its trajectory, how fast was the ball
moving when it left the racket?

13. An artillery shell is fired with an initial velocity of 
300 m/s at 55.0° above the horizontal. It explodes on a
mountainside 42.0 s after firing. What are the x and y
coordinates of the shell where it explodes, relative to its
firing point?

14. An astronaut on a strange planet finds that she can
jump a maximum horizontal distance of 15.0 m if her
initial speed is 3.00 m/s. What is the free-fall accelera-
tion on the planet?

15. A projectile is fired in such a way that its horizontal
range is equal to three times its maximum height. What
is the angle of projection? Give your answer to three sig-
nificant figures.

16. A ball is tossed from an upper-story window of a build-
ing. The ball is given an initial velocity of 8.00 m/s at an
angle of 20.0° below the horizontal. It strikes the
ground 3.00 s later. (a) How far horizontally from the
base of the building does the ball strike the ground? 
(b) Find the height from which the ball was thrown. 
(c) How long does it take the ball to reach a point 
10.0 m below the level of launching?

17. A cannon with a muzzle speed of 1 000 m/s is used to
start an avalanche on a mountain slope. The target is 
2 000 m from the cannon horizontally and 800 m above
the cannon. At what angle, above the horizontal, should
the cannon be fired?

18. Consider a projectile that is launched from the origin of
an xy coordinate system with speed vi at initial angle �i
above the horizontal. Note that at the apex of its trajec-
tory the projectile is moving horizontally, so that the
slope of its path is zero. Use the expression for the tra-
jectory given in Equation 4.12 to find the x coordinate
that corresponds to the maximum height. Use this x co-
ordinate and the symmetry of the trajectory to deter-
mine the horizontal range of the projectile.

19. A placekicker must kick a football from a point 36.0 m
(about 40 yards) from the goal, and half the crowd
hopes the ball will clear the crossbar, which is 3.05 m
high. When kicked, the ball leaves the ground with a
speed of 20.0 m/s at an angle of 53.0° to the horizontal.
(a) By how much does the ball clear or fall short of
clearing the crossbar? (b) Does the ball approach the
crossbar while still rising or while falling?

20. A firefighter 50.0 m away from a burning building di-
rects a stream of water from a fire hose at an angle of
30.0° above the horizontal, as in Figure P4.20. If the
speed of the stream is 40.0 m/s, at what height will the
water strike the building?

21. A firefighter a distance d from a burning building di-
rects a stream of water from a fire hose at angle �i above
the horizontal as in Figure P4.20. If the initial speed of
the stream is vi , at what height h does the water strike
the building?

22. A soccer player kicks a rock horizontally off a cliff 
40.0 m high into a pool of water. If the player hears the
sound of the splash 3.00 s later, what was the initial
speed given to the rock? Assume the speed of sound in
air to be 343 m/s.

vi

d

h

θi

Figure P4.20 Problems 20 and 21. (Frederick McKinney/FPG Interna-
tional)

WEB
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23. A basketball star covers 2.80 m horizontally in a jump to
dunk the ball (Fig. P4.23). His motion through space
can be modeled as that of a particle at a point called his
center of mass (which we shall define in Chapter 9). His
center of mass is at elevation 1.02 m when he leaves the
floor. It reaches a maximum height of 1.85 m above the
floor and is at elevation 0.900 m when he touches down
again. Determine (a) his time of flight (his “hang
time”), (b) his horizontal and (c) vertical velocity com-
ponents at the instant of takeoff, and (d) his takeoff an-
gle. (e) For comparison, determine the hang time of a
whitetail deer making a jump with center-of-mass eleva-
tions m, m, m.y f � 0.700ymax � 2.50y i � 1.20

Section 4.4 Uniform Circular Motion
24. The orbit of the Moon about the Earth is approximately

circular, with a mean radius of 3.84 	 108 m. It takes
27.3 days for the Moon to complete one revolution
about the Earth. Find (a) the mean orbital speed of the
Moon and (b) its centripetal acceleration.

25. The athlete shown in Figure P4.25 rotates a 1.00-kg dis-
cus along a circular path of radius 1.06 m. The maximum
speed of the discus is 20.0 m/s. Determine the magni-
tude of the maximum radial acceleration of the discus.

WEB

Figure P4.23 (Top, Ron Chapple/FPG International;
bottom, Bill Lea/Dembinsky Photo Associates)

Figure P4.25 (Sam Sargent/Liaison International)

26. From information on the endsheets of this book, com-
pute, for a point located on the surface of the Earth at
the equator, the radial acceleration due to the rotation
of the Earth about its axis.

27. A tire 0.500 m in radius rotates at a constant rate of 
200 rev/min. Find the speed and acceleration of a small
stone lodged in the tread of the tire (on its outer edge).
(Hint: In one revolution, the stone travels a distance
equal to the circumference of its path, 2�r.)

28. During liftoff, Space Shuttle astronauts typically feel ac-
celerations up to 1.4g, where g � 9.80 m/s2. In their
training, astronauts ride in a device where they experi-
ence such an acceleration as a centripetal acceleration.
Specifically, the astronaut is fastened securely at the end
of a mechanical arm that then turns at constant speed
in a horizontal circle. Determine the rotation rate, in
revolutions per second, required to give an astronaut a
centripetal acceleration of 1.40g while the astronaut
moves in a circle of radius 10.0 m.

29. Young David who slew Goliath experimented with slings
before tackling the giant. He found that he could re-
volve a sling of length 0.600 m at the rate of 8.00 rev/s.
If he increased the length to 0.900 m, he could revolve
the sling only 6.00 times per second. (a) Which rate of
rotation gives the greater speed for the stone at the end
of the sling? (b) What is the centripetal acceleration of
the stone at 8.00 rev/s? (c) What is the centripetal ac-
celeration at 6.00 rev/s?
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30. The astronaut orbiting the Earth in Figure P4.30 is
preparing to dock with a Westar VI satellite. The satel-
lite is in a circular orbit 600 km above the Earth’s sur-
face, where the free-fall acceleration is 8.21 m/s2. The
radius of the Earth is 6 400 km. Determine the speed of
the satellite and the time required to complete one or-
bit around the Earth.

at a given instant of time. At this instant, find (a) the ra-
dial acceleration, (b) the speed of the particle, and 
(c) its tangential acceleration.

34. A student attaches a ball to the end of a string 0.600 m
in length and then swings the ball in a vertical circle.
The speed of the ball is 4.30 m/s at its highest point
and 6.50 m/s at its lowest point. Find the acceleration
of the ball when the string is vertical and the ball is at
(a) its highest point and (b) its lowest point.

35. A ball swings in a vertical circle at the end of a rope 
1.50 m long. When the ball is 36.9° past the lowest point
and on its way up, its total acceleration is (� 22.5i �
20.2j) m/s2. At that instant, (a) sketch a vector diagram
showing the components of this acceleration, (b) deter-
mine the magnitude of its radial acceleration, and 
(c) determine the speed and velocity of the ball.

Section 4.6 Relative Velocity and Relative Acceleration
36. Heather in her Corvette accelerates at the rate of 

(3.00i � 2.00 j) m/s2, while Jill in her Jaguar accelerates
at (1.00i � 3.00 j) m/s2. They both start from rest at the
origin of an xy coordinate system. After 5.00 s, (a) what
is Heather’s speed with respect to Jill, (b) how far apart
are they, and (c) what is Heather’s acceleration relative
to Jill?

37. A river has a steady speed of 0.500 m/s. A student swims
upstream a distance of 1.00 km and swims back to the
starting point. If the student can swim at a speed of 
1.20 m/s in still water, how long does the trip take?
Compare this with the time the trip would take if the
water were still.

38. How long does it take an automobile traveling in the
left lane at 60.0 km/h to pull alongside a car traveling
in the right lane at 40.0 km/h if the cars’ front bumpers
are initially 100 m apart?

39. The pilot of an airplane notes that the compass indi-
cates a heading due west. The airplane’s speed relative
to the air is 150 km/h. If there is a wind of 30.0 km/h
toward the north, find the velocity of the airplane rela-
tive to the ground. 

40. Two swimmers, Alan and Beth, start at the same point in
a stream that flows with a speed v. Both move at the
same speed c (c � v) relative to the stream. Alan swims
downstream a distance L and then upstream the same
distance. Beth swims such that her motion relative to
the ground is perpendicular to the banks of the stream.
She swims a distance L in this direction and then back.
The result of the motions of Alan and Beth is that they
both return to the starting point. Which swimmer re-
turns first? (Note: First guess at the answer.)

41. A child in danger of drowning in a river is being carried
downstream by a current that has a speed of 2.50 km/h.
The child is 0.600 km from shore and 0.800 km up-
stream of a boat landing when a rescue boat sets out.
(a) If the boat proceeds at its maximum speed of 
20.0 km/h relative to the water, what heading relative to
the shore should the pilot take? (b) What angle does

Figure P4.30 (Courtesy of NASA)

Figure P4.33

30.0°
2.50 m a

v

a  =  15.0 m/s2

Section 4.5 Tangential and Radial Acceleration
31. A train slows down as it rounds a sharp horizontal

curve, slowing from 90.0 km/h to 50.0 km/h in the 
15.0 s that it takes to round the curve. The radius of the
curve is 150 m. Compute the acceleration at the mo-
ment the train speed reaches 50.0 km/h. Assume that
the train slows down at a uniform rate during the 15.0-s 
interval.

32. An automobile whose speed is increasing at a rate of
0.600 m/s2 travels along a circular road of radius 20.0 m.
When the instantaneous speed of the automobile is 4.00
m/s, find (a) the tangential acceleration component,
(b) the radial acceleration component, and (c) the
magnitude and direction of the total acceleration.

33. Figure P4.33 shows the total acceleration and velocity of
a particle moving clockwise in a circle of radius 2.50 m
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the boat velocity make with the shore? (c) How long
does it take the boat to reach the child?

42. A bolt drops from the ceiling of a train car that is accel-
erating northward at a rate of 2.50 m/s2. What is the ac-
celeration of the bolt relative to (a) the train car and
(b) the Earth?

43. A science student is riding on a flatcar of a train travel-
ing along a straight horizontal track at a constant speed
of 10.0 m/s. The student throws a ball into the air along
a path that he judges to make an initial angle of 60.0°
with the horizontal and to be in line with the track. The
student’s professor, who is standing on the ground
nearby, observes the ball to rise vertically. How high
does she see the ball rise?

ADDITIONAL PROBLEMS

44. A ball is thrown with an initial speed vi at an angle �i with
the horizontal. The horizontal range of the ball is R , and
the ball reaches a maximum height R/6. In terms of R
and g, find (a) the time the ball is in motion, (b) the
ball’s speed at the peak of its path, (c) the initial vertical
component of its velocity, (d) its initial speed, and (e) the
angle �i . (f) Suppose the ball is thrown at the same initial
speed found in part (d) but at the angle appropriate for
reaching the maximum height. Find this height. (g) Sup-
pose the ball is thrown at the same initial speed but at the
angle necessary for maximum range. Find this range.

45. As some molten metal splashes, one droplet flies off to
the east with initial speed vi at angle �i above the hori-
zontal, and another droplet flies off to the west with the
same speed at the same angle above the horizontal, as
in Figure P4.45. In terms of vi and �i , find the distance
between the droplets as a function of time.

(b) For what value of �i is d a maximum, and what is
that maximum value of d?

48. A student decides to measure the muzzle velocity of the
pellets from his BB gun. He points the gun horizontally.
On a vertical wall a distance x away from the gun, a tar-
get is placed. The shots hit the target a vertical distance
y below the gun. (a) Show that the vertical displacement
component of the pellets when traveling through the
air is given by where A is a constant. (b) Ex-
press the constant A in terms of the initial velocity and
the free-fall acceleration. (c) If and 

what is the initial speed of the pellets?
49. A home run is hit in such a way that the baseball just

clears a wall 21.0 m high, located 130 m from home
plate. The ball is hit at an angle of 35.0° to the horizon-
tal, and air resistance is negligible. Find (a) the initial
speed of the ball, (b) the time it takes the ball to reach
the wall, and (c) the velocity components and the speed
of the ball when it reaches the wall. (Assume the ball is
hit at a height of 1.00 m above the ground.)

50. An astronaut standing on the Moon fires a gun so that
the bullet leaves the barrel initially moving in a horizon-
tal direction. (a) What must be the muzzle speed of the
bullet so that it travels completely around the Moon and
returns to its original location? (b) How long does this
trip around the Moon take? Assume that the free-fall ac-
celeration on the Moon is one-sixth that on the Earth.

51. A pendulum of length 1.00 m swings in a vertical plane
(Fig. 4.19). When the pendulum is in the two horizontal
positions � � 90° and � � 270°, its speed is 5.00 m/s. 
(a) Find the magnitude of the radial acceleration and
tangential acceleration for these positions. (b) Draw a
vector diagram to determine the direction of the total ac-
celeration for these two positions. (c) Calculate the mag-
nitude and direction of the total acceleration.

52. A basketball player who is 2.00 m tall is standing on the
floor 10.0 m from the basket, as in Figure P4.52. If he
shoots the ball at a 40.0° angle with the horizontal, at
what initial speed must he throw so that it goes through
the hoop without striking the backboard? The basket
height is 3.05 m.

53. A particle has velocity components

Calculate the speed of the particle and the direction 
� � tan�1 (vy/vx) of the velocity vector at t � 2.00 s.

54. When baseball players throw the ball in from the out-
field, they usually allow it to take one bounce before it
reaches the infielder on the theory that the ball arrives

vx � �4 m/s  vy � �(6 m/s2)t � 4 m/s

0.210 m,
y �x � 3.00 m

y � Ax2,

Figure P4.45

Figure P4.47

46. A ball on the end of a string is whirled around in a hori-
zontal circle of radius 0.300 m. The plane of the circle
is 1.20 m above the ground. The string breaks and the
ball lands 2.00 m (horizontally) away from the point on
the ground directly beneath the ball’s location when
the string breaks. Find the radial acceleration of the
ball during its circular motion.

47. A projectile is fired up an incline (incline angle �) with
an initial speed vi at an angle �i with respect to the hori-
zontal (�i � �), as shown in Figure P4.47. (a) Show that
the projectile travels a distance d up the incline, where

d �
2vi 

2 cos �i sin(�i � �)

g cos2 �

θi

vi vi

θi

Path of the projectile

φ

d
vi

θ  i
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sooner that way. Suppose that the angle at which a
bounced ball leaves the ground is the same as the angle
at which the outfielder launched it, as in Figure P4.54,
but that the ball’s speed after the bounce is one half of
what it was before the bounce. (a) Assuming the ball is
always thrown with the same initial speed, at what angle
� should the ball be thrown in order to go the same dis-
tance D with one bounce (blue path) as a ball thrown
upward at 45.0° with no bounce (green path)? (b) De-
termine the ratio of the times for the one-bounce and
no-bounce throws.

58. A quarterback throws a football straight toward a re-
ceiver with an initial speed of 20.0 m/s, at an angle of
30.0° above the horizontal. At that instant, the receiver
is 20.0 m from the quarterback. In what direction and
with what constant speed should the receiver run to
catch the football at the level at which it was thrown?

59. A bomber is flying horizontally over level terrain, with a
speed of 275 m/s relative to the ground, at an altitude
of 3 000 m. Neglect the effects of air resistance. (a) How
far will a bomb travel horizontally between its release
from the plane and its impact on the ground? (b) If the
plane maintains its original course and speed, where
will it be when the bomb hits the ground? (c) At what
angle from the vertical should the telescopic bombsight
be set so that the bomb will hit the target seen in the
sight at the time of release?

60. A person standing at the top of a hemispherical rock of
radius R kicks a ball (initially at rest on the top of the
rock) to give it horizontal velocity vi as in Figure P4.60.
(a) What must be its minimum initial speed if the ball is
never to hit the rock after it is kicked? (b) With this ini-
tial speed, how far from the base of the rock does the
ball hit the ground?

Figure P4.52

3.05 m

40.0°

10.0 m

2.00 m

45.0°
θ

D

θ

Figure P4.54

Figure P4.57

Figure P4.60

55. A boy can throw a ball a maximum horizontal distance
of 40.0 m on a level field. How far can he throw the
same ball vertically upward? Assume that his muscles
give the ball the same speed in each case.

56. A boy can throw a ball a maximum horizontal distance
of R on a level field. How far can he throw the same ball
vertically upward? Assume that his muscles give the ball
the same speed in each case.

57. A stone at the end of a sling is whirled in a vertical cir-
cle of radius 1.20 m at a constant speed vi � 1.50 m/s
as in Figure P4.57. The center of the string is 1.50 m
above the ground. What is the range of the stone if it is
released when the sling is inclined at 30.0° with the hor-
izontal (a) at A? (b) at B? What is the acceleration of
the stone (c) just before it is released at A? (d) just after
it is released at A?

vi

30.0°

A

30.0°

B
1.20 m

vi

R x

vi
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61. A hawk is flying horizontally at 10.0 m/s in a straight
line, 200 m above the ground. A mouse it has been car-
rying struggles free from its grasp. The hawk continues
on its path at the same speed for 2.00 s before attempt-
ing to retrieve its prey. To accomplish the retrieval, it
dives in a straight line at constant speed and recaptures
the mouse 3.00 m above the ground. (a) Assuming no
air resistance, find the diving speed of the hawk. 
(b) What angle did the hawk make with the horizontal
during its descent? (c) For how long did the mouse “en-
joy” free fall?

62. A truck loaded with cannonball watermelons stops sud-
denly to avoid running over the edge of a washed-out
bridge (Fig. P4.62). The quick stop causes a number of
melons to fly off the truck. One melon rolls over the
edge with an initial speed vi � 10.0 m/s in the horizon-
tal direction. A cross-section of the bank has the shape
of the bottom half of a parabola with its vertex at the
edge of the road, and with the equation 
where x and y are measured in meters. What are the x
and y coordinates of the melon when it splatters on the
bank?

y2 � 16x,

65. A car is parked on a steep incline overlooking the
ocean, where the incline makes an angle of 37.0° below
the horizontal. The negligent driver leaves the car in
neutral, and the parking brakes are defective. The car
rolls from rest down the incline with a constant acceler-
ation of 4.00 m/s2, traveling 50.0 m to the edge of a ver-
tical cliff. The cliff is 30.0 m above the ocean. Find 
(a) the speed of the car when it reaches the edge of the
cliff and the time it takes to get there, (b) the velocity of
the car when it lands in the ocean, (c) the total time the
car is in motion, and (d) the position of the car when it
lands in the ocean, relative to the base of the cliff.

66. The determined coyote is out once more to try to cap-
ture the elusive roadrunner. The coyote wears a pair of
Acme jet-powered roller skates, which provide a con-
stant horizontal acceleration of 15.0 m/s2 (Fig. P4.66).
The coyote starts off at rest 70.0 m from the edge of a
cliff at the instant the roadrunner zips past him in the
direction of the cliff. (a) If the roadrunner moves with
constant speed, determine the minimum speed he must
have to reach the cliff before the coyote. At the brink of
the cliff, the roadrunner escapes by making a sudden
turn, while the coyote continues straight ahead. (b) If
the cliff is 100 m above the floor of a canyon, determine
where the coyote lands in the canyon (assume his skates
remain horizontal and continue to operate when he is
in “flight”). (c) Determine the components of the coy-
ote’s impact velocity. 

Figure P4.62

Figure P4.66

67. A skier leaves the ramp of a ski jump with a velocity of
10.0 m/s, 15.0° above the horizontal, as in Figure P4.67.
The slope is inclined at 50.0°, and air resistance is negli-
gible. Find (a) the distance from the ramp to where the
jumper lands and (b) the velocity components just be-
fore the landing. (How do you think the results might
be affected if air resistance were included? Note that
jumpers lean forward in the shape of an airfoil, with
their hands at their sides, to increase their distance.
Why does this work?)

63. A catapult launches a rocket at an angle of 53.0° above
the horizontal with an initial speed of 100 m/s. The
rocket engine immediately starts a burn, and for 3.00 s
the rocket moves along its initial line of motion with an
acceleration of 30.0 m/s2. Then its engine fails, and the
rocket proceeds to move in free fall. Find (a) the maxi-
mum altitude reached by the rocket, (b) its total time of
flight, and (c) its horizontal range.

64. A river flows with a uniform velocity v. A person in a
motorboat travels 1.00 km upstream, at which time she
passes a log floating by. Always with the same throttle
setting, the boater continues to travel upstream for an-
other 60.0 min and then returns downstream to her
starting point, which she reaches just as the same log
does. Find the velocity of the river. (Hint: The time of
travel of the boat after it meets the log equals the time
of travel of the log.) 

vi = 10 m/s

Coyoté
Stupidus

Chicken
Delightus

BEEP

BEEP

WEB
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ANSWERS TO QUICK QUIZZES

it. So, as the angle increases from 0° to 90°, the time of
flight increases. Therefore, the 15° angle gives the short-
est time of flight, and the 75° angle gives the longest.

4.3 (a) Because the object is moving with a constant speed,
the velocity vector is always the same length; because the
motion is circular, this vector is always tangent to the cir-
cle. The only acceleration is that which changes the di-
rection of the velocity vector; it points radially inward.

4.1 (a) Because acceleration occurs whenever the velocity
changes in any way—with an increase or decrease in
speed, a change in direction, or both—the brake pedal
can also be considered an accelerator because it causes
the car to slow down. The steering wheel is also an accel-
erator because it changes the direction of the velocity
vector. (b) When the car is moving with constant speed,
the gas pedal is not causing an acceleration; it is an ac-
celerator only when it causes a change in the speedome-
ter reading.

4.2 (a) At only one point—the peak of the trajectory—are
the velocity and acceleration vectors perpendicular to
each other. (b) If the object is thrown straight up or
down, v and a are parallel to each other throughout the
downward motion. Otherwise, the velocity and accelera-
tion vectors are never parallel to each other. (c) The
greater the maximum height, the longer it takes the pro-
jectile to reach that altitude and then fall back down from

68. Two soccer players, Mary and Jane, begin running from
nearly the same point at the same time. Mary runs in an
easterly direction at 4.00 m/s, while Jane takes off in a
direction 60.0° north of east at 5.40 m/s. (a) How long
is it before they are 25.0 m apart? (b) What is the veloc-
ity of Jane relative to Mary? (c) How far apart are they
after 4.00 s?

69. Do not hurt yourself; do not strike your hand against
anything. Within these limitations, describe what you do
to give your hand a large acceleration. Compute an or-
der-of-magnitude estimate of this acceleration, stating
the quantities you measure or estimate and their values.

70. An enemy ship is on the western side of a mountain is-
land, as shown in Figure P4.70. The enemy ship can ma-
neuver to within 2 500 m of the 1 800-m-high mountain
peak and can shoot projectiles with an initial speed of
250 m/s. If the eastern shoreline is horizontally 300 m
from the peak, what are the distances from the eastern
shore at which a ship can be safe from the bombard-
ment of the enemy ship?

Figure P4.67

Figure P4.70

10.0 m/s

15.0°

50.0°

2500 m 300 m

1800 mvi
vi = 250 m/s

θHθ θLθ

(a)

��

�

�
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(c) Now the tangential component of the acceleration
points in the same direction as the velocity. The object is
speeding up, and so the velocity vectors become longer
and longer.

4.4 The motion diagram is as shown below. Note that each
position vector points from the pivot point at the center
of the circle to the position of the ball.

(b) Now there is a component of the acceleration vector
that is tangent to the circle and points in the direction
opposite the velocity. As a result, the acceleration vector
does not point toward the center. The object is slowing
down, and so the velocity vectors become shorter and
shorter.

(b)

��

�

�

(c)

��

�

�

v

v = 0

a

v = 0

4.5 (a) The passenger sees the coffee pouring nearly verti-
cally into the cup, just as if she were standing on the
ground pouring it. (b) The stationary observer sees the
coffee moving in a parabolic path with a constant hori-
zontal velocity of 60 mi/h ( and a downward
acceleration of � g. If it takes the coffee 0.10 s to reach
the cup, the stationary observer sees the coffee moving
8.8 ft horizontally before it hits the cup! (c) If the car
slows suddenly, the coffee reaches the place where the
cup would have been had there been no change in velocity
and continues falling because the cup has not yet
reached that location. If the car rapidly speeds up, the
coffee falls behind the cup. If the car accelerates side-
ways, the coffee again ends up somewhere other than
the cup.

�88 ft/s)
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The Spirit of Akron is an airship that is
more than 60 m long. When it is parked
at an airport, one person can easily sup-
port it overhead using a single hand.
Nonetheless, it is impossible for even a
very strong adult to move the ship
abruptly. What property of this huge air-
ship makes it very difficult to cause any
sudden changes in its motion? (Cour-

tesy of Edward E. Ogden)

5.1 The Concept of Force

5.2 Newton’s First Law and Inertial
Frames

5.3 Mass

5.4 Newton’s Second Law

5.5 The Force of Gravity and Weight

5.6 Newton’s Third Law

5.7 Some Applications of Newton’s
Laws

5.8 Forces of Friction

C h a p t e r  O u t l i n e

web
For more information about the airship,
visit http://www.goodyear.com/us/blimp/
index.html
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n Chapters 2 and 4, we described motion in terms of displacement, velocity,
and acceleration without considering what might cause that motion. What
might cause one particle to remain at rest and another particle to accelerate? In

this chapter, we investigate what causes changes in motion. The two main factors
we need to consider are the forces acting on an object and the mass of the object.
We discuss the three basic laws of motion, which deal with forces and masses and
were formulated more than three centuries ago by Isaac Newton. Once we under-
stand these laws, we can answer such questions as “What mechanism changes mo-
tion?” and “Why do some objects accelerate more than others?”

THE CONCEPT OF FORCE
Everyone has a basic understanding of the concept of force from everyday experi-
ence. When you push your empty dinner plate away, you exert a force on it. Simi-
larly, you exert a force on a ball when you throw or kick it. In these examples, the
word force is associated with muscular activity and some change in the velocity of an
object. Forces do not always cause motion, however. For example, as you sit read-
ing this book, the force of gravity acts on your body and yet you remain stationary.
As a second example, you can push (in other words, exert a force) on a large boul-
der and not be able to move it.

What force (if any) causes the Moon to orbit the Earth? Newton answered this
and related questions by stating that forces are what cause any change in the veloc-
ity of an object. Therefore, if an object moves with uniform motion (constant ve-
locity), no force is required for the motion to be maintained. The Moon’s velocity
is not constant because it moves in a nearly circular orbit around the Earth. We
now know that this change in velocity is caused by the force exerted on the Moon
by the Earth. Because only a force can cause a change in velocity, we can think of
force as that which causes a body to accelerate. In this chapter, we are concerned with
the relationship between the force exerted on an object and the acceleration of
that object.

What happens when several forces act simultaneously on an object? In this
case, the object accelerates only if the net force acting on it is not equal to zero.
The net force acting on an object is defined as the vector sum of all forces acting
on the object. (We sometimes refer to the net force as the total force, the resultant
force, or the unbalanced force.) If the net force exerted on an object is zero, then
the acceleration of the object is zero and its velocity remains constant. That
is, if the net force acting on the object is zero, then the object either remains at
rest or continues to move with constant velocity. When the velocity of an object is
constant (including the case in which the object remains at rest), the object is said
to be in equilibrium.

When a coiled spring is pulled, as in Figure 5.1a, the spring stretches. When a
stationary cart is pulled sufficently hard that friction is overcome, as in Figure 5.1b,
the cart moves. When a football is kicked, as in Figure 5.1c, it is both deformed
and set in motion. These situations are all examples of a class of forces called con-
tact forces. That is, they involve physical contact between two objects. Other exam-
ples of contact forces are the force exerted by gas molecules on the walls of a con-
tainer and the force exerted by your feet on the floor.

Another class of forces, known as field forces, do not involve physical contact be-
tween two objects but instead act through empty space. The force of gravitational
attraction between two objects, illustrated in Figure 5.1d, is an example of this
class of force. This gravitational force keeps objects bound to the Earth. The plan-

5.1
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A body accelerates because of an
external force

Definition of equilibrium
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ets of our Solar System are bound to the Sun by the action of gravitational forces.
Another common example of a field force is the electric force that one electric
charge exerts on another, as shown in Figure 5.1e. These charges might be those
of the electron and proton that form a hydrogen atom. A third example of a field
force is the force a bar magnet exerts on a piece of iron, as shown in Figure 5.1f.
The forces holding an atomic nucleus together also are field forces but are very
short in range. They are the dominating interaction for particle separations of the
order of 10�15 m.

Early scientists, including Newton, were uneasy with the idea that a force can
act between two disconnected objects. To overcome this conceptual problem,
Michael Faraday (1791–1867) introduced the concept of a field. According to this
approach, when object 1 is placed at some point P near object 2, we say that object
1 interacts with object 2 by virtue of the gravitational field that exists at P. The
gravitational field at P is created by object 2. Likewise, a gravitational field created
by object 1 exists at the position of object 2. In fact, all objects create a gravita-
tional field in the space around themselves. 

The distinction between contact forces and field forces is not as sharp as you
may have been led to believe by the previous discussion. When examined at the
atomic level, all the forces we classify as contact forces turn out to be caused by

Field forcesContact forces

(d)(a)

(b)

(c)

(e)

(f)

m M

– q + Q

Iron N S

Figure 5.1 Some examples of applied forces. In each case a force is exerted on the object
within the boxed area. Some agent in the environment external to the boxed area exerts a force
on the object.
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electric (field) forces of the type illustrated in Figure 5.1e. Nevertheless, in devel-
oping models for macroscopic phenomena, it is convenient to use both classifica-
tions of forces. The only known fundamental forces in nature are all field forces:
(1) gravitational forces between objects, (2) electromagnetic forces between elec-
tric charges, (3) strong nuclear forces between subatomic particles, and (4) weak
nuclear forces that arise in certain radioactive decay processes. In classical physics,
we are concerned only with gravitational and electromagnetic forces.

Measuring the Strength of a Force

It is convenient to use the deformation of a spring to measure force. Suppose we
apply a vertical force to a spring scale that has a fixed upper end, as shown in Fig-
ure 5.2a. The spring elongates when the force is applied, and a pointer on the
scale reads the value of the applied force. We can calibrate the spring by defining
the unit force F1 as the force that produces a pointer reading of 1.00 cm. (Because
force is a vector quantity, we use the bold-faced symbol F.) If we now apply a differ-
ent downward force F2 whose magnitude is 2 units, as seen in Figure 5.2b, the
pointer moves to 2.00 cm. Figure 5.2c shows that the combined effect of the two
collinear forces is the sum of the effects of the individual forces.

Now suppose the two forces are applied simultaneously with F1 downward and
F2 horizontal, as illustrated in Figure 5.2d. In this case, the pointer reads 

cm. The single force F that would produce this same reading is the
sum of the two vectors F1 and F2 , as described in Figure 5.2d. That is,

units, and its direction is � � tan�1(� 0.500) � � 26.6°.
Because forces are vector quantities, you must use the rules of vector addi-
tion to obtain the net force acting on an object.

� F � � √F1 

2 � F2 

2 � 2.24

√5 cm2 � 2.24

Figure 5.2 The vector nature of a force is tested with a spring scale. (a) A downward force F1
elongates the spring 1 cm. (b) A downward force F2 elongates the spring 2 cm. (c) When F1 and
F2 are applied simultaneously, the spring elongates by 3 cm. (d) When F1 is downward and F2 is 
horizontal, the combination of the two forces elongates the spring √12 � 22 cm � √5 cm.

QuickLab
Find a tennis ball, two drinking
straws, and a friend. Place the ball on
a table. You and your friend can each
apply a force to the ball by blowing
through the straws (held horizontally
a few centimeters above the table) so
that the air rushing out strikes the
ball. Try a variety of configurations:
Blow in opposite directions against
the ball, blow in the same direction,
blow at right angles to each other,
and so forth. Can you verify the vec-
tor nature of the forces?

F2

F1 F

0
1

2
3

4

θ

(d)(a)

0
1
2
3
4

F1

(b)

F2

0
1
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(c)

0
1
2
3
4

F2

F1
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NEWTON’S FIRST LAW AND INERTIAL FRAMES
Before we state Newton’s first law, consider the following simple experiment. Sup-
pose a book is lying on a table. Obviously, the book remains at rest. Now imagine
that you push the book with a horizontal force great enough to overcome the
force of friction between book and table. (This force you exert, the force of fric-
tion, and any other forces exerted on the book by other objects are referred to as
external forces.) You can keep the book in motion with constant velocity by applying
a force that is just equal in magnitude to the force of friction and acts in the oppo-
site direction. If you then push harder so that the magnitude of your applied force
exceeds the magnitude of the force of friction, the book accelerates. If you stop
pushing, the book stops after moving a short distance because the force of friction
retards its motion. Suppose you now push the book across a smooth, highly waxed
floor. The book again comes to rest after you stop pushing but not as quickly as be-
fore. Now imagine a floor so highly polished that friction is absent; in this case, the
book, once set in motion, moves until it hits a wall.

Before about 1600, scientists felt that the natural state of matter was the state
of rest. Galileo was the first to take a different approach to motion and the natural
state of matter. He devised thought experiments, such as the one we just discussed
for a book on a frictionless surface, and concluded that it is not the nature of an
object to stop once set in motion: rather, it is its nature to resist changes in its motion.
In his words, “Any velocity once imparted to a moving body will be rigidly main-
tained as long as the external causes of retardation are removed.”

This new approach to motion was later formalized by Newton in a form that
has come to be known as Newton’s first law of motion:

5.2

In the absence of external forces, an object at rest remains at rest and an object
in motion continues in motion with a constant velocity (that is, with a constant
speed in a straight line).

In simpler terms, we can say that when no force acts on an object, the accelera-
tion of the object is zero. If nothing acts to change the object’s motion, then its
velocity does not change. From the first law, we conclude that any isolated object
(one that does not interact with its environment) is either at rest or moving with
constant velocity. The tendency of an object to resist any attempt to change its ve-
locity is called the inertia of the object. Figure 5.3 shows one dramatic example of
a consequence of Newton’s first law. 

Another example of uniform (constant-velocity) motion on a nearly frictionless
surface is the motion of a light disk on a film of air (the lubricant), as shown in Fig-
ure 5.4. If the disk is given an initial velocity, it coasts a great distance before stopping.

Finally, consider a spaceship traveling in space and far removed from any plan-
ets or other matter. The spaceship requires some propulsion system to change its
velocity. However, if the propulsion system is turned off when the spaceship
reaches a velocity v, the ship coasts at that constant velocity and the astronauts get
a free ride (that is, no propulsion system is required to keep them moving at the
velocity v).

Inertial Frames

As we saw in Section 4.6, a moving object can be observed from any number of ref-
erence frames. Newton’s first law, sometimes called the law of inertia, defines a spe-
cial set of reference frames called inertial frames. An inertial frame of reference

QuickLab
Use a drinking straw to impart a
strong, short-duration burst of air
against a tennis ball as it rolls along a
tabletop. Make the force perpendicu-
lar to the ball’s path. What happens
to the ball’s motion? What is different
if you apply a continuous force (con-
stant magnitude and direction) that
is directed along the direction of mo-
tion?

Newton’s first law

Definition of inertia

Definition of inertial frame

4.2
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is one that is not accelerating. Because Newton’s first law deals only with objects
that are not accelerating, it holds only in inertial frames. Any reference frame that
moves with constant velocity relative to an inertial frame is itself an inertial frame.
(The Galilean transformations given by Equations 4.20 and 4.21 relate positions
and velocities between two inertial frames.)

A reference frame that moves with constant velocity relative to the distant stars
is the best approximation of an inertial frame, and for our purposes we can con-
sider planet Earth as being such a frame. The Earth is not really an inertial frame
because of its orbital motion around the Sun and its rotational motion about its
own axis. As the Earth travels in its nearly circular orbit around the Sun, it experi-
ences an acceleration of about 4.4 � 10�3 m/s2 directed toward the Sun. In addi-
tion, because the Earth rotates about its own axis once every 24 h, a point on the
equator experiences an additional acceleration of 3.37 � 10�2 m/s2 directed to-
ward the center of the Earth. However, these accelerations are small compared
with g and can often be neglected. For this reason, we assume that the Earth is an
inertial frame, as is any other frame attached to it.

If an object is moving with constant velocity, an observer in one inertial frame
(say, one at rest relative to the object) claims that the acceleration of the object
and the resultant force acting on it are zero. An observer in any other inertial frame
also finds that a � 0 and �F � 0 for the object. According to the first law, a body
at rest and one moving with constant velocity are equivalent. A passenger in a car
moving along a straight road at a constant speed of 100 km/h can easily pour cof-
fee into a cup. But if the driver steps on the gas or brake pedal or turns the steer-
ing wheel while the coffee is being poured, the car accelerates and it is no longer
an inertial frame. The laws of motion do not work as expected, and the coffee
ends up in the passenger’s lap!

Figure 5.3 Unless a net ex-
ternal force acts on it, an ob-
ject at rest remains at rest and
an object in motion continues
in motion with constant veloc-
ity. In this case, the wall of the
building did not exert a force
on the moving train that was
large enough to stop it.

Figure 5.4 Air hockey takes ad-
vantage of Newton’s first law to
make the game more exciting.

v = constant

Air flow

Electric blower

Isaac Newton English physicist
and mathematician (1642 – 1727)
Isaac Newton was one of the most
brilliant scientists in history. Before
the age of 30, he formulated the basic
concepts and laws of mechanics, dis-
covered the law of universal gravita-
tion, and invented the mathematical
methods of calculus. As a conse-
quence of his theories, Newton was
able to explain the motions of the
planets, the ebb and flow of the tides,
and many special features of the mo-
tions of the Moon and the Earth. He
also interpreted many fundamental
observations concerning the nature
of light. His contributions to physical
theories dominated scientific thought
for two centuries and remain impor-
tant today. (Giraudon/Art Resource)
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True or false: (a) It is possible to have motion in the absence of a force. (b) It is possible to
have force in the absence of motion. 

MASS
Imagine playing catch with either a basketball or a bowling ball. Which ball is
more likely to keep moving when you try to catch it? Which ball has the greater
tendency to remain motionless when you try to throw it? Because the bowling ball
is more resistant to changes in its velocity, we say it has greater inertia than the bas-
ketball. As noted in the preceding section, inertia is a measure of how an object re-
sponds to an external force. 

Mass is that property of an object that specifies how much inertia the object
has, and as we learned in Section 1.1, the SI unit of mass is the kilogram. The
greater the mass of an object, the less that object accelerates under the action of
an applied force. For example, if a given force acting on a 3-kg mass produces an
acceleration of 4 m/s2, then the same force applied to a 6-kg mass produces an ac-
celeration of 2 m/s2.

To describe mass quantitatively, we begin by comparing the accelerations a
given force produces on different objects. Suppose a force acting on an object of
mass m1 produces an acceleration a1 , and the same force acting on an object of mass
m2 produces an acceleration a2 . The ratio of the two masses is defined as the in-
verse ratio of the magnitudes of the accelerations produced by the force:

(5.1)

If one object has a known mass, the mass of the other object can be obtained from
acceleration measurements.

Mass is an inherent property of an object and is independent of the ob-
ject’s surroundings and of the method used to measure it. Also, mass is a
scalar quantity and thus obeys the rules of ordinary arithmetic. That is, several
masses can be combined in simple numerical fashion. For example, if you com-
bine a 3-kg mass with a 5-kg mass, their total mass is 8 kg. We can verify this result
experimentally by comparing the acceleration that a known force gives to several
objects separately with the acceleration that the same force gives to the same ob-
jects combined as one unit.

Mass should not be confused with weight. Mass and weight are two different
quantities. As we see later in this chapter, the weight of an object is equal to the mag-
nitude of the gravitational force exerted on the object and varies with location. For
example, a person who weighs 180 lb on the Earth weighs only about 30 lb on the
Moon. On the other hand, the mass of a body is the same everywhere: an object hav-
ing a mass of 2 kg on the Earth also has a mass of 2 kg on the Moon.

NEWTON’S SECOND LAW
Newton’s first law explains what happens to an object when no forces act on it. It
either remains at rest or moves in a straight line with constant speed. Newton’s sec-
ond law answers the question of what happens to an object that has a nonzero re-
sultant force acting on it.

5.4

m1

m 2
�

a2

a1

5.3

Quick Quiz 5.1

4.4

4.3

Definition of mass

Mass and weight are different
quantities
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Imagine pushing a block of ice across a frictionless horizontal surface. When
you exert some horizontal force F, the block moves with some acceleration a. If
you apply a force twice as great, the acceleration doubles. If you increase the ap-
plied force to 3F, the acceleration triples, and so on. From such observations, we
conclude that the acceleration of an object is directly proportional to the re-
sultant force acting on it.

The acceleration of an object also depends on its mass, as stated in the preced-
ing section. We can understand this by considering the following experiment. If
you apply a force F to a block of ice on a frictionless surface, then the block un-
dergoes some acceleration a. If the mass of the block is doubled, then the same
applied force produces an acceleration a/2. If the mass is tripled, then the same
applied force produces an acceleration a/3, and so on. According to this observa-
tion, we conclude that the magnitude of the acceleration of an object is in-
versely proportional to its mass.

These observations are summarized in Newton’s second law:

The acceleration of an object is directly proportional to the net force acting on
it and inversely proportional to its mass.

Newton’s second law

Newton’s second law—
component form

Definition of newton

Thus, we can relate mass and force through the following mathematical statement
of Newton’s second law:1

(5.2)

Note that this equation is a vector expression and hence is equivalent to three
component equations:

(5.3)

Is there any relationship between the net force acting on an object and the direction in
which the object moves?

Unit of Force

The SI unit of force is the newton, which is defined as the force that, when acting
on a 1-kg mass, produces an acceleration of 1 m/s2. From this definition and New-
ton’s second law, we see that the newton can be expressed in terms of the follow-
ing fundamental units of mass, length, and time:

(5.4)

In the British engineering system, the unit of force is the pound, which is 
defined as the force that, when acting on a 1-slug mass,2 produces an acceleration
of 1 ft/s2:

(5.5)

A convenient approximation is that 1 N � lb.1
4

1 lb � 1 slug� ft/s2

1 N � 1 kg�m/s2

Quick Quiz 5.2

�Fx � max  �Fy � may  �Fz � maz

�F � ma

1 Equation 5.2 is valid only when the speed of the object is much less than the speed of light. We treat
the relativistic situation in Chapter 39.
2 The slug is the unit of mass in the British engineering system and is that system’s counterpart of the
SI unit the kilogram. Because most of the calculations in our study of classical mechanics are in SI units,
the slug is seldom used in this text.
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The units of force, mass, and acceleration are summarized in Table 5.1.
We can now understand how a single person can hold up an airship but is not

able to change its motion abruptly, as stated at the beginning of the chapter. The
mass of the blimp is greater than 6 800 kg. In order to make this large mass accel-
erate appreciably, a very large force is required—certainly one much greater than
a human can provide.

An Accelerating Hockey PuckEXAMPLE 5.1
The resultant force in the y direction is

Now we use Newton’s second law in component form to find
the x and y components of acceleration:

The acceleration has a magnitude of

and its direction relative to the positive x axis is

We can graphically add the vectors in Figure 5.5 to check the
reasonableness of our answer. Because the acceleration vec-
tor is along the direction of the resultant force, a drawing
showing the resultant force helps us check the validity of the
answer.

Exercise Determine the components of a third force that,
when applied to the puck, causes it to have zero acceleration.

Answer F3x � �8.7 N, F3y � �5.2 N.

30°� � tan�1 � ay

ax
� � tan�1 � 17

29 � �

34 m/s2a � √(29)2 � (17)2 m/s2 �

ay �
� Fy

m
�

5.2 N
0.30 kg

� 17 m/s2

ax �
� Fx

m
�

8.7 N
0.30 kg

� 29 m/s2 

 � (5.0 N)(�0.342) � (8.0 N)(0.866) � 5.2 N
�Fy � F1y � F2y � F1 sin(�20°) � F2 sin 60°  

A hockey puck having a mass of 0.30 kg slides on the hori-
zontal, frictionless surface of an ice rink. Two forces act on
the puck, as shown in Figure 5.5. The force F1 has a magni-
tude of 5.0 N, and the force F2 has a magnitude of 8.0 N. De-
termine both the magnitude and the direction of the puck’s
acceleration.

Solution The resultant force in the x direction is

 � (5.0 N)(0.940) � (8.0 N)(0.500) � 8.7 N
�Fx � F1x � F2x � F1 cos(�20°) � F2 cos 60°  

TABLE 5.1 Units of Force, Mass, and Accelerationa

System of Units Mass Acceleration Force

SI kg m/s2

British engineering slug ft/s2

a 1 N � 0.225 lb.

lb � slug� ft/s2
N � kg�m/s2

x

y

60°

F2

F2  =  8.0 N
F1  =  5.0 N

20°

F1

Figure 5.5 A hockey puck moving on a frictionless surface acceler-
ates in the direction of the resultant force F1 � F2 .
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THE FORCE OF GRAVITY AND WEIGHT
We are well aware that all objects are attracted to the Earth. The attractive force
exerted by the Earth on an object is called the force of gravity Fg . This force is
directed toward the center of the Earth,3 and its magnitude is called the weight
of the object.

We saw in Section 2.6 that a freely falling object experiences an acceleration g
acting toward the center of the Earth. Applying Newton’s second law �F � ma to a
freely falling object of mass m, with a � g and �F � Fg , we obtain

(5.6)

Thus, the weight of an object, being defined as the magnitude of Fg , is mg. (You
should not confuse the italicized symbol g for gravitational acceleration with the
nonitalicized symbol g used as the abbreviation for “gram.”)

Because it depends on g, weight varies with geographic location. Hence,
weight, unlike mass, is not an inherent property of an object. Because g decreases
with increasing distance from the center of the Earth, bodies weigh less at higher
altitudes than at sea level. For example, a 1 000-kg palette of bricks used in the
construction of the Empire State Building in New York City weighed about 1 N less
by the time it was lifted from sidewalk level to the top of the building. As another
example, suppose an object has a mass of 70.0 kg. Its weight in a location where 
g � 9.80 m/s2 is Fg � mg � 686 N (about 150 lb). At the top of a mountain, how-
ever, where g � 9.77 m/s2, its weight is only 684 N. Therefore, if you want to lose
weight without going on a diet, climb a mountain or weigh yourself at 30 000 ft
during an airplane flight!

Because weight � Fg � mg, we can compare the masses of two objects by mea-
suring their weights on a spring scale. At a given location, the ratio of the weights
of two objects equals the ratio of their masses.

Fg � mg

5.5

The life-support unit strapped to the back
of astronaut Edwin Aldrin weighed 300 lb
on the Earth. During his training, a 50-lb
mock-up was used. Although this effectively
simulated the reduced weight the unit
would have on the Moon, it did not cor-
rectly mimic the unchanging mass. It was
just as difficult to accelerate the unit (per-
haps by jumping or twisting suddenly) on
the Moon as on the Earth.

3 This statement ignores the fact that the mass distribution of the Earth is not perfectly spherical.

QuickLab
Drop a pen and your textbook simul-
taneously from the same height and
watch as they fall. How can they have
the same acceleration when their
weights are so different?

Definition of weight
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A baseball of mass m is thrown upward with some initial speed. If air resistance is neglected,
what forces are acting on the ball when it reaches (a) half its maximum height and (b) its
maximum height?

NEWTON’S THIRD LAW
If you press against a corner of this textbook with your fingertip, the book pushes
back and makes a small dent in your skin. If you push harder, the book does the
same and the dent in your skin gets a little larger. This simple experiment illus-
trates a general principle of critical importance known as Newton’s third law:

5.6

Quick Quiz 5.3

If two objects interact, the force F12 exerted by object 1 on object 2 is equal in
magnitude to and opposite in direction to the force F21 exerted by object 2 on 
object 1:

(5.7)F12 � �F21

This law, which is illustrated in Figure 5.6a, states that a force that affects the mo-
tion of an object must come from a second, external, object. The external object, in
turn, is subject to an equal-magnitude but oppositely directed force exerted on it.

4.5

How Much Do You Weigh in an Elevator?CONCEPTUAL EXAMPLE 5.2
Solution No, your weight is unchanged. To provide the
acceleration upward, the floor or scale must exert on your
feet an upward force that is greater in magnitude than your
weight. It is this greater force that you feel, which you inter-
pret as feeling heavier. The scale reads this upward force, not
your weight, and so its reading increases.

You have most likely had the experience of standing in an el-
evator that accelerates upward as it moves toward a higher
floor. In this case, you feel heavier. In fact, if you are standing
on a bathroom scale at the time, the scale measures a force
magnitude that is greater than your weight. Thus, you have
tactile and measured evidence that leads you to believe you
are heavier in this situation. Are you heavier?

2

1

F12 F21

F12  =  –F21

(a)

FnhFhn

(b)

Newton’s third law

Figure 5.6 Newton’s third law. (a) The force F12 exerted by object 1 on object 2 is equal in
magnitude to and opposite in direction to the force F21 exerted by object 2 on object 1. (b) The
force Fhn exerted by the hammer on the nail is equal to and opposite the force Fnh exerted by
the nail on the hammer.



5.6 Newton’s Third Law 121

This is equivalent to stating that a single isolated force cannot exist. The force
that object 1 exerts on object 2 is sometimes called the action force, while the force
object 2 exerts on object 1 is called the reaction force. In reality, either force can be
labeled the action or the reaction force. The action force is equal in magnitude
to the reaction force and opposite in direction. In all cases, the action and
reaction forces act on different objects. For example, the force acting on a
freely falling projectile is Fg � mg, which is the force of gravity exerted by the
Earth on the projectile. The reaction to this force is the force exerted by the pro-
jectile on the Earth, The reaction force accelerates the Earth toward
the projectile just as the action force Fg accelerates the projectile toward the Earth.
However, because the Earth has such a great mass, its acceleration due to this reac-
tion force is negligibly small. 

Another example of Newton’s third law is shown in Figure 5.6b. The force ex-
erted by the hammer on the nail (the action force Fhn) is equal in magnitude and
opposite in direction to the force exerted by the nail on the hammer (the reaction
force Fnh). It is this latter force that causes the hammer to stop its rapid forward
motion when it strikes the nail.

You experience Newton’s third law directly whenever you slam your fist against
a wall or kick a football. You should be able to identify the action and reaction
forces in these cases.

A person steps from a boat toward a dock. Unfortunately, he forgot to tie the boat to the
dock, and the boat scoots away as he steps from it. Analyze this situation in terms of New-
ton’s third law.

The force of gravity Fg was defined as the attractive force the Earth exerts on
an object. If the object is a TV at rest on a table, as shown in Figure 5.7a, why does
the TV not accelerate in the direction of Fg ? The TV does not accelerate because
the table holds it up. What is happening is that the table exerts on the TV an up-
ward force n called the normal force.4 The normal force is a contact force that
prevents the TV from falling through the table and can have any magnitude
needed to balance the downward force Fg , up to the point of breaking the table. If
someone stacks books on the TV, the normal force exerted by the table on the TV
increases. If someone lifts up on the TV, the normal force exerted by the table on
the TV decreases. (The normal force becomes zero if the TV is raised off the table.)

The two forces in an action–reaction pair always act on different objects.
For the hammer-and-nail situation shown in Figure 5.6b, one force of the pair acts
on the hammer and the other acts on the nail. For the unfortunate person step-
ping out of the boat in Quick Quiz 5.4, one force of the pair acts on the person,
and the other acts on the boat. 

For the TV in Figure 5.7, the force of gravity Fg and the normal force n are not
an action–reaction pair because they act on the same body—the TV. The two re-
action forces in this situation— and n�—are exerted on objects other than the
TV. Because the reaction to Fg is the force exerted by the TV on the Earth and
the reaction to n is the force n� exerted by the TV on the table, we conclude that

Fg � �F �g  and  n � �n�

F �g

F �g

Quick Quiz 5.4

F �gF �g � �Fg .

Definition of normal force

4 Normal in this context means perpendicular.

F

Compression of a football as the
force exerted by a player’s foot sets
the ball in motion.
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The forces n and n� have the same magnitude, which is the same as that of Fg until
the table breaks. From the second law, we see that, because the TV is in equilib-
rium (a � 0), it follows5 that 

If a fly collides with the windshield of a fast-moving bus, (a) which experiences the greater im-
pact force: the fly or the bus, or is the same force experienced by both? (b) Which experiences
the greater acceleration: the fly or the bus, or is the same acceleration experienced by both?

Quick Quiz 5.5

Fg � n � mg.

Figure 5.7 When a TV is at rest on a table, the forces acting on the TV are the normal force n
and the force of gravity Fg , as illustrated in part (b). The reaction to n is the force n� exerted by
the TV on the table. The reaction to Fg is the force F�g exerted by the TV on the Earth.

Fg

nn

F ′g

Fg

n′

(a) (b)

5 Technically, we should write this equation in the component form Fgy � ny � mgy . This component
notation is cumbersome, however, and so in situations in which a vector is parallel to a coordinate axis,
we usually do not include the subscript for that axis because there is no other component.

You Push Me and I’ll Push YouCONCEPTUAL EXAMPLE 5.3
Therefore, the boy, having the lesser mass, experiences the
greater acceleration. Both individuals accelerate for the same
amount of time, but the greater acceleration of the boy over
this time interval results in his moving away from the interac-
tion with the higher speed.

(b) Who moves farther while their hands are in contact? 

Solution Because the boy has the greater acceleration, he
moves farther during the interval in which the hands are in
contact.

A large man and a small boy stand facing each other on fric-
tionless ice. They put their hands together and push against
each other so that they move apart. (a) Who moves away with
the higher speed?

Solution This situation is similar to what we saw in Quick
Quiz 5.5. According to Newton’s third law, the force exerted
by the man on the boy and the force exerted by the boy on
the man are an action–reaction pair, and so they must be
equal in magnitude. (A bathroom scale placed between their
hands would read the same, regardless of which way it faced.)
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SOME APPLICATIONS OF NEWTON’S LAWS
In this section we apply Newton’s laws to objects that are either in equilibrium 
(a � 0) or accelerating along a straight line under the action of constant external
forces. We assume that the objects behave as particles so that we need not worry
about rotational motion. We also neglect the effects of friction in those problems
involving motion; this is equivalent to stating that the surfaces are frictionless. Fi-
nally, we usually neglect the mass of any ropes involved. In this approximation, the
magnitude of the force exerted at any point along a rope is the same at all points
along the rope. In problem statements, the synonymous terms light, lightweight, and
of negligible mass are used to indicate that a mass is to be ignored when you work
the problems.

When we apply Newton’s laws to an object, we are interested only in ex-
ternal forces that act on the object. For example, in Figure 5.7 the only external
forces acting on the TV are n and Fg . The reactions to these forces, n� and , act
on the table and on the Earth, respectively, and therefore do not appear in New-
ton’s second law applied to the TV.

When a rope attached to an object is pulling on the object, the rope exerts a
force T on the object, and the magnitude of that force is called the tension in the
rope. Because it is the magnitude of a vector quantity, tension is a scalar quantity.

Consider a crate being pulled to the right on a frictionless, horizontal surface,
as shown in Figure 5.8a. Suppose you are asked to find the acceleration of the
crate and the force the floor exerts on it. First, note that the horizontal force be-
ing applied to the crate acts through the rope. Use the symbol T to denote the
force exerted by the rope on the crate. The magnitude of T is equal to the tension
in the rope. A dotted circle is drawn around the crate in Figure 5.8a to remind you
that you are interested only in the forces acting on the crate. These are illustrated
in Figure 5.8b. In addition to the force T, this force diagram for the crate includes
the force of gravity Fg and the normal force n exerted by the floor on the crate.
Such a force diagram, referred to as a free-body diagram, shows all external
forces acting on the object. The construction of a correct free-body diagram is an
important step in applying Newton’s laws. The reactions to the forces we have
listed—namely, the force exerted by the crate on the rope, the force exerted by
the crate on the Earth, and the force exerted by the crate on the floor—are not in-
cluded in the free-body diagram because they act on other bodies and not on the
crate.

We can now apply Newton’s second law in component form to the crate. The
only force acting in the x direction is T. Applying �Fx � max to the horizontal mo-
tion gives

No acceleration occurs in the y direction. Applying �Fy � may with ay � 0
yields

That is, the normal force has the same magnitude as the force of gravity but is in
the opposite direction.

If T is a constant force, then the acceleration ax � T/m also is constant.
Hence, the constant-acceleration equations of kinematics from Chapter 2 can be
used to obtain the crate’s displacement 	x and velocity vx as functions of time. Be-

n � (�Fg) � 0  or  n � Fg

�  Fx � T � max  or  ax �
T
m

F �g

5.7

Tension

(a)

T

n

Fg

y

x

(b)

Figure 5.8 (a) A crate being
pulled to the right on a frictionless
surface. (b) The free-body diagram
representing the external forces
acting on the crate. 

4.6
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cause ax � T/m � constant, Equations 2.8 and 2.11 can be written as

In the situation just described, the magnitude of the normal force n is equal to
the magnitude of Fg , but this is not always the case. For example, suppose a book
is lying on a table and you push down on the book with a force F, as shown in Fig-
ure 5.9. Because the book is at rest and therefore not accelerating, �Fy � 0, which
gives or Other examples in which are pre-
sented later.

Consider a lamp suspended from a light chain fastened to the ceiling, as in
Figure 5.10a. The free-body diagram for the lamp (Figure 5.10b) shows that the
forces acting on the lamp are the downward force of gravity Fg and the upward
force T exerted by the chain. If we apply the second law to the lamp, noting that 
a � 0, we see that because there are no forces in the x direction, �Fx � 0 provides
no helpful information. The condition �Fy � may � 0 gives

Again, note that T and Fg are not an action–reaction pair because they act on the
same object—the lamp. The reaction force to T is T�, the downward force exerted
by the lamp on the chain, as shown in Figure 5.10c. The ceiling exerts on the
chain a force T
 that is equal in magnitude to the magnitude of T� and points in
the opposite direction.

�Fy � T � Fg � 0  or  T � Fg

n � Fgn � Fg � F.n � Fg � F � 0,

 	x � vxit � 1
2� T

m �t2

vxf � vxi � � T
m �t 

Figure 5.9 When one object
pushes downward on another ob-
ject with a force F, the normal
force n is greater than the force of
gravity: n � Fg � F.

Figure 5.10 (a) A lamp sus-
pended from a ceiling by a chain of
negligible mass. (b) The forces act-
ing on the lamp are the force of
gravity Fg and the force exerted by
the chain T. (c) The forces acting
on the chain are the force exerted
by the lamp T� and the force ex-
erted by the ceiling T
.

Problem-Solving Hints
Applying Newton’s Laws
The following procedure is recommended when dealing with problems involv-
ing Newton’s laws:

• Draw a simple, neat diagram of the system.
• Isolate the object whose motion is being analyzed. Draw a free-body diagram

for this object. For systems containing more than one object, draw separate
free-body diagrams for each object. Do not include in the free-body diagram
forces exerted by the object on its surroundings. Establish convenient coor-
dinate axes for each object and find the components of the forces along
these axes.

• Apply Newton’s second law, �F � ma, in component form. Check your di-
mensions to make sure that all terms have units of force.

• Solve the component equations for the unknowns. Remember that you must
have as many independent equations as you have unknowns to obtain a
complete solution.

• Make sure your results are consistent with the free-body diagram. Also check
the predictions of your solutions for extreme values of the variables. By do-
ing so, you can often detect errors in your results.

F

Fg n

(b)

(c)

T

T′

T′′ = T

(a)
Fg
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A Traffic Light at RestEXAMPLE 5.4
(1)

(2)

From (1) we see that the horizontal components of T1 and T2
must be equal in magnitude, and from (2) we see that the
sum of the vertical components of T1 and T2 must balance
the weight of the light. We solve (1) for T2 in terms of T1 to
obtain

This value for T2 is substituted into (2) to yield

This problem is important because it combines what we have
learned about vectors with the new topic of forces. The gen-
eral approach taken here is very powerful, and we will repeat
it many times.

Exercise In what situation does T1 � T2 ?

Answer When the two cables attached to the support make
equal angles with the horizontal.

99.9 NT2 � 1.33T1 �

75.1 NT1 �

T1 sin 37.0° � (1.33T1)(sin 53.0°) � 125 N � 0

T2 � T1� cos 37.0°
cos 53.0° � � 1.33T1

� (�125 N) � 0
�Fy � T1 sin 37.0° � T2 sin 53.0°

�Fx � �T1 cos 37.0° � T2 cos 53.0° � 0A traffic light weighing 125 N hangs from a cable tied to two
other cables fastened to a support. The upper cables make
angles of 37.0° and 53.0° with the horizontal. Find the ten-
sion in the three cables.

Solution Figure 5.11a shows the type of drawing we might
make of this situation. We then construct two free-body dia-
grams—one for the traffic light, shown in Figure 5.11b, and
one for the knot that holds the three cables together, as seen
in Figure 5.11c. This knot is a convenient object to choose be-
cause all the forces we are interested in act through it. Be-
cause the acceleration of the system is zero, we know that the
net force on the light and the net force on the knot are both
zero.

In Figure 5.11b the force T3 exerted by the vertical cable 

supports the light, and so Next, we 

choose the coordinate axes shown in Figure 5.11c and resolve
the forces acting on the knot into their components:

125 N.T3 � Fg �

T2T1

T3

53.0°37.0°

(a)

T3

53.0°37.0° x

T2

T1

yT3

Fg

(b) (c)

Figure 5.11 (a) A traffic light suspended by cables. (b) Free-body diagram for the traf-
fic light. (c) Free-body diagram for the knot where the three cables are joined.

Force x Component y Component

T1 � T1 cos 37.0� T1 sin 37.0�
T2 T2 cos 53.0� T2 sin 53.0�
T3 0 � 125 N

Knowing that the knot is in equilibrium (a � 0) allows us to
write



Forces Between Cars in a TrainCONCEPTUAL EXAMPLE 5.5
the locomotive and the first car must apply enough force to
accelerate all of the remaining cars. As you move back along
the train, each coupler is accelerating less mass behind it.
The last coupler has to accelerate only the caboose, and so it
is under the least tension.

When the brakes are applied, the force again decreases
from front to back. The coupler connecting the locomotive
to the first car must apply a large force to slow down all the
remaining cars. The final coupler must apply a force large
enough to slow down only the caboose.

In a train, the cars are connected by couplers, which are under
tension as the locomotive pulls the train. As you move down
the train from locomotive to caboose, does the tension in the
couplers increase, decrease, or stay the same as the train
speeds up? When the engineer applies the brakes, the cou-
plers are under compression. How does this compression
force vary from locomotive to caboose? (Assume that only the
brakes on the wheels of the engine are applied.)

Solution As the train speeds up, the tension decreases
from the front of the train to the back. The coupler between

Crate on a Frictionless InclineEXAMPLE 5.6
place the force of gravity by a component of magnitude 
mg sin � along the positive x axis and by one of magnitude 
mg cos � along the negative y axis.

Now we apply Newton’s second law in component form,
noting that ay � 0:

(1)

(2)

Solving (1) for ax , we see that the acceleration along the incline
is caused by the component of Fg directed down the incline:

(3)

Note that this acceleration component is independent of the
mass of the crate! It depends only on the angle of inclination
and on g.

From (2) we conclude that the component of Fg perpendic-
ular to the incline is balanced by the normal force; that is, n �
mg cos �. This is one example of a situation in which the nor-
mal force is not equal in magnitude to the weight of the object.

Special Cases Looking over our results, we see that in the
extreme case of � � 90°, ax � g and n � 0. This condition
corresponds to the crate’s being in free fall. When � � 0, 
ax � 0 and n � mg (its maximum value); in this case, the
crate is sitting on a horizontal surface.

(b) Suppose the crate is released from rest at the top of
the incline, and the distance from the front edge of the crate
to the bottom is d. How long does it take the front edge to
reach the bottom, and what is its speed just as it gets there?

Solution Because ax � constant, we can apply Equation
2.11, to analyze the crate’s motion.x f � x i � vxit � 1

2axt2,

ax � g sin �

�Fy � n � mg cos � � 0

�Fx � mg sin � � max

A crate of mass m is placed on a frictionless inclined plane of
angle �. (a) Determine the acceleration of the crate after it is
released.

Solution Because we know the forces acting on the crate,
we can use Newton’s second law to determine its accelera-
tion. (In other words, we have classified the problem; this
gives us a hint as to the approach to take.) We make a sketch
as in Figure 5.12a and then construct the free-body diagram
for the crate, as shown in Figure 5.12b. The only forces acting
on the crate are the normal force n exerted by the inclined
plane, which acts perpendicular to the plane, and the force
of gravity Fg � mg, which acts vertically downward. For prob-
lems involving inclined planes, it is convenient to choose the
coordinate axes with x downward along the incline and y per-
pendicular to it, as shown in Figure 5.12b. (It is possible to
solve the problem with “standard” horizontal and vertical
axes. You may want to try this, just for practice.) Then, we re-

Figure 5.12 (a) A crate of mass m sliding down a frictionless in-
cline. (b) The free-body diagram for the crate. Note that its accelera-
tion along the incline is g sin �.

y

(a) (b)

d x

n

mg

θ

a

mg sin

θmg cos θ

θ
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Figure 5.13

One Block Pushes AnotherEXAMPLE 5.7
Treating the two blocks together as a system simplifies the

solution but does not provide information about internal
forces.

(b) Determine the magnitude of the contact force be-
tween the two blocks.

Solution To solve this part of the problem, we must treat
each block separately with its own free-body diagram, as in
Figures 5.13b and 5.13c. We denote the contact force by P.
From Figure 5.13c, we see that the only horizontal force act-
ing on block 2 is the contact force P (the force exerted by
block 1 on block 2), which is directed to the right. Applying
Newton’s second law to block 2 gives

(2)

Substituting into (2) the value of ax given by (1), we obtain

(3)

From this result, we see that the contact force P exerted by
block 1 on block 2 is less than the applied force F. This is con-
sistent with the fact that the force required to accelerate
block 2 alone must be less than the force required to pro-
duce the same acceleration for the two-block system.

It is instructive to check this expression for P by consider-
ing the forces acting on block 1, shown in Figure 5.13b. The
horizontal forces acting on this block are the applied force F
to the right and the contact force P� to the left (the force ex-
erted by block 2 on block 1). From Newton’s third law, P� is
the reaction to P, so that Applying Newton’s sec-
ond law to block 1 produces

(4) �Fx � F � P  � � F � P � m1ax

� P � � � � P �.

P � m 2ax � � m 2

m1 � m 2
�F

�Fx � P � m 2ax

Two blocks of masses m1 and m2 are placed in contact with
each other on a frictionless horizontal surface. A constant
horizontal force F is applied to the block of mass m1 . (a) De-
termine the magnitude of the acceleration of the two-block
system.

Solution Common sense tells us that both blocks must ex-
perience the same acceleration because they remain in con-
tact with each other. Just as in the preceding example, we
make a labeled sketch and free-body diagrams, which are
shown in Figure 5.13. In Figure 5.13a the dashed line indi-
cates that we treat the two blocks together as a system. Be-
cause F is the only external horizontal force acting on the sys-
tem (the two blocks), we have

(1) ax �
F

m1 � m 2

�Fx(system) � F � (m1 � m 2)ax

With the displacement xf � xi � d and vxi � 0, we obtain

(4)

Using Equation 2.12, with vxi � 0,
we find that

 vxf 

2 � 2axd 

vxf 

2 � vxi 

2 � 2ax(x f � x i),

√ 2d

g sin �
t � √ 2d

ax
�

 d � 1
2axt2 

(5)

We see from equations (4) and (5) that the time t needed to
reach the bottom and the speed vxf , like acceleration, are in-
dependent of the crate’s mass. This suggests a simple method
you can use to measure g , using an inclined air track: Mea-
sure the angle of inclination, some distance traveled by a cart
along the incline, and the time needed to travel that dis-
tance. The value of g can then be calculated from (4).

√2gd sin �vxf � √2axd �

m2
m1

F

(a)

(b)

m1

n1

F P′

m1g

y

x

(c)

P

m2g

n2

m2
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Figure 5.14 Apparent weight versus true weight. (a) When the elevator accelerates upward, the
spring scale reads a value greater than the weight of the fish. (b) When the elevator accelerates down-
ward, the spring scale reads a value less than the weight of the fish.

m g

a

T

a

m g

T

(b)(a)

Observer in
inertial frame

Weighing a Fish in an ElevatorEXAMPLE 5.8
If the elevator moves upward with an acceleration a rela-

tive to an observer standing outside the elevator in an inertial
frame (see Fig. 5.14a), Newton’s second law applied to the
fish gives the net force on the fish:

(1)

where we have chosen upward as the positive direction. Thus,
we conclude from (1) that the scale reading T is greater than 
the weight mg if a is upward, so that ay is positive, and that 
the reading is less than mg if a is downward, so that ay is
negative.

For example, if the weight of the fish is 40.0 N and a is up-
ward, so that ay � �2.00 m/s2, the scale reading from (1) is

�Fy � T � mg � may

A person weighs a fish of mass m on a spring scale attached to
the ceiling of an elevator, as illustrated in Figure 5.14. Show
that if the elevator accelerates either upward or downward,
the spring scale gives a reading that is different from the
weight of the fish.

Solution The external forces acting on the fish are the
downward force of gravity Fg � mg and the force T exerted
by the scale. By Newton’s third law, the tension T is also the
reading of the scale. If the elevator is either at rest or moving
at constant velocity, the fish is not accelerating, and so

or (remember that the scalar mg
is the weight of the fish).

T � mg�Fy � T � mg � 0

Substituting into (4) the value of ax from (1), we obtain

This agrees with (3), as it must.

P � F � m1ax � F �
m1F

m1 � m 2
� � m 2

m1 � m 2
�F

Exercise If m1 � 4.00 kg, m2 � 3.00 kg, and F � 9.00 N,
find the magnitude of the acceleration of the system and the
magnitude of the contact force.

Answer ax � 1.29 m/s2; P � 3.86 N.
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Atwood’s MachineEXAMPLE 5.9
vice is sometimes used in the laboratory to measure the free-
fall acceleration. Determine the magnitude of the accelera-
tion of the two objects and the tension in the lightweight
cord.

Solution If we were to define our system as being made
up of both objects, as we did in Example 5.7, we would have
to determine an internal force (tension in the cord). We must
define two systems here—one for each object—and apply
Newton’s second law to each. The free-body diagrams for the
two objects are shown in Figure 5.15b. Two forces act on each
object: the upward force T exerted by the cord and the down-
ward force of gravity. 

We need to be very careful with signs in problems such as
this, in which a string or rope passes over a pulley or some
other structure that causes the string or rope to bend. In Fig-
ure 5.15a, notice that if object 1 accelerates upward, then ob-
ject 2 accelerates downward. Thus, for consistency with signs,
if we define the upward direction as positive for object 1, we
must define the downward direction as positive for object 2.
With this sign convention, both objects accelerate in the
same direction as defined by the choice of sign. With this sign
convention applied to the forces, the y component of the net
force exerted on object 1 is T � m1g, and the y component of
the net force exerted on object 2 is m2g � T. Because the ob-
jects are connected by a cord, their accelerations must be
equal in magnitude. (Otherwise the cord would stretch or
break as the distance between the objects increased.) If we as-
sume m2  m1 , then object 1 must accelerate upward and ob-
ject 2 downward.

When Newton’s second law is applied to object 1, we
obtain

(1)

Similarly, for object 2 we find

(2) �Fy � m2g � T � m2ay

�Fy � T � m1g � m1ay

When two objects of unequal mass are hung vertically over a
frictionless pulley of negligible mass, as shown in Figure
5.15a, the arrangement is called an Atwood machine. The de-

Figure 5.15 Atwood’s machine. (a) Two objects (m2  m1) con-
nected by a cord of negligible mass strung over a frictionless pulley.
(b) Free-body diagrams for the two objects.

(2)

If a is downward so that ay � �2.00 m/s2, then (2) gives us

31.8 N�

T � mg � ay

g
� 1� � (40.0 N) � �2.00 m/s2

9.80 m/s2 � 1� 

48.2 N�

 � (40.0 N) � 2.00 m/s2

9.80 m/s2 � 1�

T � may � mg � mg � ay

g
� 1� 

Hence, if you buy a fish by weight in an elevator, make
sure the fish is weighed while the elevator is either at rest or
accelerating downward! Furthermore, note that from the in-
formation given here one cannot determine the direction of
motion of the elevator. 

Special Cases If the elevator cable breaks, the elevator
falls freely and ay � �g. We see from (2) that the scale read-
ing T is zero in this case; that is, the fish appears to be weight-
less. If the elevator accelerates downward with an accelera-
tion greater than g, the fish (along with the person in the
elevator) eventually hits the ceiling because the acceleration
of fish and person is still that of a freely falling object relative
to an outside observer.

(b)

m1

T

m1g

T

m2g

(a)

m1

m2

a

a

m2
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Acceleration of Two Objects Connected by a CordEXAMPLE 5.10
rection. Applying Newton’s second law in component form to
the block gives

(3)

(4)

In (3) we have replaced ax� with a because that is the accelera-
tion’s only component. In other words, the two objects have ac-
celerations of the same magnitude a, which is what we are trying
to find. Equations (1) and (4) provide no information regard-
ing the acceleration. However, if we solve (2) for T and then
substitute this value for T into (3) and solve for a, we obtain

(5)

When this value for a is substituted into (2), we find

(6) T �
m1m2g(sin � � 1)

m1 � m2

a �
m2g sin � � m1g

m1 � m2

�Fy � � n � m2g cos � � 0

�Fx � � m2g sin � � T � m2ax � � m2a

A ball of mass m1 and a block of mass m2 are attached by a
lightweight cord that passes over a frictionless pulley of negli-
gible mass, as shown in Figure 5.16a. The block lies on a fric-
tionless incline of angle �. Find the magnitude of the acceler-
ation of the two objects and the tension in the cord.

Solution Because the objects are connected by a cord
(which we assume does not stretch), their accelerations have
the same magnitude. The free-body diagrams are shown in
Figures 5.16b and 5.16c. Applying Newton’s second law in
component form to the ball, with the choice of the upward
direction as positive, yields

(1)

(2)

Note that in order for the ball to accelerate upward, it is nec-
essary that T  m1g. In (2) we have replaced ay with a be-
cause the acceleration has only a y component.

For the block it is convenient to choose the positive x � axis
along the incline, as shown in Figure 5.16c. Here we choose
the positive direction to be down the incline, in the � x � di-

�Fy � T � m1g � m1ay � m1a

�Fx � 0

When (2) is added to (1), T drops out and we get

(3)

When (3) is substituted into (1), we obtain

(4)

The result for the acceleration in (3) can be interpreted as

T � � 2m1m2

m1 � m2
�g

ay � � m2 � m1

m1 � m2
�g

 �m1g � m2g � m1ay � m2ay

the ratio of the unbalanced force on the system 
to the total mass of the system as expected from
Newton’s second law. 

Special Cases When m1 � m2 , then ay � 0 and T � m1g,
as we would expect for this balanced case. If m2  m1 , then 
ay � g (a freely falling body) and T � 2m1g.

Exercise Find the magnitude of the acceleration and the
string tension for an Atwood machine in which m1 � 2.00 kg
and m2 � 4.00 kg.

Answer ay � 3.27 m/s2, T � 26.1 N.

(m1 � m2),
(m2g � m1g)

Figure 5.16 (a) Two objects
connected by a lightweight cord
strung over a frictionless pulley.
(b) Free-body diagram for the
ball. (c) Free-body diagram for
the block. (The incline is friction-
less.)
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FORCES OF FRICTION
When a body is in motion either on a surface or in a viscous medium such as air or
water, there is resistance to the motion because the body interacts with its sur-
roundings. We call such resistance a force of friction. Forces of friction are very
important in our everyday lives. They allow us to walk or run and are necessary for
the motion of wheeled vehicles.

Have you ever tried to move a heavy desk across a rough floor? You push
harder and harder until all of a sudden the desk seems to “break free” and subse-
quently moves relatively easily. It takes a greater force to start the desk moving
than it does to keep it going once it has started sliding. To understand why this
happens, consider a book on a table, as shown in Figure 5.17a. If we apply an ex-
ternal horizontal force F to the book, acting to the right, the book remains station-
ary if F is not too great. The force that counteracts F and keeps the book from
moving acts to the left and is called the frictional force f.

As long as the book is not moving, f � F. Because the book is stationary, we
call this frictional force the force of static friction fs . Experiments show that this
force arises from contacting points that protrude beyond the general level of the
surfaces in contact, even for surfaces that are apparently very smooth, as shown in
the magnified view in Figure 5.17a. (If the surfaces are clean and smooth at the
atomic level, they are likely to weld together when contact is made.) The frictional
force arises in part from one peak’s physically blocking the motion of a peak from
the opposing surface, and in part from chemical bonding of opposing points as
they come into contact. If the surfaces are rough, bouncing is likely to occur, fur-
ther complicating the analysis. Although the details of friction are quite complex
at the atomic level, this force ultimately involves an electrical interaction between
atoms or molecules.

If we increase the magnitude of F, as shown in Figure 5.17b, the magnitude of
fs increases along with it, keeping the book in place. The force fs cannot increase
indefinitely, however. Eventually the surfaces in contact can no longer supply suffi-
cient frictional force to counteract F, and the book accelerates. When it is on the
verge of moving, fs is a maximum, as shown in Figure 5.17c. When F exceeds fs,max ,
the book accelerates to the right. Once the book is in motion, the retarding fric-
tional force becomes less than fs,max (see Fig. 5.17c). When the book is in motion,
we call the retarding force the force of kinetic friction fk . If F � fk , then the
book moves to the right with constant speed. If F  fk , then there is an unbalanced
force F � fk in the positive x direction, and this force accelerates the book to the
right. If the applied force F is removed, then the frictional force fk acting to the
left accelerates the book in the negative x direction and eventually brings it to rest.

Experimentally, we find that, to a good approximation, both fs,max and fk are
proportional to the normal force acting on the book. The following empirical laws
of friction summarize the experimental observations:

5.8

Note that the block accelerates down the incline only if 
m2 sin �  m1 (that is, if a is in the direction we assumed). If 
m1  m2 sin �, then the acceleration is up the incline for the
block and downward for the ball. Also note that the result for
the acceleration (5) can be interpreted as the resultant force
acting on the system divided by the total mass of the system; this
is consistent with Newton’s second law. Finally, if � � 90°, then
the results for a and T are identical to those of Example 5.9.

Exercise If m1 � 10.0 kg, m2 � 5.00 kg, and � � 45.0°, find
the acceleration of each object.

Answer a � � 4.22 m/s2, where the negative sign indicates
that the block accelerates up the incline and the ball acceler-
ates downward.

Force of static friction

Force of kinetic friction
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• The direction of the force of static friction between any two surfaces in contact with
each other is opposite the direction of relative motion and can have values

(5.8)

where the dimensionless constant �s is called the coefficient of static friction
and n is the magnitude of the normal force. The equality in Equation 5.8 holds
when one object is on the verge of moving, that is, when fs � fs,max � �sn. The
inequality holds when the applied force is less than �sn.

• The direction of the force of kinetic friction acting on an object is opposite the
direction of the object’s sliding motion relative to the surface applying the fric-
tional force and is given by

(5.9)

where �k is the coefficient of kinetic friction.
• The values of �k and �s depend on the nature of the surfaces, but �k is generally

less than �s . Typical values range from around 0.03 to 1.0. Table 5.2 lists some
reported values.

fk � �kn

fs � �sn

F

fk =    kn
f s =

 F

0

|f|

fs,max

Static region

(c)

(a) (b)

Kinetic region

µ

mg

n

F

n
Motion

mg

fkfs
F

Figure 5.17 The direction of the force of friction f between a book and a rough surface is op-
posite the direction of the applied force F. Because the two surfaces are both rough, contact is
made only at a few points, as illustrated in the “magnified” view. (a) The magnitude of the force
of static friction equals the magnitude of the applied force. (b) When the magnitude of the ap-
plied force exceeds the magnitude of the force of kinetic friction, the book accelerates to the
right. (c) A graph of frictional force versus applied force. Note that fs,max  fk .
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• The coefficients of friction are nearly independent of the area of contact be-
tween the surfaces. To understand why, we must examine the difference be-
tween the apparent contact area, which is the area we see with our eyes, and the
real contact area, represented by two irregular surfaces touching, as shown in the
magnified view in Figure 5.17a. It seems that increasing the apparent contact
area does not increase the real contact area. When we increase the apparent
area (without changing anything else), there is less force per unit area driving
the jagged points together. This decrease in force counteracts the effect of hav-
ing more points involved. 

Although the coefficient of kinetic friction can vary with speed, we shall usu-
ally neglect any such variations in this text. We can easily demonstrate the approxi-
mate nature of the equations by trying to get a block to slip down an incline at
constant speed. Especially at low speeds, the motion is likely to be characterized by
alternate episodes of sticking and movement.

A crate is sitting in the center of a flatbed truck. The truck accelerates to the right, and the
crate moves with it, not sliding at all. What is the direction of the frictional force exerted by
the truck on the crate? (a) To the left. (b) To the right. (c) No frictional force because the
crate is not sliding.

Quick Quiz 5.6

Why Does the Sled Accelerate?CONCEPTUAL EXAMPLE 5.11
Solution It is important to remember that the forces de-
scribed in Newton’s third law act on different objects—the
horse exerts a force on the sled, and the sled exerts an equal-
magnitude and oppositely directed force on the horse. Be-
cause we are interested only in the motion of the sled, we do
not consider the forces it exerts on the horse. When deter-

A horse pulls a sled along a level, snow-covered road, causing
the sled to accelerate, as shown in Figure 5.18a. Newton’s
third law states that the sled exerts an equal and opposite
force on the horse. In view of this, how can the sled acceler-
ate? Under what condition does the system (horse plus sled)
move with constant velocity?

If you would like to learn more
about this subject, read the article
“Friction at the Atomic Scale” by J.
Krim in the October 1996 issue of
Scientific American.

QuickLab
Can you apply the ideas of Example
5.12 to determine the coefficients of
static and kinetic friction between the
cover of your book and a quarter?
What should happen to those coeffi-
cients if you make the measurements
between your book and two quarters
taped one on top of the other?

TABLE 5.2 Coefficients of Frictiona

�s �k

Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Copper on steel 0.53 0.36
Rubber on concrete 1.0 0.8
Wood on wood 0.25–0.5 0.2
Glass on glass 0.94 0.4
Waxed wood on wet snow 0.14 0.1
Waxed wood on dry snow — 0.04
Metal on metal (lubricated) 0.15 0.06
Ice on ice 0.1 0.03
Teflon on Teflon 0.04 0.04
Synovial joints in humans 0.01 0.003

a All values are approximate. In some cases, the coefficient of fric-
tion can exceed 1.0.
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Experimental Determination of �s and �kEXAMPLE 5.12
of slipping but has not yet moved. When we take x to be par-
allel to the plane and y perpendicular to it, Newton’s second
law applied to the block for this balanced situation gives

Static case:

We can eliminate mg by substituting mg � n/cos � from
(2) into (1) to get

When the incline is at the critical angle �c , we know that fs �
fs,max � �sn, and so at this angle, (3) becomes

Static case:

For example, if the block just slips at �c � 20°, then we find
that �s � tan 20° � 0.364.

Once the block starts to move at � � �c , it accelerates
down the incline and the force of friction is fk � �kn. How-
ever, if � is reduced to a value less than �c , it may be possible
to find an angle such that the block moves down the in-
cline with constant speed (ax � 0). In this case, using (1) and
(2) with fs replaced by fk gives

Kinetic case:

where ��c � �c .

�k � tan ��c

��c

�s � tan �c

 �sn � n tan �c

 (3)  fs � mg sin � � � n

cos �
� sin � � n tan �

    (2)  �Fy � n � mg cos � � may � 0

(1)  �Fx � mg sin � � fs � max � 0

The following is a simple method of measuring coefficients of
friction: Suppose a block is placed on a rough surface in-
clined relative to the horizontal, as shown in Figure 5.19. The
incline angle is increased until the block starts to move. Let
us show that by measuring the critical angle �c at which this
slipping just occurs, we can obtain �s .

Solution The only forces acting on the block are the force
of gravity mg, the normal force n, and the force of static fric-
tion fs . These forces balance when the block is on the verge

mining the motion of an object, you must add only the forces
on that object. The horizontal forces exerted on the sled are
the forward force T exerted by the horse and the backward
force of friction fsled between sled and snow (see Fig. 5.18b).
When the forward force exceeds the backward force, the sled
accelerates to the right.

The force that accelerates the system (horse plus sled) is
the frictional force fhorse exerted by the Earth on the horse’s
feet. The horizontal forces exerted on the horse are the for-
ward force fhorse exerted by the Earth and the backward ten-
sion force T exerted by the sled (Fig. 5.18c). The resultant of

these two forces causes the horse to accelerate. When fhorse
balances fsled , the system moves with constant velocity.

Exercise Are the normal force exerted by the snow on the
horse and the gravitational force exerted by the Earth on the
horse a third-law pair?

Answer No, because they act on the same object. Third-law
force pairs are equal in magnitude and opposite in direction,
and the forces act on different objects.

(b)

T

fsled

(a) (c)

T

fhorse

Figure 5.18 

Figure 5.19 The external forces exerted on a block lying on a
rough incline are the force of gravity mg, the normal force n, and
the force of friction f. For convenience, the force of gravity is re-
solved into a component along the incline mg sin � and a component
perpendicular to the incline mg cos �.

n

f

y

x

θ

mg sin

mg cos θ

mg

θ
θ
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The Sliding Hockey PuckEXAMPLE 5.13
Defining rightward and upward as our positive directions,

we apply Newton’s second law in component form to the
puck and obtain

(1)

(2)

But fk � �kn, and from (2) we see that n � mg. Therefore,
(1) becomes

The negative sign means the acceleration is to the left; this
means that the puck is slowing down. The acceleration is in-
dependent of the mass of the puck and is constant because
we assume that �k remains constant.

Because the acceleration is constant, we can use Equation
2.12, with xi � 0 and vxf � 0:

Note that �k is dimensionless.

0.177 �k �
(20.0 m/s)2

2(9.80 m/s2)(115 m)
�

 �k �
vxi 

2

2gx f
 

vxi 

2 � 2axf � vxi 

2 � 2�kgx f � 0 

vxf  

2 � vxi 

2 � 2ax(x f � x i),

 ax � ��kg 

��kn � ��kmg � max

�Fy � n � mg � 0  (ay � 0)

�Fx � � f k � max

A hockey puck on a frozen pond is given an initial speed of
20.0 m/s. If the puck always remains on the ice and slides 
115 m before coming to rest, determine the coefficient of ki-
netic friction between the puck and ice.

Solution The forces acting on the puck after it is in mo-
tion are shown in Figure 5.20. If we assume that the force of
kinetic friction fk remains constant, then this force produces
a uniform acceleration of the puck in the direction opposite
its velocity, causing the puck to slow down. First, we find this
acceleration in terms of the coefficient of kinetic friction, us-
ing Newton’s second law. Knowing the acceleration of the
puck and the distance it travels, we can then use the equa-
tions of kinematics to find the coefficient of kinetic friction.

Acceleration of Two Connected Objects When Friction Is PresentEXAMPLE 5.14

Motion of block:

Motion of ball:

Note that because the two objects are connected, we can
equate the magnitudes of the x component of the accelera-
tion of the block and the y component of the acceleration of
the ball. From Equation 5.9 we know that fk � �kn, and from
(2) we know that n � m1g � F sin � (note that in this case n is
not equal to m1g); therefore,

(4)

That is, the frictional force is reduced because of the positive

fk � �k(m1g � F sin �)

(3)  �Fy � T � m2g � m2ay � m2a

�Fx � m2ax � 0

� m1ay � 0

(2)  �Fy � n � F sin � � m1g

� m1a

(1)  �Fx � F cos � � fk � T � m1ax
A block of mass m1 on a rough, horizontal surface is con-
nected to a ball of mass m2 by a lightweight cord over a light-
weight, frictionless pulley, as shown in Figure 5.21a. A force
of magnitude F at an angle � with the horizontal is applied to
the block as shown. The coefficient of kinetic friction be-
tween the block and surface is �k . Determine the magnitude
of the acceleration of the two objects.

Solution We start by drawing free-body diagrams for the
two objects, as shown in Figures 5.21b and 5.21c. (Are you be-
ginning to see the similarities in all these examples?) Next,
we apply Newton’s second law in component form to each
object and use Equation 5.9, Then we can solve for
the acceleration in terms of the parameters given.

The applied force F has x and y components F cos � and 
F sin �, respectively. Applying Newton’s second law to both
objects and assuming the motion of the block is to the right,
we obtain

fk � �kn.

Figure 5.20 After the puck is given an initial velocity to the right,
the only external forces acting on it are the force of gravity mg, the
normal force n, and the force of kinetic friction fk .

Motionn

fk

mg
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Automobile Antilock Braking Systems (ABS)APPLICATION
have developed antilock braking systems (ABS) that very
briefly release the brakes when a wheel is just about to stop
turning. This maintains rolling contact between the tire and
the pavement. When the brakes are released momentarily,
the stopping distance is greater than it would be if the brakes
were being applied continuously. However, through the use
of computer control, the “brake-off ” time is kept to a mini-
mum. As a result, the stopping distance is much less than
what it would be if the wheels were to skid. 

Let us model the stopping of a car by examining real data.
In a recent issue of AutoWeek,7 the braking performance for a
Toyota Corolla was measured. These data correspond to the
braking force acquired by a highly trained, professional dri-
ver. We begin by assuming constant acceleration. (Why do we
need to make this assumption?) The magazine provided the
initial speed and stopping distance in non-SI units. After con-
verting these values to SI we use to deter-vxf 

2 � vxi  

2
 � 2axx

If an automobile tire is rolling and not slipping on a road sur-
face, then the maximum frictional force that the road can ex-
ert on the tire is the force of static friction �sn. One must use
static friction in this situation because at the point of contact
between the tire and the road, no sliding of one surface over
the other occurs if the tire is not skidding. However, if the
tire starts to skid, the frictional force exerted on it is reduced
to the force of kinetic friction �kn. Thus, to maximize the
frictional force and minimize stopping distance, the wheels
must maintain pure rolling motion and not skid. An addi-
tional benefit of maintaining wheel rotation is that direc-
tional control is not lost as it is in skidding.

Unfortunately, in emergency situations drivers typically
press down as hard as they can on the brake pedal, “locking
the brakes.” This stops the wheels from rotating, ensuring a
skid and reducing the frictional force from the static to the
kinetic case. To address this problem, automotive engineers

6 Equation 5 shows that when �km1  m2 , there is a range of values of F for which no motion occurs at
a given angle �.
7 AutoWeek magazine, 48:22–23, 1998.

Figure 5.21 (a) The external force F applied as shown can cause the block to accelerate to the right.
(b) and (c) The free-body diagrams, under the assumption that the block accelerates to the right and the
ball accelerates upward. The magnitude of the force of kinetic friction in this case is given by
fk � �kn � �k(m1g � F sin �).

m 1

m 2

F

θ

(a)

a

a

m 2

m 2g

T

(b)

m 1g

F

T

n
F  sin

F  cosfk

θ

θ

θ

(c)

y

x

y component of F. Substituting (4) and the value of T from
(3) into (1) gives

Solving for a, we obtain

(5)
F(cos � � �k sin �) � g(m2 � �km1)

m1 � m2
a �

F cos � � �k(m1g � F sin �) � m2(a � g) � m1a

Note that the acceleration of the block can be either to
the right or to the left,6 depending on the sign of the numer-
ator in (5). If the motion is to the left, then we must reverse
the sign of fk in (1) because the force of kinetic friction must
oppose the motion. In this case, the value of a is the same as
in (5), with �k replaced by � �k .
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SUMMARY

Newton’s first law states that, in the absence of an external force, a body at rest
remains at rest and a body in uniform motion in a straight line maintains that mo-
tion. An inertial frame is one that is not accelerating.

Newton’s second law states that the acceleration of an object is directly pro-
portional to the net force acting on it and inversely proportional to its mass. The
net force acting on an object equals the product of its mass and its acceleration:
�F � ma. You should be able to apply the x and y component forms of this equa-
tion to describe the acceleration of any object acting under the influence of speci-

Figure 5.22 This plot of vehicle speed versus distance
from where the brakes were applied shows that an antilock
braking system (ABS) approaches the performance of a
trained professional driver.

Initial Speed Stopping Distance Acceleration

(mi/h) (m/s) (ft) (m) (m/s2)

30 13.4 34 10.4 � 8.67
60 26.8 143 43.6 � 8.25
80 35.8 251 76.5 � 8.36

Initial Speed Stopping Distance Stopping distance
(mi/h) no skid (m) skidding (m)

30 10.4 13.9
60 43.6 55.5
80 76.5 98.9

Speed (m/s)
40

20

0
0 50 100 Distance from point

of application of brakes (m)

ABS, amateur driver

Professional driver

Amateur driver

mine the acceleration at different speeds. These do not vary
greatly, and so our assumption of constant acceleration is rea-
sonable.

An ABS keeps the wheels rotating, with the result that the
higher coefficient of static friction is maintained between the
tires and road. This approximates the technique of a profes-
sional driver who is able to maintain the wheels at the point
of maximum frictional force. Let us estimate the ABS perfor-
mance by assuming that the magnitude of the acceleration is
not quite as good as that achieved by the professional driver
but instead is reduced by 5%.

We now plot in Figure 5.22 vehicle speed versus distance
from where the brakes were applied (at an initial speed of 
80 mi/h � 37.5 m/s) for the three cases of amateur driver,
professional driver, and estimated ABS performance (ama-
teur driver). We find that a markedly shorter distance is nec-
essary for stopping without locking the wheels and skidding
and a satisfactory value of stopping distance when the ABS
computer maintains tire rotation.

The purpose of the ABS is to help typical drivers (whose ten-
dency is to lock the wheels in an emergency) to better maintain
control of their automobiles and minimize stopping distance. 

We take an average value of acceleration of � 8.4 m/s2,
which is approximately 0.86g. We then calculate the coeffi-
cient of friction from �F � �smg � ma; this gives �s � 0.86 for
the Toyota. This is lower than the rubber-to-concrete value
given in Table 5.2. Can you think of any reasons for this?

Let us now estimate the stopping distance of the car if the
wheels were skidding. Examining Table 5.2 again, we see that
the difference between the coefficients of static and kinetic
friction for rubber against concrete is about 0.2. Let us there-
fore assume that our coefficients differ by the same amount,
so that �k � 0.66. This allows us to calculate estimated stop-
ping distances for the case in which the wheels are locked
and the car skids across the pavement. The results illustrate
the advantage of not allowing the wheels to skid.
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Figure 5.23 Various systems (left) and the corresponding free-body diagrams (right).
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fied forces. If the object is either stationary or moving with constant velocity, then
the forces must vectorially cancel each other.

The force of gravity exerted on an object is equal to the product of its mass
(a scalar quantity) and the free-fall acceleration: Fg � mg. The weight of an ob-
ject is the magnitude of the force of gravity acting on the object.

Newton’s third law states that if two objects interact, then the force exerted by
object 1 on object 2 is equal in magnitude and opposite in direction to the force ex-
erted by object 2 on object 1. Thus, an isolated force cannot exist in nature. Make
sure you can identify third-law pairs and the two objects upon which they act.

The maximum force of static friction fs,max between an object and a surface
is proportional to the normal force acting on the object. In general, fs � �sn,
where �s is the coefficient of static friction and n is the magnitude of the normal
force. When an object slides over a surface, the direction of the force of kinetic
friction fk is opposite the direction of sliding motion and is also proportional to
the magnitude of the normal force. The magnitude of this force is given by fk �
�kn, where �k is the coefficient of kinetic friction.

More on Free-Body Diagrams

To be successful in applying Newton’s second law to a system, you must be able to
recognize all the forces acting on the system. That is, you must be able to construct
the correct free-body diagram. The importance of constructing the free-body dia-
gram cannot be overemphasized. In Figure 5.23 a number of systems are pre-
sented together with their free-body diagrams. You should examine these carefully
and then construct free-body diagrams for other systems described in the end-of-
chapter problems. When a system contains more than one element, it is important
that you construct a separate free-body diagram for each element.

As usual, F denotes some applied force, Fg � mg is the force of gravity, n de-
notes a normal force, f is the force of friction, and T is the force whose magnitude
is the tension exerted on an object.

QUESTIONS

tions: a man takes a step; a snowball hits a woman in the
back; a baseball player catches a ball; a gust of wind
strikes a window.

6. A ball is held in a person’s hand. (a) Identify all the exter-
nal forces acting on the ball and the reaction to each. 
(b) If the ball is dropped, what force is exerted on it
while it is falling? Identify the reaction force in this case.
(Neglect air resistance.)

7. If a car is traveling westward with a constant speed of 
20 m/s, what is the resultant force acting on it?

8. “When the locomotive in Figure 5.3 broke through the
wall of the train station, the force exerted by the locomo-
tive on the wall was greater than the force the wall could
exert on the locomotive.” Is this statement true or in
need of correction? Explain your answer.

9. A rubber ball is dropped onto the floor. What force
causes the ball to bounce?

10. What is wrong with the statement, “Because the car is at
rest, no forces are acting on it”? How would you correct
this statement?

1. A passenger sitting in the rear of a bus claims that he was
injured when the driver slammed on the brakes, causing
a suitcase to come flying toward the passenger from the
front of the bus. If you were the judge in this case, what
disposition would you make? Why?

2. A space explorer is in a spaceship moving through space
far from any planet or star. She notices a large rock, taken
as a specimen from an alien planet, floating around the
cabin of the spaceship. Should she push it gently toward a
storage compartment or kick it toward the compartment?
Why?

3. A massive metal object on a rough metal surface may un-
dergo contact welding to that surface. Discuss how this af-
fects the frictional force between object and surface.

4. The observer in the elevator of Example 5.8 would claim
that the weight of the fish is T, the scale reading. This
claim is obviously wrong. Why does this observation differ
from that of a person in an inertial frame outside the
elevator?

5. Identify the action–reaction pairs in the following situa-
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11. Suppose you are driving a car along a highway at a high
speed. Why should you avoid slamming on your brakes if
you want to stop in the shortest distance? That is, why
should you keep the wheels turning as you brake?

12. If you have ever taken a ride in an elevator of a high-rise
building, you may have experienced a nauseating sensa-
tion of “heaviness” and “lightness” depending on the di-
rection of the acceleration. Explain these sensations. Are
we truly weightless in free-fall?

13. The driver of a speeding empty truck slams on the brakes
and skids to a stop through a distance d. (a) If the truck
carried a heavy load such that its mass were doubled,
what would be its skidding distance? (b) If the initial
speed of the truck is halved, what would be its skidding
distance?

14. In an attempt to define Newton’s third law, a student states
that the action and reaction forces are equal in magnitude
and opposite in direction to each other. If this is the case,
how can there ever be a net force on an object?

15. What force causes (a) a propeller-driven airplane to
move? (b) a rocket? (c) a person walking?

16. Suppose a large and spirited Freshman team is beating
the Sophomores in a tug-of-war contest. The center of the

rope being tugged is gradually accelerating toward the
Freshman team. State the relationship between the
strengths of these two forces: First, the force the Fresh-
men exert on the Sophomores; and second, the force the
Sophomores exert on the Freshmen.

17. If you push on a heavy box that is at rest, you must exert
some force to start its motion. However, once the box is
sliding, you can apply a smaller force to maintain that
motion. Why?

18. A weight lifter stands on a bathroom scale. He pumps a
barbell up and down. What happens to the reading on
the scale as this is done? Suppose he is strong enough to
actually throw the barbell upward. How does the reading
on the scale vary now?

19. As a rocket is fired from a launching pad, its speed and
acceleration increase with time as its engines continue to
operate. Explain why this occurs even though the force of
the engines exerted on the rocket remains constant.

20. In the motion picture It Happened One Night (Columbia
Pictures, 1934), Clark Gable is standing inside a station-
ary bus in front of Claudette Colbert, who is seated. The
bus suddenly starts moving forward, and Clark falls into
Claudette’s lap. Why did this happen?

PROBLEMS

ity of 32.0 m/s horizontally forward. If the ball starts
from rest, (a) through what distance does the ball accel-
erate before its release? (b) What force does the pitcher
exert on the ball?

7. After uniformly accelerating his arm for a time t, a
pitcher releases a baseball of weight � Fg j with a veloc-
ity vi. If the ball starts from rest, (a) through what dis-
tance does the ball accelerate before its release? 
(b) What force does the pitcher exert on the ball?

8. Define one pound as the weight of an object of mass
0.453 592 37 kg at a location where the acceleration
due to gravity is 32.174 0 ft/s2. Express the pound as
one quantity with one SI unit.

9. A 4.00-kg object has a velocity of 3.00i m/s at one in-
stant. Eight seconds later, its velocity has increased to 
(8.00i � 10.0j) m/s. Assuming the object was subject to
a constant total force, find (a) the components of the
force and (b) its magnitude.

10. The average speed of a nitrogen molecule in air is
about 6.70 � 102 m/s, and its mass is 4.68 � 10�26 kg.
(a) If it takes 3.00 � 10�13 s for a nitrogen molecule to
hit a wall and rebound with the same speed but moving
in the opposite direction, what is the average accelera-
tion of the molecule during this time interval? (b) What
average force does the molecule exert on the wall?

Sections 5.1 through 5.6
1. A force F applied to an object of mass m1 produces an

acceleration of 3.00 m/s2. The same force applied to a
second object of mass m2 produces an acceleration of
1.00 m/s2. (a) What is the value of the ratio m1/m2 ? 
(b) If m1 and m2 are combined, find their acceleration
under the action of the force F.

2. A force of 10.0 N acts on a body of mass 2.00 kg. What
are (a) the body’s acceleration, (b) its weight in new-
tons, and (c) its acceleration if the force is doubled?

3. A 3.00-kg mass undergoes an acceleration given by a �
(2.00i � 5.00j) m/s2. Find the resultant force �F and
its magnitude.

4. A heavy freight train has a mass of 15 000 metric tons. 
If the locomotive can pull with a force of 750 000 N,
how long does it take to increase the speed from 0 to
80.0 km/h?

5. A 5.00-g bullet leaves the muzzle of a rifle with a speed
of 320 m/s. The expanding gases behind it exert what
force on the bullet while it is traveling down the barrel
of the rifle, 0.820 m long? Assume constant acceleration
and negligible friction.

6. After uniformly accelerating his arm for 0.090 0 s, a
pitcher releases a baseball of weight 1.40 N with a veloc-

WEB

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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11. An electron of mass 9.11 � 10�31 kg has an initial speed
of 3.00 � 105 m/s. It travels in a straight line, and its
speed increases to 7.00 � 105 m/s in a distance of 
5.00 cm. Assuming its acceleration is constant, (a) de-
termine the force exerted on the electron and (b) com-
pare this force with the weight of the electron, which we
neglected.

12. A woman weighs 120 lb. Determine (a) her weight in
newtons and (b) her mass in kilograms.

13. If a man weighs 900 N on the Earth, what would he
weigh on Jupiter, where the acceleration due to gravity
is 25.9 m/s2?

14. The distinction between mass and weight was discov-
ered after Jean Richer transported pendulum clocks
from Paris to French Guiana in 1671. He found that
they ran slower there quite systematically. The effect was
reversed when the clocks returned to Paris. How much
weight would you personally lose in traveling from
Paris, where g � 9.809 5 m/s2, to Cayenne, where g �
9.780 8 m/s2? (We shall consider how the free-fall accel-
eration influences the period of a pendulum in Section
13.4.)

15. Two forces F1 and F2 act on a 5.00-kg mass. If F1 �
20.0 N and F2 � 15.0 N, find the accelerations in 
(a) and (b) of Figure P5.15.

ation of the 1 000-kg boat? (b) If it starts from rest, how
far will it move in 10.0 s? (c) What will be its speed at
the end of this time?

20. Three forces, given by F1 � (� 2.00i � 2.00j) N, F2 �
(5.00i � 3.00j) N, and F3 � (� 45.0i) N, act on an ob-
ject to give it an acceleration of magnitude 3.75 m/s2.
(a) What is the direction of the acceleration? (b) What
is the mass of the object? (c) If the object is initially at
rest, what is its speed after 10.0 s? (d) What are the ve-
locity components of the object after 10.0 s?

21. A 15.0-lb block rests on the floor. (a) What force does
the floor exert on the block? (b) If a rope is tied to the
block and run vertically over a pulley, and the other end
is attached to a free-hanging 10.0-lb weight, what is the
force exerted by the floor on the 15.0-lb block? (c) If we
replace the 10.0-lb weight in part (b) with a 20.0-lb
weight, what is the force exerted by the floor on the
15.0-lb block?

Section 5.7 Some Applications of Newton’s Laws
22. A 3.00-kg mass is moving in a plane, with its x and y co-

ordinates given by x � 5t2 � 1 and y � 3t3 � 2, where
x and y are in meters and t is in seconds. Find the mag-
nitude of the net force acting on this mass at t � 2.00 s.

23. The distance between two telephone poles is 50.0 m.
When a 1.00-kg bird lands on the telephone wire mid-
way between the poles, the wire sags 0.200 m. Draw a
free-body diagram of the bird. How much tension does
the bird produce in the wire? Ignore the weight of the
wire.

24. A bag of cement of weight 325 N hangs from three
wires as shown in Figure P5.24. Two of the wires make
angles �1 � 60.0° and �2 � 25.0° with the horizontal. If
the system is in equilibrium, find the tensions T1 , T2 ,
and T3 in the wires.

16. Besides its weight, a 2.80-kg object is subjected to one
other constant force. The object starts from rest and in
1.20 s experiences a displacement of (4.20 m)i �
(3.30 m)j, where the direction of j is the upward vertical
direction. Determine the other force.

17. You stand on the seat of a chair and then hop off. 
(a) During the time you are in flight down to the floor,
the Earth is lurching up toward you with an accelera-
tion of what order of magnitude? In your solution ex-
plain your logic. Visualize the Earth as a perfectly solid
object. (b) The Earth moves up through a distance of
what order of magnitude?

18. Forces of 10.0 N north, 20.0 N east, and 15.0 N south
are simultaneously applied to a 4.00-kg mass as it rests
on an air table. Obtain the object’s acceleration.

19. A boat moves through the water with two horizontal
forces acting on it. One is a 2000-N forward push
caused by the motor; the other is a constant 1800-N re-
sistive force caused by the water. (a) What is the acceler-

(a)

90.0°

F2

F1m

(b)

60.0°

F2

F1m

Figure P5.15

Figure P5.24 Problems 24 and 25.

1θ 2θ

T1 T2

T3
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turns to the fire at the same speed with the bucket now
making an angle of 7.00° with the vertical. What is the
mass of the water in the bucket?

29. A 1.00-kg mass is observed to accelerate at 10.0 m/s2 in
a direction 30.0° north of east (Fig. P5.29). The force
F2 acting on the mass has a magnitude of 5.00 N and is
directed north. Determine the magnitude and direction
of the force F1 acting on the mass.

WEB

30. A simple accelerometer is constructed by suspending a
mass m from a string of length L that is tied to the top
of a cart. As the cart is accelerated the string-mass sys-
tem makes a constant angle � with the vertical. 
(a) Assuming that the string mass is negligible com-
pared with m, derive an expression for the cart’s acceler-
ation in terms of � and show that it is independent of

27. The systems shown in Figure P5.27 are in equilibrium.
If the spring scales are calibrated in newtons, what do
they read? (Neglect the masses of the pulleys and
strings, and assume the incline is frictionless.)

28. A fire helicopter carries a 620-kg bucket of water at the
end of a cable 20.0 m long. As the aircraft flies back
from a fire at a constant speed of 40.0 m/s, the cable
makes an angle of 40.0° with respect to the vertical. 
(a) Determine the force of air resistance on the bucket.
(b) After filling the bucket with sea water, the pilot re-

Figure P5.26

Figure P5.27

Figure P5.29

25. A bag of cement of weight Fg hangs from three wires as
shown in Figure P5.24. Two of the wires make angles �1
and �2 with the horizontal. If the system is in equilib-
rium, show that the tension in the left-hand wire is

26. You are a judge in a children’s kite-flying contest, and
two children will win prizes for the kites that pull most
strongly and least strongly on their strings. To measure
string tensions, you borrow a weight hanger, some slot-
ted weights, and a protractor from your physics teacher
and use the following protocol, illustrated in Figure
P5.26: Wait for a child to get her kite well-controlled,
hook the hanger onto the kite string about 30 cm from
her hand, pile on weights until that section of string is
horizontal, record the mass required, and record the
angle between the horizontal and the string running up
to the kite. (a) Explain how this method works. As you
construct your explanation, imagine that the children’s
parents ask you about your method, that they might
make false assumptions about your ability without con-
crete evidence, and that your explanation is an opportu-
nity to give them confidence in your evaluation tech-
nique. (b) Find the string tension if the mass required
to make the string horizontal is 132 g and the angle of
the kite string is 46.3°.

T1 � Fg cos �2/sin(�1 � �2)

5.00 kg

(a)

5.00 kg

5.00 kg 5.00 kg

(b)

5.00 kg

(c)

30.0°

F1

30.0°

F2

a = 10.0 m/s2

1.00 kg
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the mass m and the length L. (b) Determine the accel-
eration of the cart when � � 23.0°.

31. Two people pull as hard as they can on ropes attached
to a boat that has a mass of 200 kg. If they pull in the
same direction, the boat has an acceleration of 
1.52 m/s2 to the right. If they pull in opposite direc-
tions, the boat has an acceleration of 0.518 m/s2 to the
left. What is the force exerted by each person on the
boat? (Disregard any other forces on the boat.)

32. Draw a free-body diagram for a block that slides down a
frictionless plane having an inclination of � � 15.0°
(Fig. P5.32). If the block starts from rest at the top and
the length of the incline is 2.00 m, find (a) the accelera-
tion of the block and (b) its speed when it reaches the
bottom of the incline.

36. Two masses of 3.00 kg and 5.00 kg are connected by a
light string that passes over a frictionless pulley, as was
shown in Figure 5.15a. Determine (a) the tension in the
string, (b) the acceleration of each mass, and (c) the
distance each mass will move in the first second of mo-
tion if they start from rest.

37. In the system shown in Figure P5.37, a horizontal force
Fx acts on the 8.00-kg mass. The horizontal surface is
frictionless.(a) For what values of Fx does the 2.00-kg
mass accelerate upward? (b) For what values of Fx is the
tension in the cord zero? (c) Plot the acceleration of
the 8.00-kg mass versus Fx . Include values of Fx from
� 100 N to � 100 N.

WEB

38. Mass m1 on a frictionless horizontal table is connected
to mass m2 by means of a very light pulley P1 and a light
fixed pulley P2 as shown in Figure P5.38. (a) If a1 and a2

35. Two masses m1 and m2 situated on a frictionless, hori-
zontal surface are connected by a light string. A force F
is exerted on one of the masses to the right (Fig.
P5.35). Determine the acceleration of the system and
the tension T in the string.

33. A block is given an initial velocity of 5.00 m/s up a fric-
tionless 20.0° incline. How far up the incline does the
block slide before coming to rest?

34. Two masses are connected by a light string that passes
over a frictionless pulley, as in Figure P5.34. If the in-
cline is frictionless and if m1 � 2.00 kg, m2 � 6.00 kg,
and � � 55.0°, find (a) the accelerations of the masses,
(b) the tension in the string, and (c) the speed of each
mass 2.00 s after being released from rest. 

Figure P5.32

Figure P5.34

Figure P5.35 Problems 35 and 51.
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are the accelerations of m1 and m2 , respectively, what is
the relationship between these accelerations? Express
(b) the tensions in the strings and (c) the accelerations
a1 and a2 in terms of the masses m1 and m2 and g.

39. A 72.0-kg man stands on a spring scale in an elevator.
Starting from rest, the elevator ascends, attaining its
maximum speed of 1.20 m/s in 0.800 s. It travels with
this constant speed for the next 5.00 s. The elevator
then undergoes a uniform acceleration in the negative
y direction for 1.50 s and comes to rest. What does the
spring scale register (a) before the elevator starts to
move? (b) during the first 0.800 s? (c) while the eleva-
tor is traveling at constant speed? (d) during the time it
is slowing down?

Section 5.8 Forces of Friction
40. The coefficient of static friction is 0.800 between the

soles of a sprinter’s running shoes and the level track
surface on which she is running. Determine the maxi-
mum acceleration she can achieve. Do you need to
know that her mass is 60.0 kg?

41. A 25.0-kg block is initially at rest on a horizontal sur-
face. A horizontal force of 75.0 N is required to set the
block in motion. After it is in motion, a horizontal force
of 60.0 N is required to keep the block moving with
constant speed. Find the coefficients of static and ki-
netic friction from this information.

42. A racing car accelerates uniformly from 0 to 80.0 mi/h
in 8.00 s. The external force that accelerates the car is
the frictional force between the tires and the road. If
the tires do not slip, determine the minimum coeffi-
cient of friction between the tires and the road.

43. A car is traveling at 50.0 mi/h on a horizontal highway.
(a) If the coefficient of friction between road and tires
on a rainy day is 0.100, what is the minimum distance in
which the car will stop? (b) What is the stopping dis-
tance when the surface is dry and �s � 0.600?

44. A woman at an airport is towing her 20.0-kg suitcase at
constant speed by pulling on a strap at an angle of �
above the horizontal (Fig. P5.44). She pulls on the strap
with a 35.0-N force, and the frictional force on the suit-
case is 20.0 N. Draw a free-body diagram for the suit-
case. (a) What angle does the strap make with the hori-
zontal? (b) What normal force does the ground exert
on the suitcase?

45. A 3.00-kg block starts from rest at the top of a 30.0° in-
cline and slides a distance of 2.00 m down the incline in
1.50 s. Find (a) the magnitude of the acceleration of
the block, (b) the coefficient of kinetic friction between
block and plane, (c) the frictional force acting on the
block, and (d) the speed of the block after it has slid
2.00 m.

46. To determine the coefficients of friction between rub-
ber and various surfaces, a student uses a rubber eraser
and an incline. In one experiment the eraser begins to
slip down the incline when the angle of inclination is

36.0° and then moves down the incline with constant
speed when the angle is reduced to 30.0°. From these
data, determine the coefficients of static and kinetic
friction for this experiment.

47. A boy drags his 60.0-N sled at constant speed up a 15.0°
hill. He does so by pulling with a 25.0-N force on a rope
attached to the sled. If the rope is inclined at 35.0° to
the horizontal, (a) what is the coefficient of kinetic fric-
tion between sled and snow? (b) At the top of the hill,
he jumps on the sled and slides down the hill. What is
the magnitude of his acceleration down the slope?

48. Determine the stopping distance for a skier moving
down a slope with friction with an initial speed of 
20.0 m/s (Fig. P5.48). Assume �k � 0.180 and � � 5.00°.

49. A 9.00-kg hanging weight is connected by a string over a
pulley to a 5.00-kg block that is sliding on a flat table
(Fig. P5.49). If the coefficient of kinetic friction is
0.200, find the tension in the string.

50. Three blocks are connected on a table as shown in Fig-
ure P5.50. The table is rough and has a coefficient of ki-

Figure P5.44

Figure P5.48
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ADDITIONAL PROBLEMS

54. A time-dependent force F � (8.00i � 4.00t j) N (where
t is in seconds) is applied to a 2.00-kg object initially at
rest. (a) At what time will the object be moving with a
speed of 15.0 m/s? (b) How far is the object from its
initial position when its speed is 15.0 m/s? (c) What is
the object’s displacement at the time calculated in (a)?

55. An inventive child named Pat wants to reach an apple
in a tree without climbing the tree. Sitting in a chair
connected to a rope that passes over a frictionless pulley
(Fig. P5.55), Pat pulls on the loose end of the rope with
such a force that the spring scale reads 250 N. Pat’s
weight is 320 N, and the chair weighs 160 N. (a) Draw
free-body diagrams for Pat and the chair considered as
separate systems, and draw another diagram for Pat and
the chair considered as one system. (b) Show that the
acceleration of the system is upward and find its magni-
tude. (c) Find the force Pat exerts on the chair.

56. Three blocks are in contact with each other on a fric-
tionless, horizontal surface, as in Figure P5.56. A hori-
zontal force F is applied to m1 . If m1 � 2.00 kg, m2 �
3.00 kg, m3 � 4.00 kg, and F � 18.0 N, draw a separate
free-body diagram for each block and find (a) the accel-
eration of the blocks, (b) the resultant force on each
block, and (c) the magnitudes of the contact forces be-
tween the blocks.

Figure P5.49

Figure P5.50

Figure P5.52

Figure P5.53

5.00 kg

9.00 kg

1.00 kg

2.00 kg4.00 kg

M

T

x

P

50.0°

netic friction of 0.350. The three masses are 4.00 kg,
1.00 kg, and 2.00 kg, and the pulleys are frictionless.
Draw a free-body diagram for each block. (a) Deter-
mine the magnitude and direction of the acceleration
of each block. (b) Determine the tensions in the two
cords.

51. Two blocks connected by a rope of negligible mass are
being dragged by a horizontal force F (see Fig. P5.35).
Suppose that F � 68.0 N, m1 � 12.0 kg, m2 � 18.0 kg,
and the coefficient of kinetic friction between each
block and the surface is 0.100. (a) Draw a free-body dia-
gram for each block. (b) Determine the tension T and
the magnitude of the acceleration of the system.

52. A block of mass 2.20 kg is accelerated across a rough
surface by a rope passing over a pulley, as shown in Fig-
ure P5.52. The tension in the rope is 10.0 N, and the
pulley is 10.0 cm above the top of the block. The coeffi-
cient of kinetic friction is 0.400. (a) Determine the ac-
celeration of the block when x � 0.400 m. (b) Find the
value of x at which the acceleration becomes zero.

53. A block of mass 3.00 kg is pushed up against a wall by a
force P that makes a 50.0° angle with the horizontal as
shown in Figure P5.53. The coefficient of static friction
between the block and the wall is 0.250. Determine the
possible values for the magnitude of P that allow the
block to remain stationary.
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57. A high diver of mass 70.0 kg jumps off a board 10.0 m
above the water. If his downward motion is stopped 
2.00 s after he enters the water, what average upward
force did the water exert on him?

58. Consider the three connected objects shown in Figure
P5.58. If the inclined plane is frictionless and the 
system is in equilibrium, find (in terms of m, g, and �)
(a) the mass M and (b) the tensions T1 and T2 . If the
value of M is double the value found in part (a), find
(c) the acceleration of each object, and (d) the ten-
sions T1 and T2 . If the coefficient of static friction 
between m and 2m and the inclined plane is �s , and 

the system is in equilibrium, find (e) the minimum
value of M and (f) the maximum value of M. (g) Com-
pare the values of T2 when M has its minimum and
maximum values. 

59. A mass M is held in place by an applied force F and a
pulley system as shown in Figure P5.59. The pulleys are
massless and frictionless. Find (a) the tension in each
section of rope, T1 , T2 , T3 , T4 , and T5 and (b) the mag-
nitude of F. (Hint: Draw a free-body diagram for each
pulley.)

WEB

60. Two forces, given by F1 � (� 6.00i � 4.00j) N and F2 �
(� 3.00i � 7.00j) N, act on a particle of mass 2.00 kg that
is initially at rest at coordinates (� 2.00 m, � 4.00 m). 
(a) What are the components of the particle’s velocity at
t � 10.0 s? (b) In what direction is the particle moving at
t � 10.0 s? (c) What displacement does the particle un-
dergo during the first 10.0 s? (d) What are the coordi-
nates of the particle at t � 10.0 s?

61. A crate of weight Fg is pushed by a force P on a horizon-
tal floor. (a) If the coefficient of static friction is �s and
P is directed at an angle � below the horizontal, show
that the minimum value of P that will move the crate is
given by

(b) Find the minimum value of P that can produce mo-

P � �s Fg sec �(1 � �s tan �)�1

Figure P5.55

Figure P5.56

m1 m2 m3F

Figure P5.58

Figure P5.59
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tion when �s � 0.400, Fg � 100 N, and � � 0°, 15.0°,
30.0°, 45.0°, and 60.0°.

62. Review Problem. A block of mass m � 2.00 kg is re-
leased from rest h � 0.500 m from the surface of a
table, at the top of a � � 30.0° incline as shown in Fig-
ure P5.62. The frictionless incline is fixed on a table of
height H � 2.00 m. (a) Determine the acceleration of
the block as it slides down the incline. (b) What is the
velocity of the block as it leaves the incline? (c) How far
from the table will the block hit the floor? (d) How
much time has elapsed between when the block is re-
leased and when it hits the floor? (e) Does the mass of
the block affect any of the above calculations?

65. A block of mass m � 2.00 kg rests on the left edge of a
block of larger mass M � 8.00 kg. The coefficient of ki-
netic friction between the two blocks is 0.300, and the
surface on which the 8.00-kg block rests is frictionless. A
constant horizontal force of magnitude F � 10.0 N is ap-
plied to the 2.00-kg block, setting it in motion as shown
in Figure P5.65a. If the length L that the leading edge of
the smaller block travels on the larger block is 3.00 m,
(a) how long will it take before this block makes it to the
right side of the 8.00-kg block, as shown in Figure
P5.65b? (Note: Both blocks are set in motion when F is
applied.) (b) How far does the 8.00-kg block move in
the process?

66. A student is asked to measure the acceleration of a cart
on a “frictionless” inclined plane as seen in Figure
P5.32, using an air track, a stopwatch, and a meter stick.
The height of the incline is measured to be 1.774 cm,
and the total length of the incline is measured to be 
d � 127.1 cm. Hence, the angle of inclination � is deter-
mined from the relation sin � � 1.774/127.1. The cart
is released from rest at the top of the incline, and its dis-
placement x along the incline is measured versus time,
where x � 0 refers to the initial position of the cart. For
x values of 10.0 cm, 20.0 cm, 35.0 cm, 50.0 cm, 75.0 cm,
and 100 cm, the measured times to undergo these dis-
placements (averaged over five runs) are 1.02 s, 1.53 s,
2.01 s, 2.64 s, 3.30 s, and 3.75 s, respectively. Construct a
graph of x versus t2, and perform a linear least-squares
fit to the data. Determine the acceleration of the cart
from the slope of this graph, and compare it with the
value you would get using a� � g sin �, where g �
9.80 m/s2.

67. A 2.00-kg block is placed on top of a 5.00-kg block as in
Figure P5.67. The coefficient of kinetic friction between
the 5.00-kg block and the surface is 0.200. A horizontal
force F is applied to the 5.00-kg block. (a) Draw a free-
body diagram for each block. What force accelerates
the 2.00-kg block? (b) Calculate the magnitude of the
force necessary to pull both blocks to the right with an

63. A 1.30-kg toaster is not plugged in. The coefficient of
static friction between the toaster and a horizontal
countertop is 0.350. To make the toaster start moving,
you carelessly pull on its electric cord. (a) For the cord
tension to be as small as possible, you should pull at
what angle above the horizontal? (b) With this angle,
how large must the tension be?

64. A 2.00-kg aluminum block and a 6.00-kg copper block
are connected by a light string over a frictionless pulley.
They sit on a steel surface, as shown in Figure P5.64,
and � � 30.0°. Do they start to move once any holding
mechanism is released? If so, determine (a) their accel-
eration and (b) the tension in the string. If not, deter-
mine the sum of the magnitudes of the forces of friction
acting on the blocks.

Figure P5.62

Figure P5.64

Figure P5.65
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acceleration of 3.00 m/s2. (c) Find the minimum coeffi-
cient of static friction between the blocks such that the
2.00-kg block does not slip under an acceleration of
3.00 m/s2.

68. A 5.00-kg block is placed on top of a 10.0-kg block (Fig.
P5.68). A horizontal force of 45.0 N is applied to the
10.0-kg block, and the 5.00-kg block is tied to the wall.
The coefficient of kinetic friction between all surfaces is
0.200. (a) Draw a free-body diagram for each block and
identify the action–reaction forces between the blocks.
(b) Determine the tension in the string and the magni-
tude of the acceleration of the 10.0-kg block.

70. Initially the system of masses shown in Figure P5.69 is
held motionless. All surfaces, pulley, and wheels are fric-
tionless. Let the force F be zero and assume that m2 can
move only vertically. At the instant after the system of
masses is released, find (a) the tension T in the string,
(b) the acceleration of m2 , (c) the acceleration of M,
and (d) the acceleration of m1 . (Note: The pulley accel-
erates along with the cart.)

71. A block of mass 5.00 kg sits on top of a second block of
mass 15.0 kg, which in turn sits on a horizontal table.
The coefficients of friction between the two blocks are
�s � 0.300 and �k � 0.100. The coefficients of friction
between the lower block and the rough table are �s �
0.500 and �k � 0.400. You apply a constant horizontal
force to the lower block, just large enough to make this
block start sliding out from between the upper block
and the table. (a) Draw a free-body diagram of each
block, naming the forces acting on each. (b) Determine
the magnitude of each force on each block at the in-
stant when you have started pushing but motion has not
yet started. (c) Determine the acceleration you measure
for each block.

72. Two blocks of mass 3.50 kg and 8.00 kg are connected
by a string of negligible mass that passes over a friction-
less pulley (Fig. P5.72). The inclines are frictionless.
Find (a) the magnitude of the acceleration of each
block and (b) the tension in the string.

73. The system shown in Figure P5.72 has an acceleration
of magnitude 1.50 m/s2. Assume the coefficients of ki-
netic friction between block and incline are the same
for both inclines. Find (a) the coefficient of kinetic fric-
tion and (b) the tension in the string.

74. In Figure P5.74, a 500-kg horse pulls a sledge of mass
100 kg. The system (horse plus sledge) has a forward
acceleration of 1.00 m/s2 when the frictional force ex-
erted on the sledge is 500 N. Find (a) the tension in the
connecting rope and (b) the magnitude and direction
of the force of friction exerted on the horse. (c) Verify
that the total forces of friction the ground exerts on the
system will give the system an acceleration of 1.00 m/s2.

75. A van accelerates down a hill (Fig. P5.75), going from
rest to 30.0 m/s in 6.00 s. During the acceleration, a toy
(m � 0.100 kg) hangs by a string from the van’s ceiling.
The acceleration is such that the string remains perpen-
dicular to the ceiling. Determine (a) the angle � and
(b) the tension in the string.

69. What horizontal force must be applied to the cart
shown in Figure P5.69 so that the blocks remain station-
ary relative to the cart? Assume all surfaces, wheels, and
pulley are frictionless. (Hint: Note that the force ex-
erted by the string accelerates m1 .)

Figure P5.67

Figure P5.68

Figure P5.69 Problems 69 and 70.

Figure P5.72 Problems 72 and 73.
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78. An 8.40-kg mass slides down a fixed, frictionless in-
clined plane. Use a computer to determine and tabu-
late the normal force exerted on the mass and its accel-
eration for a series of incline angles (measured from
the horizontal) ranging from 0 to 90° in 5° increments.
Plot a graph of the normal force and the acceleration as
functions of the incline angle. In the limiting cases of 0
and 90°, are your results consistent with the known be-
havior?

terms of �1 , that the sections of string between the out-
side butterflies and the inside butterflies form with the
horizontal. (c) Show that the distance D between the
end points of the string is

77. Before 1960 it was believed that the maximum attain-
able coefficient of static friction for an automobile tire
was less than 1. Then about 1962, three companies in-
dependently developed racing tires with coefficients of
1.6. Since then, tires have improved, as illustrated in
this problem. According to the 1990 Guinness Book of
Records, the fastest time in which a piston-engine car
initially at rest has covered a distance of one-quarter
mile is 4.96 s. This record was set by Shirley Muldowney
in September 1989 (Fig. P5.77). (a) Assuming that the
rear wheels nearly lifted the front wheels off the pave-
ment, what minimum value of �s is necessary to achieve
the record time? (b) Suppose Muldowney were able to
double her engine power, keeping other things equal.
How would this change affect the elapsed time?

D �
L
5

 �2 cos �1 � 2 cos�tan�1 � 1
2

 tan �1�� � 1	

76. A mobile is formed by supporting four metal butterflies
of equal mass m from a string of length L. The points of
support are evenly spaced a distance � apart as shown in
Figure P5.76. The string forms an angle �1 with the ceil-
ing at each end point. The center section of string is
horizontal. (a) Find the tension in each section of
string in terms of �1 , m, and g. (b) Find the angle �2 , in

Figure P5.74

Figure P5.75

Figure P5.76

Figure P5.77

100 kg 500 kg

θ

θ

�

��
�

D

1
2�

m

m

m

m

L = 5�

θ 1θ
θ 2θ

ANSWERS TO QUICK QUIZZES

there is no net force and the object remains stationary.
It also is possible to have a net force and no motion, but
only for an instant. A ball tossed vertically upward stops
at the peak of its path for an infinitesimally short time,
but the force of gravity is still acting on it. Thus, al-

5.1 (a) True. Newton’s first law tells us that motion requires
no force: An object in motion continues to move at con-
stant velocity in the absence of external forces. (b) True.
A stationary object can have several forces acting on it,
but if the vector sum of all these external forces is zero,
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though v � 0 at the peak, the net force acting on the
ball is not zero.

5.2 No. Direction of motion is part of an object’s velocity,
and force determines the direction of acceleration, not
that of velocity.

5.3 (a) Force of gravity. (b) Force of gravity. The only exter-
nal force acting on the ball at all points in its trajectory
is the downward force of gravity. 

5.4 As the person steps out of the boat, he pushes against it
with his foot, expecting the boat to push back on him so
that he accelerates toward the dock. However, because
the boat is untied, the force exerted by the foot causes
the boat to scoot away from the dock. As a result, the
person is not able to exert a very large force on the boat
before it moves out of reach. Therefore, the boat does
not exert a very large reaction force on him, and he

ends up not being accelerated sufficiently to make it to
the dock. Consequently, he falls into the water instead.
If a small dog were to jump from the untied boat toward
the dock, the force exerted by the boat on the dog
would probably be enough to ensure the dog’s success-
ful landing because of the dog’s small mass.

5.5 (a) The same force is experienced by both. The fly and
bus experience forces that are equal in magnitude but
opposite in direction. (b) The fly. Because the fly has
such a small mass, it undergoes a very large acceleration.
The huge mass of the bus means that it more effectively
resists any change in its motion.

5.6 (b) The crate accelerates to the right. Because the only
horizontal force acting on it is the force of static friction
between its bottom surface and the truck bed, that force
must also be directed to the right.
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This sky diver is falling at more than 
50 m/s (120 mi/h), but once her para-
chute opens, her downward velocity will
be greatly reduced. Why does she slow
down rapidly when her chute opens, en-
abling her to fall safely to the ground? If
the chute does not function properly, the
sky diver will almost certainly be seri-
ously injured. What force exerted on 
her limits her maximum speed?
(Guy Savage/Photo Researchers, Inc.)
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Uniform Circular Motion

6.2 Nonuniform Circular Motion

6.3 (Optional) Motion in Accelerated
Frames
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of Resistive Forces
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Particle Dynamics
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n the preceding chapter we introduced Newton’s laws of motion and applied
them to situations involving linear motion. Now we discuss motion that is
slightly more complicated. For example, we shall apply Newton’s laws to objects

traveling in circular paths. Also, we shall discuss motion observed from an acceler-
ating frame of reference and motion in a viscous medium. For the most part, this
chapter is a series of examples selected to illustrate the application of Newton’s
laws to a wide variety of circumstances.

NEWTON’S SECOND LAW APPLIED TO
UNIFORM CIRCULAR MOTION

In Section 4.4 we found that a particle moving with uniform speed v in a circular
path of radius r experiences an acceleration ar that has a magnitude

The acceleration is called the centripetal acceleration because ar is directed toward
the center of the circle. Furthermore, ar is always perpendicular to v. (If there
were a component of acceleration parallel to v, the particle’s speed would be
changing.)

Consider a ball of mass m that is tied to a string of length r and is being
whirled at constant speed in a horizontal circular path, as illustrated in Figure 6.1.
Its weight is supported by a low-friction table. Why does the ball move in a circle?
Because of its inertia, the tendency of the ball is to move in a straight line; how-
ever, the string prevents motion along a straight line by exerting on the ball a
force that makes it follow the circular path. This force is directed along the string
toward the center of the circle, as shown in Figure 6.1. This force can be any one
of our familiar forces causing an object to follow a circular path.

If we apply Newton’s second law along the radial direction, we find that the
value of the net force causing the centripetal acceleration can be evaluated:

(6.1)�Fr � mar � m 
v2

r

ar �
v2

r

6.1
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Force causing centripetal
acceleration

I

4.7

m

Fr

Fr

r

Figure 6.1 Overhead view of a ball moving
in a circular path in a horizontal plane. A
force Fr directed toward the center of the cir-
cle keeps the ball moving in its circular path.
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A force causing a centripetal acceleration acts toward the center of the circular
path and causes a change in the direction of the velocity vector. If that force
should vanish, the object would no longer move in its circular path; instead, it
would move along a straight-line path tangent to the circle. This idea is illustrated
in Figure 6.2 for the ball whirling at the end of a string. If the string breaks at
some instant, the ball moves along the straight-line path tangent to the circle at
the point where the string broke.

Is it possible for a car to move in a circular path in such a way that it has a tangential accel-
eration but no centripetal acceleration?

Quick Quiz 6.1

Forces That Cause Centripetal AccelerationCONCEPTUAL EXAMPLE 6.1
Consider some examples. For the motion of the Earth

around the Sun, the centripetal force is gravity. For an object
sitting on a rotating turntable, the centripetal force is friction.
For a rock whirled on the end of a string, the centripetal
force is the force of tension in the string. For an amusement-
park patron pressed against the inner wall of a rapidly rotat-
ing circular room, the centripetal force is the normal force ex-
erted by the wall. What’s more, the centripetal force could 
be a combination of two or more forces. For example, as a
Ferris-wheel rider passes through the lowest point, the cen-
tripetal force on her is the difference between the normal
force exerted by the seat and her weight.

The force causing centripetal acceleration is sometimes
called a centripetal force. We are familiar with a variety of forces
in nature—friction, gravity, normal forces, tension, and so
forth. Should we add centripetal force to this list?

Solution No; centripetal force should not be added to this
list. This is a pitfall for many students. Giving the force caus-
ing circular motion a name—centripetal force—leads many
students to consider it a new kind of force rather than a new
role for force. A common mistake in force diagrams is to draw
all the usual forces and then to add another vector for the
centripetal force. But it is not a separate force—it is simply
one of our familiar forces acting in the role of a force that causes
a circular motion.

Figure 6.2 When the string breaks, the
ball moves in the direction tangent to the
circle.

r

An athlete in the process of throw-
ing the hammer at the 1996
Olympic Games in Atlanta, Geor-
gia. The force exerted by the chain
is the force causing the circular
motion. Only when the athlete re-
leases the hammer will it move
along a straight-line path tangent to
the circle.
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A ball is following the dotted circular path shown in Figure 6.3 under the influence of a
force. At a certain instant of time, the force on the ball changes abruptly to a new force, and
the ball follows the paths indicated by the solid line with an arrowhead in each of the four
parts of the figure. For each part of the figure, describe the magnitude and direction of the
force required to make the ball move in the solid path. If the dotted line represents the
path of a ball being whirled on the end of a string, which path does the ball follow if 
the string breaks?

Let us consider some examples of uniform circular motion. In each case, be
sure to recognize the external force (or forces) that causes the body to move in its
circular path.

Quick Quiz 6.2

Figure 6.3 A ball that had been moving in a circular path is acted on by various external forces
that change its path.

(a) (b) (c) (d)

QuickLab
Tie a string to a tennis ball, swing it in
a circle, and then, while it is swinging,
let go of the string to verify your an-
swer to the last part of Quick Quiz 6.2.

How Fast Can It Spin?EXAMPLE 6.2
Solving for v, we have

This shows that v increases with T and decreases with larger
m, as we expect to see—for a given v, a large mass requires a
large tension and a small mass needs only a small tension.
The maximum speed the ball can have corresponds to the
maximum tension. Hence, we find

Exercise Calculate the tension in the cord if the speed of
the ball is 5.00 m/s.

Answer 8.33 N.

12.2 m/s�

vmax �  √ Tmaxr
m

�  √ (50.0 N)(1.50 m)
0.500 kg

v �  √ Tr
m

A ball of mass 0.500 kg is attached to the end of a cord 
1.50 m long. The ball is whirled in a horizontal circle as was
shown in Figure 6.1. If the cord can withstand a maximum
tension of 50.0 N, what is the maximum speed the ball can at-
tain before the cord breaks? Assume that the string remains
horizontal during the motion.

Solution It is difficult to know what might be a reasonable
value for the answer. Nonetheless, we know that it cannot be
too large, say 100 m/s, because a person cannot make a ball
move so quickly. It makes sense that the stronger the cord,
the faster the ball can twirl before the cord breaks. Also, we
expect a more massive ball to break the cord at a lower
speed. (Imagine whirling a bowling ball!)

Because the force causing the centripetal acceleration in
this case is the force T exerted by the cord on the ball, Equa-
tion 6.1 yields for �Fr � mar

T � m 
v2

r

The Conical PendulumEXAMPLE 6.3
Solution Let us choose � to represent the angle between
string and vertical. In the free-body diagram shown in Figure
6.4, the force T exerted by the string is resolved into a vertical
component T cos � and a horizontal component T sin � act-
ing toward the center of revolution. Because the object does

A small object of mass m is suspended from a string of length
L . The object revolves with constant speed v in a horizontal
circle of radius r, as shown in Figure 6.4. (Because the string
sweeps out the surface of a cone, the system is known as a
conical pendulum.) Find an expression for v.
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Figure 6.4 The conical pendulum and its free-body diagram.

Figure 6.5 (a) The force of static friction directed toward the cen-
ter of the curve keeps the car moving in a circular path. (b) The free-
body diagram for the car.

Because the force providing the centripetal acceleration in
this example is the component T sin �, we can use Newton’s
second law and Equation 6.1 to obtain

(2)

Dividing (2) by (1) and remembering that sin �/cos � �
tan �, we eliminate T and find that

From the geometry in Figure 6.4, we note that r � L sin �;
therefore,

Note that the speed is independent of the mass of the object.

√Lg sin � tan �v �

 v � √rg tan �

tan � �
v2

rg
 

�Fr � T sin � � mar �
mv2

r

not accelerate in the vertical direction, and
the upward vertical component of T must balance the down-
ward force of gravity. Therefore,

(1) T cos � � mg

may � 0,�Fy �

What Is the Maximum Speed of the Car?EXAMPLE 6.4
A 1 500-kg car moving on a flat, horizontal road negotiates a
curve, as illustrated in Figure 6.5. If the radius of the curve is
35.0 m and the coefficient of static friction between the tires

r

θ

T

mg

T cos θ

θ

T sin θ

mg

L θ

θ

n

mg

(a)

(b)

f s

f s

and dry pavement is 0.500, find the maximum speed the car
can have and still make the turn successfully.

Solution From experience, we should expect a maximum
speed less than 50 m/s. (A convenient mental conversion is
that 1 m/s is roughly 2 mi/h.) In this case, the force that en-
ables the car to remain in its circular path is the force of sta-
tic friction. (Because no slipping occurs at the point of con-
tact between road and tires, the acting force is a force of
static friction directed toward the center of the curve. If this
force of static friction were zero—for example, if the car
were on an icy road—the car would continue in a straight
line and slide off the road.) Hence, from Equation 6.1 we
have

(1)

The maximum speed the car can have around the curve is
the speed at which it is on the verge of skidding outward. At
this point, the friction force has its maximum value

Because the car is on a horizontal road, the mag-
nitude of the normal force equals the weight (n � mg) and
thus Substituting this value for fs into (1), we
find that the maximum speed is

13.1 m/s � √(0.500)(9.80 m/s2)(35.0 m) �

vmax �  √ fs,maxr
m

�  √ �smgr

m
� √�s gr 

fs,max � �smg.

fs,max � �sn.

fs � m 
v2

r
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The Banked Exit RampEXAMPLE 6.5
n sin � pointing toward the center of the curve. Because the
ramp is to be designed so that the force of static friction is
zero, only the component n sin � causes the centripetal accel-
eration. Hence, Newton’s second law written for the radial di-
rection gives

(1)

The car is in equilibrium in the vertical direction. Thus, from 
we have

(2)

Dividing (1) by (2) gives

If a car rounds the curve at a speed less than 13.4 m/s,
friction is needed to keep it from sliding down the bank (to
the left in Fig. 6.6). A driver who attempts to negotiate the
curve at a speed greater than 13.4 m/s has to depend on fric-
tion to keep from sliding up the bank (to the right in Fig.
6.6). The banking angle is independent of the mass of the ve-
hicle negotiating the curve.

Exercise Write Newton’s second law applied to the radial
direction when a frictional force fs is directed down the bank,
toward the center of the curve.

Answer n sin � � fs cos � �
mv  

2

r
  

20.1° � � tan�1 � (13.4 m/s)2

(50.0 m)(9.80 m/s2) � �

tan � �
v2

rg
 

n cos � � mg

�Fy � 0,

�  Fr � n sin � �
mv2

r

A civil engineer wishes to design a curved exit ramp for a
highway in such a way that a car will not have to rely on fric-
tion to round the curve without skidding. In other words, a
car moving at the designated speed can negotiate the curve
even when the road is covered with ice. Such a ramp is usu-
ally banked; this means the roadway is tilted toward the inside
of the curve. Suppose the designated speed for the ramp is to
be 13.4 m/s (30.0 mi/h) and the radius of the curve is 
50.0 m. At what angle should the curve be banked?

Solution On a level (unbanked) road, the force that
causes the centripetal acceleration is the force of static fric-
tion between car and road, as we saw in the previous exam-
ple. However, if the road is banked at an angle �, as shown in
Figure 6.6, the normal force n has a horizontal component 

Satellite MotionEXAMPLE 6.6
masses m1 and m2 and separated by a distance r is attractive
and has a magnitude

Fg � G 
m1m2

r2

This example treats a satellite moving in a circular orbit
around the Earth. To understand this situation, you must
know that the gravitational force between spherical objects
and small objects that can be modeled as particles having

Note that the maximum speed does not depend on the mass
of the car. That is why curved highways do not need multiple
speed limit signs to cover the various masses of vehicles using
the road. 

Exercise On a wet day, the car begins to skid on the curve
when its speed reaches 8.00 m/s. What is the coefficient of
static friction in this case?

Answer 0.187.

θ
m g

n sin θ

n cos θ

m g

θn

Figure 6.6 Car rounding a curve on a road banked at an angle �
to the horizontal. When friction is neglected, the force that causes
the centripetal acceleration and keeps the car moving in its circular
path is the horizontal component of the normal force. Note that n is
the sum of the forces exerted by the road on the wheels.
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h

RE

m
v

Fg

r

Figure 6.7 A satellite of mass m moving around the Earth at a con-
stant speed v in a circular orbit of radius r � RE � h. The force Fg
acting on the satellite that causes the centripetal acceleration is the
gravitational force exerted by the Earth on the satellite.

and keeps the satellite in its circular orbit. Therefore,

From Newton’s second law and Equation 6.1 we obtain

Solving for v and remembering that the distance r from the
center of the Earth to the satellite is we obtain

(1)

If the satellite were orbiting a different planet, its velocity
would increase with the mass of the planet and decrease as
the satellite’s distance from the center of the planet increased.

Exercise A satellite is in a circular orbit around the Earth at
an altitude of 1 000 km. The radius of the Earth is equal to
6.37 � 106 m, and its mass is 5.98 � 1024 kg. Find the speed
of the satellite, and then find the period, which is the time it
needs to make one complete revolution.

Answer 7.36 � 103 m/s; 6.29 � 103 s = 105 min.

√ GME

RE � h
v � √ GME

r
�

r � RE � h,

G 
MEm

r2 � m 
v2

r

Fr � Fg � G 
MEm

r2

where G � 6.673 � 10�11 N� m2/kg2. This is Newton’s law of
gravitation, which we study in Chapter 14.

Consider a satellite of mass m moving in a circular orbit
around the Earth at a constant speed v and at an altitude h
above the Earth’s surface, as illustrated in Figure 6.7. Deter-
mine the speed of the satellite in terms of G, h, RE (the radius
of the Earth), and ME (the mass of the Earth).

Solution The only external force acting on the satellite is
the force of gravity, which acts toward the center of the Earth

Let’s Go Loop-the-Loop!EXAMPLE 6.7
celeration has a magnitude nbot � mg, Newton’s second law
for the radial direction combined with Equation 6.1 gives

Substituting the values given for the speed and radius gives

Hence, the magnitude of the force nbot exerted by the seat
on the pilot is greater than the weight of the pilot by a factor
of 2.91. This means that the pilot experiences an apparent
weight that is greater than his true weight by a factor of 2.91. 

(b) The free-body diagram for the pilot at the top of the
loop is shown in Figure 6.8c. As we noted earlier, both the
gravitational force exerted by the Earth and the force n top ex-
erted by the seat on the pilot act downward, and so the net
downward force that provides the centripetal acceleration has

2.91mgnbot � mg �1 �
(225 m/s)2

(2.70 � 103 m)(9.80 m/s2) � �

nbot � mg � m 
v2

r
� mg �1 �

v2

rg �

�  Fr � nbot � mg � m 
v2

r
 

A pilot of mass m in a jet aircraft executes a loop-the-loop, as
shown in Figure 6.8a. In this maneuver, the aircraft moves in
a vertical circle of radius 2.70 km at a constant speed of 
225 m/s. Determine the force exerted by the seat on the pilot
(a) at the bottom of the loop and (b) at the top of the loop.
Express your answers in terms of the weight of the pilot mg.

Solution We expect the answer for (a) to be greater than
that for (b) because at the bottom of the loop the normal
and gravitational forces act in opposite directions, whereas at
the top of the loop these two forces act in the same direction.
It is the vector sum of these two forces that gives the force of
constant magnitude that keeps the pilot moving in a circular
path. To yield net force vectors with the same magnitude, the
normal force at the bottom (where the normal and gravita-
tional forces are in opposite directions) must be greater than
that at the top (where the normal and gravitational forces are
in the same direction). (a) The free-body diagram for the pi-
lot at the bottom of the loop is shown in Figure 6.8b. The
only forces acting on him are the downward force of gravity
Fg � mg and the upward force nbot exerted by the seat. Be-
cause the net upward force that provides the centripetal ac-
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A bead slides freely along a curved wire at constant speed, as shown in the overhead view of
Figure 6.9. At each of the points �, �, and �, draw the vector representing the force that
the wire exerts on the bead in order to cause it to follow the path of the wire at that point.

NONUNIFORM CIRCULAR MOTION
In Chapter 4 we found that if a particle moves with varying speed in a circular
path, there is, in addition to the centripetal (radial) component of acceleration, a
tangential component having magnitude dv/dt. Therefore, the force acting on the

6.2

Quick Quiz 6.3

In this case, the magnitude of the force exerted by the seat
on the pilot is less than his true weight by a factor of 0.913,
and the pilot feels lighter.

Exercise Determine the magnitude of the radially directed
force exerted on the pilot by the seat when the aircraft is at
point A in Figure 6.8a, midway up the loop.

Answer directed to the right.nA � 1.913mg

nbot

mg

ntop

mg

(b) (c)

Top

Bottom

A

(a)

Figure 6.8 (a) An aircraft exe-
cutes a loop-the-loop maneuver as
it moves in a vertical circle at con-
stant speed. (b) Free-body dia-
gram for the pilot at the bottom
of the loop. In this position the 
pilot experiences an apparent
weight greater than his true
weight. (c) Free-body diagram for
the pilot at the top of the loop.

a magnitude n top � mg. Applying Newton’s second law yields

0.913mgntop � mg � (225 m/s)2

(2.70 � 103 m)(9.80 m/s2)
� 1� �

ntop � m 
v2

r
� mg � mg � v2

rg
� 1� 

�Fr � ntop � mg � m 
v2

r

�

�

�

Figure 6.9

QuickLab
Hold a shoe by the end of its lace and
spin it in a vertical circle. Can you
feel the difference in the tension in
the lace when the shoe is at top of the
circle compared with when the shoe
is at the bottom?
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particle must also have a tangential and a radial component. Because the total accel-
eration is a � ar � at , the total force exerted on the particle is F � Fr � Ft , as
shown in Figure 6.10. The vector Fr is directed toward the center of the circle and is
responsible for the centripetal acceleration. The vector Ft tangent to the circle is re-
sponsible for the tangential acceleration, which represents a change in the speed of
the particle with time. The following example demonstrates this type of motion.

Figure 6.10 When the force acting on a particle mov-
ing in a circular path has a tangential component Ft , the
particle’s speed changes. The total force exerted on the
particle in this case is the vector sum of the radial force
and the tangential force. That is, F � Fr � Ft .

F

Fr

Ft

Keep Your Eye on the BallEXAMPLE 6.8
Solution Unlike the situation in Example 6.7, the speed is
not uniform in this example because, at most points along the
path, a tangential component of acceleration arises from the
gravitational force exerted on the sphere. From the free-body
diagram in Figure 6.11b, we see that the only forces acting on

A small sphere of mass m is attached to the end of a cord of
length R and whirls in a vertical circle about a fixed point O,
as illustrated in Figure 6.11a. Determine the tension in the
cord at any instant when the speed of the sphere is v and the
cord makes an angle � with the vertical.

Some examples of forces acting during circular motion. (Left) As these speed skaters round a
curve, the force exerted by the ice on their skates provides the centripetal acceleration. 
(Right) Passengers on a “corkscrew” roller coaster. What are the origins of the forces in this 
example?
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Optional Section

MOTION IN ACCELERATED FRAMES
When Newton’s laws of motion were introduced in Chapter 5, we emphasized that
they are valid only when observations are made in an inertial frame of reference.
In this section, we analyze how an observer in a noninertial frame of reference
(one that is accelerating) applies Newton’s second law.

6.3

the sphere are the gravitational force Fg � mg exerted by the
Earth and the force T exerted by the cord. Now we resolve Fg
into a tangential component mg sin � and a radial component
mg cos �. Applying Newton’s second law to the forces acting
on the sphere in the tangential direction yields

This tangential component of the acceleration causes v to
change in time because 

Applying Newton’s second law to the forces acting on the
sphere in the radial direction and noting that both T and ar
are directed toward O, we obtain

m � v2

R
� g cos ��  T �

�Fr � T � mg cos � �
mv2

R

at � dv/dt.

 at � g sin � 

�Ft � mg sin � � mat

Special Cases At the top of the path, where � � 180°, we
have cos 180° � � 1, and the tension equation becomes

This is the minimum value of T. Note that at this point at � 0
and therefore the acceleration is purely radial and directed
downward.

At the bottom of the path, where � � 0, we see that, be-
cause cos 0 � 1,

This is the maximum value of T. At this point, at is again 0
and the acceleration is now purely radial and directed up-
ward.

Exercise At what position of the sphere would the cord
most likely break if the average speed were to increase?

Answer At the bottom, where T has its maximum value.

Tbot � m � v2
bot

R
� g�

Ttop � m � v2
top

R
� g�

O

Tbot

Ttop

vbot

mg

mg

vtop

(b)(a)

R

O

T
θ

mg cos
mg sin

mg

θ θ θ
Figure 6.11 (a) Forces acting on a sphere
of mass m connected to a cord of length R and
rotating in a vertical circle centered at O. 
(b) Forces acting on the sphere at the top and
bottom of the circle. The tension is a maxi-
mum at the bottom and a minimum at the top.
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To understand the motion of a system that is noninertial because an object is
moving along a curved path, consider a car traveling along a highway at a high
speed and approaching a curved exit ramp, as shown in Figure 6.12a. As the car
takes the sharp left turn onto the ramp, a person sitting in the passenger seat
slides to the right and hits the door. At that point, the force exerted on her by the
door keeps her from being ejected from the car. What causes her to move toward
the door? A popular, but improper, explanation is that some mysterious force act-
ing from left to right pushes her outward. (This is often called the “centrifugal”
force, but we shall not use this term because it often creates confusion.) The pas-
senger invents this fictitious force to explain what is going on in her accelerated
frame of reference, as shown in Figure 6.12b. (The driver also experiences this ef-
fect but holds on to the steering wheel to keep from sliding to the right.)

The phenomenon is correctly explained as follows. Before the car enters the
ramp, the passenger is moving in a straight-line path. As the car enters the ramp
and travels a curved path, the passenger tends to move along the original straight-
line path. This is in accordance with Newton’s first law: The natural tendency of a
body is to continue moving in a straight line. However, if a sufficiently large force
(toward the center of curvature) acts on the passenger, as in Figure 6.12c, she will
move in a curved path along with the car. The origin of this force is the force of
friction between her and the car seat. If this frictional force is not large enough,
she will slide to the right as the car turns to the left under her. Eventually, she en-
counters the door, which provides a force large enough to enable her to follow the
same curved path as the car. She slides toward the door not because of some mys-
terious outward force but because the force of friction is not sufficiently great
to allow her to travel along the circular path followed by the car.

In general, if a particle moves with an acceleration a relative to an observer in
an inertial frame, that observer may use Newton’s second law and correctly claim
that �F � ma. If another observer in an accelerated frame tries to apply Newton’s
second law to the motion of the particle, the person must introduce fictitious
forces to make Newton’s second law work. These forces “invented” by the observer
in the accelerating frame appear to be real. However, we emphasize that these fic-
titious forces do not exist when the motion is observed in an inertial frame.
Fictitious forces are used only in an accelerating frame and do not represent “real”
forces acting on the particle. (By real forces, we mean the interaction of the parti-
cle with its environment.) If the fictitious forces are properly defined in the accel-
erating frame, the description of motion in this frame is equivalent to the descrip-
tion given by an inertial observer who considers only real forces. Usually, we
analyze motions using inertial reference frames, but there are cases in which it is
more convenient to use an accelerating frame.

Fictitious forces

Figure 6.12 (a) A car approaching a curved exit ramp. What causes a front-seat passenger to
move toward the right-hand door? (b) From the frame of reference of the passenger, a (ficti-
tious) force pushes her toward the right door. (c) Relative to the reference frame of the Earth,
the car seat applies a leftward force to the passenger, causing her to change direction along with
the rest of the car.

(a)

(c)

(b)

QuickLab
Use a string, a small weight, and a
protractor to measure your accelera-
tion as you start sprinting from a
standing position.

4.8
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Fictitious Forces in Linear MotionEXAMPLE 6.9
Because the deflection of the cord from the vertical serves as
a measure of acceleration, a simple pendulum can be used as an
accelerometer.

According to the noninertial observer riding in the car
(Fig. 6.13b), the cord still makes an angle � with the vertical;
however, to her the sphere is at rest and so its acceleration is
zero. Therefore, she introduces a fictitious force to balance
the horizontal component of T and claims that the net force
on the sphere is zero! In this noninertial frame of reference,
Newton’s second law in component form yields

Noninertial observer

If we recognize that Ffictitious � ma inertial � ma, then these ex-
pressions are equivalent to (1) and (2); therefore, the noniner-
tial observer obtains the same mathematical results as the iner-
tial observer does. However, the physical interpretation of the
deflection of the cord differs in the two frames of reference.

��F 
x � T sin � � Ffictitious � 0

�F 
y � T cos � � mg � 0

A small sphere of mass m is hung by a cord from the ceiling
of a boxcar that is accelerating to the right, as shown in Fig-
ure 6.13. According to the inertial observer at rest (Fig.
6.13a), the forces on the sphere are the force T exerted by
the cord and the force of gravity. The inertial observer con-
cludes that the acceleration of the sphere is the same as that
of the boxcar and that this acceleration is provided by the
horizontal component of T. Also, the vertical component of
T balances the force of gravity. Therefore, she writes New-
ton’s second law as �F � T � mg � ma, which in compo-
nent form becomes

Inertial observer

Thus, by solving (1) and (2) simultaneously for a, the inertial
observer can determine the magnitude of the car’s accelera-
tion through the relationship

a � g tan �

�(1)  �Fx � T sin � � ma

(2)  �Fy � T cos � � mg � 0

θT

mg

Inertial
observer

Noninertial
observer

θT

mg

(a)

(b)

F  fictitious

a

Figure 6.13 A small sphere suspended from the ceiling of a boxcar accelerating to the right is de-
flected as shown. (a) An inertial observer at rest outside the car claims that the acceleration of the
sphere is provided by the horizontal component of T. (b) A noninertial observer riding in the car says
that the net force on the sphere is zero and that the deflection of the cord from the vertical is due to a
fictitious force Ffictitious that balances the horizontal component of T.
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MOTION IN THE PRESENCE OF RESISTIVE FORCES
In the preceding chapter we described the force of kinetic friction exerted on an
object moving on some surface. We completely ignored any interaction between
the object and the medium through which it moves. Now let us consider the effect
of that medium, which can be either a liquid or a gas. The medium exerts a resis-
tive force R on the object moving through it. Some examples are the air resis-
tance associated with moving vehicles (sometimes called air drag) and the viscous
forces that act on objects moving through a liquid. The magnitude of R depends
on such factors as the speed of the object, and the direction of R is always opposite
the direction of motion of the object relative to the medium. The magnitude of R
nearly always increases with increasing speed.

The magnitude of the resistive force can depend on speed in a complex way,
and here we consider only two situations. In the first situation, we assume the resis-
tive force is proportional to the speed of the moving object; this assumption is
valid for objects falling slowly through a liquid and for very small objects, such as
dust particles, moving through air. In the second situation, we assume a resistive
force that is proportional to the square of the speed of the moving object; large
objects, such as a skydiver moving through air in free fall, experience such a force.

6.4

Fictitious Force in a Rotating SystemEXAMPLE 6.10
According to a noninertial observer attached to the

turntable, the block is at rest and its acceleration is zero.
Therefore, she must introduce a fictitious outward force of
magnitude mv2/r to balance the inward force exerted by the
string. According to her, the net force on the block is zero,
and she writes Newton’s second law as T � mv2/r � 0.

Suppose a block of mass m lying on a horizontal, frictionless
turntable is connected to a string attached to the center of
the turntable, as shown in Figure 6.14. According to an iner-
tial observer, if the block rotates uniformly, it undergoes an
acceleration of magnitude v2/r, where v is its linear speed.
The inertial observer concludes that this centripetal accelera-
tion is provided by the force T exerted by the string and
writes Newton’s second law as T � mv2/r.

Figure 6.14 A block of mass m connected to a string tied to the center of a rotating turntable. 
(a) The inertial observer claims that the force causing the circular motion is provided by the force T
exerted by the string on the block. (b) The noninertial observer claims that the block is not accelerat-
ing, and therefore she introduces a fictitious force of magnitude mv2/r that acts outward and balances
the force T.

n

T

m g

(a) Inertial observer

n

T

m g

(b)

Noninertial observer

mv 

2

rF  fictitious =

4.9
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Resistive Force Proportional to Object Speed

If we assume that the resistive force acting on an object moving through a liquid
or gas is proportional to the object’s speed, then the magnitude of the resistive
force can be expressed as

(6.2)

where v is the speed of the object and b is a constant whose value depends on the
properties of the medium and on the shape and dimensions of the object. If the
object is a sphere of radius r, then b is proportional to r.

Consider a small sphere of mass m released from rest in a liquid, as in Figure
6.15a. Assuming that the only forces acting on the sphere are the resistive force bv
and the force of gravity Fg , let us describe its motion.1 Applying Newton’s second
law to the vertical motion, choosing the downward direction to be positive, and
noting that we obtain

(6.3)

where the acceleration dv/dt is downward. Solving this expression for the accelera-
tion gives

(6.4)

This equation is called a differential equation, and the methods of solving it may not
be familiar to you as yet. However, note that initially, when v � 0, the resistive
force � bv is also zero and the acceleration dv/dt is simply g. As t increases, the re-
sistive force increases and the acceleration decreases. Eventually, the acceleration
becomes zero when the magnitude of the resistive force equals the sphere’s
weight. At this point, the sphere reaches its terminal speed vt , and from then on

dv
dt

� g �
b
m

 v

mg � bv � ma � m 
dv
dt

�Fy � mg � bv,

R � bv

Terminal speed

1 There is also a buoyant force acting on the submerged object. This force is constant, and its magnitude
is equal to the weight of the displaced liquid. This force changes the apparent weight of the sphere by a
constant factor, so we will ignore the force here. We discuss buoyant forces in Chapter 15.

Figure 6.15 (a) A small sphere falling through a liquid. (b) Motion diagram of the sphere as it
falls. (c) Speed–time graph for the sphere. The sphere reaches a maximum, or terminal, speed
vt , and the time constant � is the time it takes to reach 0.63vt .

(c)

v

vt

0.63vt

t
τ

R

mg

v

(a)

v = vt
a = 0

v = 0
a = g

(b)



6.4 Motion in the Presence of Resistive Forces 165

it continues to move at this speed with zero acceleration, as shown in Figure 6.15b.
We can obtain the terminal speed from Equation 6.3 by setting 
This gives

The expression for v that satisfies Equation 6.4 with v � 0 at t � 0 is

(6.5)

This function is plotted in Figure 6.15c. The time constant � � m/b (Greek letter
tau) is the time it takes the sphere to reach 63.2% of its terminal
speed. This can be seen by noting that when t � �, Equation 6.5 yields v � 0.632vt .

We can check that Equation 6.5 is a solution to Equation 6.4 by direct differen-
tiation:

(See Appendix Table B.4 for the derivative of e raised to some power.) Substituting 
into Equation 6.4 both this expression for dv/dt and the expression for v given by
Equation 6.5 shows that our solution satisfies the differential equation.

dv
dt

�
d
dt

 � mg
b

�
mg
b

 e�bt/m� � �
mg
b

 
d
dt

 e�bt/m � ge�bt/m

(� 1 � 1/e)

v �
mg
b

 (1 � e�bt/m) � vt (1 � e�t/�)

mg � bvt � 0  or  vt � mg/b

a � dv/dt � 0.

Sphere Falling in OilEXAMPLE 6.11

Thus, the sphere reaches 90% of its terminal (maximum)
speed in a very short time.

Exercise What is the sphere’s speed through the oil at t �
11.7 ms? Compare this value with the speed the sphere would
have if it were falling in a vacuum and so were influenced
only by gravity. 

Answer 4.50 cm/s in oil versus 11.5 cm/s in free fall.

11.7 ms�

 t � 2.30� � 2.30(5.10 � 10�3 s) � 11.7 � 10�3 s

 �
t
�

� ln(0.100) � �2.30 

 e�t/� � 0.100 

1 � e�t/� � 0.900 

0.900vt � vt(1 � e�t/�)  A small sphere of mass 2.00 g is released from rest in a large
vessel filled with oil, where it experiences a resistive force pro-
portional to its speed. The sphere reaches a terminal speed
of 5.00 cm/s. Determine the time constant � and the time it
takes the sphere to reach 90% of its terminal speed.

Solution Because the terminal speed is given by
the coefficient b is

Therefore, the time constant � is 

The speed of the sphere as a function of time is given by
Equation 6.5. To find the time t it takes the sphere to reach a
speed of 0.900vt , we set v � 0.900vt in Equation 6.5 and solve
for t:

5.10 � 10�3 s� �
m
b

�
2.00 g

392 g/s
�

b �
mg
vt

�
(2.00 g)(980 cm/s2)

5.00 cm/s
� 392 g/s

vt � mg/b,

Air Drag at High Speeds

For objects moving at high speeds through air, such as airplanes, sky divers, cars,
and baseballs, the resistive force is approximately proportional to the square of the
speed. In these situations, the magnitude of the resistive force can be expressed as

(6.6)R � 1
2D�Av2

Aerodynamic car. A streamlined
body reduces air drag and in-
creases fuel efficiency.
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where � is the density of air, A is the cross-sectional area of the falling object mea-
sured in a plane perpendicular to its motion, and D is a dimensionless empirical
quantity called the drag coefficient. The drag coefficient has a value of about 0.5 for
spherical objects but can have a value as great as 2 for irregularly shaped objects.

Let us analyze the motion of an object in free fall subject to an upward air 
resistive force of magnitude Suppose an object of mass m is re-
leased from rest. As Figure 6.16 shows, the object experiences two external forces:
the downward force of gravity Fg � mg and the upward resistive force R. (There is
also an upward buoyant force that we neglect.) Hence, the magnitude of the net
force is

(6.7)

where we have taken downward to be the positive vertical direction. Substituting
�F � ma into Equation 6.7, we find that the object has a downward acceleration of
magnitude

(6.8)

We can calculate the terminal speed vt by using the fact that when the force of
gravity is balanced by the resistive force, the net force on the object is zero and
therefore its acceleration is zero. Setting a � 0 in Equation 6.8 gives

(6.9)

Using this expression, we can determine how the terminal speed depends on the
dimensions of the object. Suppose the object is a sphere of radius r. In this case,

(from A � r2) and (because the mass is proportional to the 
volume of the sphere, which is Therefore, 

Table 6.1 lists the terminal speeds for several objects falling through air.
vt � √r.V � 4

3 r3).
m � r3A � r2

 vt � √ 2mg

D�A

g � � D�A
2m � vt 

2 � 0 

a � g � � D�A
2m

 �v2

�F � mg � 1
2D�Av2

R � 1
2 D�Av2.

v

vt

R

mg

R

mg

Figure 6.16 An object falling
through air experiences a resistive
force R and a gravitational force 
Fg � mg. The object reaches termi-
nal speed (on the right) when the
net force acting on it is zero, that
is, when R � � Fg or R � mg. Be-
fore this occurs, the acceleration
varies with speed according to
Equation 6.8.

The high cost of fuel has prompted many truck owners to install wind deflectors on their cabs to
reduce drag.
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TABLE 6.1 Terminal Speed for Various Objects Falling Through Air

Cross-Sectional Area
Object Mass (kg) (m2) vt (m/s)

Sky diver 75 0.70 60
Baseball (radius 3.7 cm) 0.145 4.2 � 10�3 43
Golf ball (radius 2.1 cm) 0.046 1.4 � 10�3 44
Hailstone (radius 0.50 cm) 4.8 � 10�4 7.9 � 10�5 14
Raindrop (radius 0.20 cm) 3.4 � 10�5 1.3 � 10�5 9.0

A sky surfer takes advantage of the upward force of the air on her
board. (

CONCEPTUAL EXAMPLE 6.12
Consider a sky surfer who jumps from a plane with her feet
attached firmly to her surfboard, does some tricks, and then
opens her parachute. Describe the forces acting on her dur-
ing these maneuvers.

Solution When the surfer first steps out of the plane, she
has no vertical velocity. The downward force of gravity causes
her to accelerate toward the ground. As her downward speed
increases, so does the upward resistive force exerted by the
air on her body and the board. This upward force reduces
their acceleration, and so their speed increases more slowly.
Eventually, they are going so fast that the upward resistive
force matches the downward force of gravity. Now the net
force is zero and they no longer accelerate, but reach their
terminal speed. At some point after reaching terminal speed,
she opens her parachute, resulting in a drastic increase in the
upward resistive force. The net force (and thus the accelera-
tion) is now upward, in the direction opposite the direction
of the velocity. This causes the downward velocity to decrease
rapidly; this means the resistive force on the chute also de-
creases. Eventually the upward resistive force and the down-
ward force of gravity balance each other and a much smaller
terminal speed is reached, permitting a safe landing.

(Contrary to popular belief, the velocity vector of a sky
diver never points upward. You may have seen a videotape 
in which a sky diver appeared to “rocket” upward once the
chute opened. In fact, what happened is that the diver 
slowed down while the person holding the camera contin-
ued falling at high speed.)

Falling Coffee FiltersEXAMPLE 6.13
presents data for these coffee filters as they fall through the
air. The time constant � is small, so that a dropped filter
quickly reaches terminal speed. Each filter has a mass of 
1.64 g. When the filters are nested together, they stack in

The dependence of resistive force on speed is an empirical
relationship. In other words, it is based on observation rather
than on a theoretical model. A series of stacked filters is
dropped, and the terminal speeds are measured. Table 6.2
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Figure 6.17 (a) Relationship between the resistive force acting on falling coffee filters and their ter-
minal speed. The curved line is a second-order polynomial fit. (b) Graph relating the resistive force to
the square of the terminal speed. The fit of the straight line to the data points indicates that the resis-
tive force is proportional to the terminal speed squared. Can you find the proportionality constant?

TABLE 6.2
Terminal Speed for 
Stacked Coffee Filters

Number vt
of Filters (m/s)a

1 1.01
2 1.40
3 1.63
4 2.00
5 2.25
6 2.40
7 2.57
8 2.80
9 3.05

10 3.22

a All values of vt are approximate.
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Pleated coffee filters can be nested together so
that the force of air resistance can be studied.
(

such a way that the front-facing surface area does not in-
crease. Determine the relationship between the resistive force
exerted by the air and the speed of the falling filters.

Solution At terminal speed, the upward resistive force bal-
ances the downward force of gravity. So, a single filter falling
at its terminal speed experiences a resistive force of

R � mg � � 1.64 g
1000 g/kg � (9.80 m/s2) � 0.016 1 N

Two filters nested together experience 0.032 2 N of resistive
force, and so forth. A graph of the resistive force on the fil-
ters as a function of terminal speed is shown in Figure 6.17a.
A straight line would not be a good fit, indicating that the re-
sistive force is not proportional to the speed. The curved line
is for a second-order polynomial, indicating a proportionality
of the resistive force to the square of the speed. This propor-
tionality is more clearly seen in Figure 6.17b, in which the re-
sistive force is plotted as a function of the square of the termi-
nal speed.
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NUMERICAL MODELING IN PARTICLE DYNAMICS2

As we have seen in this and the preceding chapter, the study of the dynamics of a
particle focuses on describing the position, velocity, and acceleration as functions of
time. Cause-and-effect relationships exist among these quantities: Velocity causes
position to change, and acceleration causes velocity to change. Because accelera-
tion is the direct result of applied forces, any analysis of the dynamics of a particle
usually begins with an evaluation of the net force being exerted on the particle.

Up till now, we have used what is called the analytical method to investigate the
position, velocity, and acceleration of a moving particle. Let us review this method
briefly before learning about a second way of approaching problems in dynamics.
(Because we confine our discussion to one-dimensional motion in this section,
boldface notation will not be used for vector quantities.)

If a particle of mass m moves under the influence of a net force �F, Newton’s
second law tells us that the acceleration of the particle is In general, we
apply the analytical method to a dynamics problem using the following procedure:

1. Sum all the forces acting on the particle to get the net force �F.
2. Use this net force to determine the acceleration from the relationship 
3. Use this acceleration to determine the velocity from the relationship 
4. Use this velocity to determine the position from the relationship 

The following straightforward example illustrates this method.

dx/dt � v.
dv/dt � a.
a � �F/m.

a � �F/m.

6.5

Resistive Force Exerted on a BaseballEXAMPLE 6.14

This number has no dimensions. We have kept an extra digit
beyond the two that are significant and will drop it at the end
of our calculation.

We can now use this value for D in Equation 6.6 to find
the magnitude of the resistive force:

1.2 N  �

 � 1
2(0.284)(1.29 kg/m3)(4.2 � 10�3 m2)(40.2 m/s)2

R � 1
2 D�Av2 

� 0.284

D �
2 mg

vt 

2 �A
�

2(0.145 kg)(9.80 m/s2)
(43 m/s)2 (1.29 kg/m3)(4.2 � 10�3 m2)

A pitcher hurls a 0.145-kg baseball past a batter at 40.2 m/s
mi/h). Find the resistive force acting on the ball at this

speed.

Solution We do not expect the air to exert a huge force
on the ball, and so the resistive force we calculate from Equa-
tion 6.6 should not be more than a few newtons. First, we
must determine the drag coefficient D. We do this by imagin-
ing that we drop the baseball and allow it to reach terminal
speed. We solve Equation 6.9 for D and substitute the appro-
priate values for m, vt , and A from Table 6.1. Taking the den-
sity of air as 1.29 kg/m3, we obtain

(�90

2 The authors are most grateful to Colonel James Head of the U.S. Air Force Academy for preparing
this section. See the Student Tools CD-ROM for some assistance with numerical modeling.

An Object Falling in a Vacuum — Analytical MethodEXAMPLE 6.15
Solution The only force acting on the particle is the
downward force of gravity of magnitude Fg , which is also the
net force. Applying Newton’s second law, we set the net force
acting on the particle equal to the mass of the particle times

Consider a particle falling in a vacuum under the influence
of the force of gravity, as shown in Figure 6.18. Use the analyt-
ical method to find the acceleration, velocity, and position of
the particle.
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The analytical method is straightforward for many physical situations. In the
“real world,” however, complications often arise that make analytical solutions dif-
ficult and perhaps beyond the mathematical abilities of most students taking intro-
ductory physics. For example, the net force acting on a particle may depend on
the particle’s position, as in cases where the gravitational acceleration varies with
height. Or the force may vary with velocity, as in cases of resistive forces caused by
motion through a liquid or gas.

Another complication arises because the expressions relating acceleration, ve-
locity, position, and time are differential equations rather than algebraic ones. Dif-
ferential equations are usually solved using integral calculus and other special
techniques that introductory students may not have mastered. 

When such situations arise, scientists often use a procedure called numerical
modeling to study motion. The simplest numerical model is called the Euler
method, after the Swiss mathematician Leonhard Euler (1707–1783).

The Euler Method

In the Euler method for solving differential equations, derivatives are approxi-
mated as ratios of finite differences. Considering a small increment of time �t, we
can approximate the relationship between a particle’s speed and the magnitude of
its acceleration as

Then the speed of the particle at the end of the time interval �t is ap-
proximately equal to the speed v(t) at the beginning of the time interval plus the
magnitude of the acceleration during the interval multiplied by �t:

(6.10)

Because the acceleration is a function of time, this estimate of is accurate
only if the time interval �t is short enough that the change in acceleration during
it is very small (as is discussed later). Of course, Equation 6.10 is exact if the accel-
eration is constant.

v(t � �t)

v(t � �t) � v(t) � a(t)�t

v(t � �t)

a(t) � 
�v
�t

�
v(t � �t) � v(t)

�t

In these expressions, yi and vyi represent the position and
speed of the particle at ti � 0.

its acceleration (taking upward to be the positive y direction):

Thus, which means the acceleration is constant. Be-
cause we see that which may be in-
tegrated to yield

Then, because the position of the particle is ob-
tained from another integration, which yields the well-known
result

y(t) � y i � vyit � 1
2gt2

vy � dy/dt,

vy(t) � vyi � gt

dvy /dt � �g,dvy /dt � ay  ,
ay � �g,

Fg � may � �mg

Figure 6.18 An object falling in vacuum under the influence
of gravity.

mg
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The position of the particle at the end of the interval �t can be
found in the same manner:

(6.11)

You may be tempted to add the term to this result to make it look like
the familiar kinematics equation, but this term is not included in the Euler
method because �t is assumed to be so small that �t2 is nearly zero.

If the acceleration at any instant t is known, the particle’s velocity and position
at a time t � �t can be calculated from Equations 6.10 and 6.11. The calculation
then proceeds in a series of finite steps to determine the velocity and position at
any later time. The acceleration is determined from the net force acting on the
particle, and this force may depend on position, velocity, or time:

(6.12)

It is convenient to set up the numerical solution to this kind of problem by
numbering the steps and entering the calculations in a table, a procedure that is il-
lustrated in Table 6.3.

The equations in the table can be entered into a spreadsheet and the calcula-
tions performed row by row to determine the velocity, position, and acceleration
as functions of time. The calculations can also be carried out by using a program
written in either BASIC, C��, or FORTRAN or by using commercially available
mathematics packages for personal computers. Many small increments can be
taken, and accurate results can usually be obtained with the help of a computer.
Graphs of velocity versus time or position versus time can be displayed to help you
visualize the motion.

One advantage of the Euler method is that the dynamics is not obscured—the
fundamental relationships between acceleration and force, velocity and accelera-
tion, and position and velocity are clearly evident. Indeed, these relationships
form the heart of the calculations. There is no need to use advanced mathematics,
and the basic physics governs the dynamics.

The Euler method is completely reliable for infinitesimally small time incre-
ments, but for practical reasons a finite increment size must be chosen. For the fi-
nite difference approximation of Equation 6.10 to be valid, the time increment
must be small enough that the acceleration can be approximated as being con-
stant during the increment. We can determine an appropriate size for the time in-

a(x, v, t) �
�F(x, v, t)

m

1
2 a(�t)2

 x(t � �t) � x(t) � v(t)�t 

v(t) � 
�x
�t

�
x(t � �t) � x(t)

�t

x(t � �t)

See the spreadsheet file “Baseball
with Drag” on the Student Web
site (address below) for an
example of how this technique can
be applied to find the initial speed
of the baseball described in
Example 6.14. We cannot use our
regular approach because our
kinematics equations assume
constant acceleration. Euler’s
method provides a way to
circumvent this difficulty.

A detailed solution to Problem 41
involving iterative integration
appears in the Student  Solutions
Manual and Study Guide and is
posted on the Web at http:/
www.saunderscollege.com/physics

TABLE 6.3 The Euler Method for Solving Dynamics Problems

Step Time Position Velocity Acceleration

0 t0 x0 v0 a0 � F(x0 , v0 , t0)/m
1 t1 � t0 � �t x1 � x0 � v0 �t v1 � v0 � a0 �t a1 � F(x1 , v1 , t1)/m
2 t2 � t1 � �t x2 � x1 � v1 �t v2 � v1 � a1 �t a2 � F(x2 , v2 , t2)/m
3 t3 � t2 � �t x3 � x2 � v2 �t v3 � v2 � a2 �t a3 � F(x3 , v3 , t3)/m

n tn xn vn an

����
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crement by examining the particular problem being investigated. The criterion for
the size of the time increment may need to be changed during the course of the
motion. In practice, however, we usually choose a time increment appropriate to
the initial conditions and use the same value throughout the calculations.

The size of the time increment influences the accuracy of the result, but un-
fortunately it is not easy to determine the accuracy of an Euler-method solution
without a knowledge of the correct analytical solution. One method of determin-
ing the accuracy of the numerical solution is to repeat the calculations with a
smaller time increment and compare results. If the two calculations agree to a cer-
tain number of significant figures, you can assume that the results are correct to
that precision.

SUMMARY

Newton’s second law applied to a particle moving in uniform circular motion states
that the net force causing the particle to undergo a centripetal acceleration is

(6.1)

You should be able to use this formula in situations where the force providing the
centripetal acceleration could be the force of gravity, a force of friction, a force of
string tension, or a normal force.

A particle moving in nonuniform circular motion has both a centripetal com-
ponent of acceleration and a nonzero tangential component of acceleration. In
the case of a particle rotating in a vertical circle, the force of gravity provides the
tangential component of acceleration and part or all of the centripetal component
of acceleration. Be sure you understand the directions and magnitudes of the ve-
locity and acceleration vectors for nonuniform circular motion.

An observer in a noninertial (accelerating) frame of reference must introduce
fictitious forces when applying Newton’s second law in that frame. If these ficti-
tious forces are properly defined, the description of motion in the noninertial
frame is equivalent to that made by an observer in an inertial frame. However, the
observers in the two frames do not agree on the causes of the motion. You should
be able to distinguish between inertial and noninertial frames and identify the fic-
titious forces acting in a noninertial frame.

A body moving through a liquid or gas experiences a resistive force that is
speed-dependent. This resistive force, which opposes the motion, generally in-
creases with speed. The magnitude of the resistive force depends on the shape of
the body and on the properties of the medium through which the body is moving.
In the limiting case for a falling body, when the magnitude of the resistive force
equals the body’s weight, the body reaches its terminal speed. You should be able
to apply Newton’s laws to analyze the motion of objects moving under the influ-
ence of resistive forces. You may need to apply Euler’s method if the force de-
pends on velocity, as it does for air drag.

�Fr � mar �
mv2

r

QUESTIONS

parent weight of an object be greater at the poles than at
the equator?

2. Explain why the Earth bulges at the equator.

1. Because the Earth rotates about its axis and revolves
around the Sun, it is a noninertial frame of reference. As-
suming the Earth is a uniform sphere, why would the ap-
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PROBLEMS

speed, (b) the period of its revolution, and (c) the grav-
itational force acting on it.

7. Whenever two Apollo astronauts were on the surface of
the Moon, a third astronaut orbited the Moon. Assume
the orbit to be circular and 100 km above the surface of
the Moon. If the mass of the Moon is 7.40 � 1022 kg and
its radius is 1.70 � 106 m, determine (a) the orbiting as-
tronaut’s acceleration, (b) his orbital speed, and (c) the
period of the orbit.

8. The speed of the tip of the minute hand on a town
clock is 1.75 � 10�3 m/s. (a) What is the speed of the
tip of the second hand of the same length? (b) What is
the centripetal acceleration of the tip of the second
hand?

9. A coin placed 30.0 cm from the center of a rotating,
horizontal turntable slips when its speed is 50.0 cm/s.
(a) What provides the force in the radial direction
when the coin is stationary relative to the turntable? 
(b) What is the coefficient of static friction between
coin and turntable?

10. The cornering performance of an automobile is evalu-
ated on a skid pad, where the maximum speed that a
car can maintain around a circular path on a dry, flat
surface is measured. The centripetal acceleration, also
called the lateral acceleration, is then calculated as a
multiple of the free-fall acceleration g. The main factors
affecting the performance are the tire characteristics
and the suspension system of the car. A Dodge Viper
GTS can negotiate a skid pad of radius 61.0 m at 
86.5 km/h. Calculate its maximum lateral acceleration.

11. A crate of eggs is located in the middle of the flatbed of
a pickup truck as the truck negotiates an unbanked

Section 6.1 Newton’s Second Law 
Applied to Uniform Circular Motion

1. A toy car moving at constant speed completes one lap
around a circular track (a distance of 200 m) in 25.0 s.
(a) What is its average speed? (b) If the mass of the car
is 1.50 kg, what is the magnitude of the force that keeps
it in a circle?

2. A 55.0-kg ice skater is moving at 4.00 m/s when she
grabs the loose end of a rope, the opposite end of
which is tied to a pole. She then moves in a circle of ra-
dius 0.800 m around the pole. (a) Determine the force
exerted by the rope on her arms. (b) Compare this
force with her weight.

3. A light string can support a stationary hanging load of
25.0 kg before breaking. A 3.00-kg mass attached to the
string rotates on a horizontal, frictionless table in a cir-
cle of radius 0.800 m. What range of speeds can the
mass have before the string breaks?

4. In the Bohr model of the hydrogen atom, the speed of
the electron is approximately 2.20 � 106 m/s. Find 
(a) the force acting on the electron as it revolves in a
circular orbit of radius 0.530 � 10�10 m and (b) the
centripetal acceleration of the electron.

5. In a cyclotron (one type of particle accelerator), a
deuteron (of atomic mass 2.00 u) reaches a final speed
of 10.0% of the speed of light while moving in a circular
path of radius 0.480 m. The deuteron is maintained in
the circular path by a magnetic force. What magnitude
of force is required?

6. A satellite of mass 300 kg is in a circular orbit around
the Earth at an altitude equal to the Earth’s mean ra-
dius (see Example 6.6). Find (a) the satellite’s orbital

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

3. Why is it that an astronaut in a space capsule orbiting the
Earth experiences a feeling of weightlessness?

4. Why does mud fly off a rapidly turning automobile tire?
5. Imagine that you attach a heavy object to one end of a

spring and then whirl the spring and object in a horizon-
tal circle (by holding the free end of the spring). Does
the spring stretch? If so, why? Discuss this in terms of the
force causing the circular motion.

6. It has been suggested that rotating cylinders about 10 mi
in length and 5 mi in diameter be placed in space and
used as colonies. The purpose of the rotation is to simu-
late gravity for the inhabitants. Explain this concept for
producing an effective gravity.

7. Why does a pilot tend to black out when pulling out of a
steep dive?

8. Describe a situation in which a car driver can have 
a centripetal acceleration but no tangential accel-
eration.

9. Describe the path of a moving object if its acceleration is
constant in magnitude at all times and (a) perpendicular
to the velocity; (b) parallel to the velocity.

10. Analyze the motion of a rock falling through water in
terms of its speed and acceleration as it falls. Assume that
the resistive force acting on the rock increases as the
speed increases.

11. Consider a small raindrop and a large raindrop falling
through the atmosphere. Compare their terminal speeds.
What are their accelerations when they reach terminal
speed?
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curve in the road. The curve may be regarded as an arc
of a circle of radius 35.0 m. If the coefficient of static
friction between crate and truck is 0.600, how fast can
the truck be moving without the crate sliding?

12. A car initially traveling eastward turns north by traveling
in a circular path at uniform speed as in Figure P6.12.
The length of the arc ABC is 235 m, and the car com-
pletes the turn in 36.0 s. (a) What is the acceleration
when the car is at B located at an angle of 35.0°? Ex-
press your answer in terms of the unit vectors i and j.
Determine (b) the car’s average speed and (c) its aver-
age acceleration during the 36.0-s interval.

hump? (b) What must be the speed of the car over the
hump if she is to experience weightlessness? (That is, if
her apparent weight is zero.)

15. Tarzan (m � 85.0 kg) tries to cross a river by swinging
from a vine. The vine is 10.0 m long, and his speed at
the bottom of the swing (as he just clears the water) is
8.00 m/s. Tarzan doesn’t know that the vine has a
breaking strength of 1 000 N. Does he make it safely
across the river?

16. A hawk flies in a horizontal arc of radius 12.0 m at a
constant speed of 4.00 m/s. (a) Find its centripetal ac-
celeration. (b) It continues to fly along the same hori-
zontal arc but steadily increases its speed at the rate of
1.20 m/s2. Find the acceleration (magnitude and direc-
tion) under these conditions.

17. A 40.0-kg child sits in a swing supported by two chains,
each 3.00 m long. If the tension in each chain at the
lowest point is 350 N, find (a) the child’s speed at the
lowest point and (b) the force exerted by the seat on
the child at the lowest point. (Neglect the mass of the
seat.)

18. A child of mass m sits in a swing supported by two
chains, each of length R. If the tension in each chain at
the lowest point is T, find (a) the child’s speed at the
lowest point and (b) the force exerted by the seat on
the child at the lowest point. (Neglect the mass of the
seat.)

19. A pail of water is rotated in a vertical circle of radius
1.00 m. What must be the minimum speed of the pail at
the top of the circle if no water is to spill out?

20. A 0.400-kg object is swung in a vertical circular path on
a string 0.500 m long. If its speed is 4.00 m/s at the top
of the circle, what is the tension in the string there?

21. A roller-coaster car has a mass of 500 kg when fully
loaded with passengers (Fig. P6.21). (a) If the car has a
speed of 20.0 m/s at point A, what is the force exerted
by the track on the car at this point? (b) What is the
maximum speed the car can have at B and still remain
on the track?

WEB

WEB

13. Consider a conical pendulum with an 80.0-kg bob on a
10.0-m wire making an angle of � � 5.00° with the verti-
cal (Fig. P6.13). Determine (a) the horizontal and verti-
cal components of the force exerted by the wire on the
pendulum and (b) the radial acceleration of the bob.

Section 6.2 Nonuniform Circular Motion
14. A car traveling on a straight road at 9.00 m/s goes over

a hump in the road. The hump may be regarded as an
arc of a circle of radius 11.0 m. (a) What is the apparent
weight of a 600-N woman in the car as she rides over the

y

A

O

B

C
x

35.0°

Figure P6.12

Figure P6.13

Figure P6.21

θ

10.0 m
A

15.0 m

B
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(Optional)
Section 6.3 Motion in Accelerated Frames

23. A merry-go-round makes one complete revolution in
12.0 s. If a 45.0-kg child sits on the horizontal floor of
the merry-go-round 3.00 m from the center, find (a) the
child’s acceleration and (b) the horizontal force of fric-
tion that acts on the child. (c) What minimum coeffi-
cient of static friction is necessary to keep the child
from slipping?

25. A 0.500-kg object is suspended from the ceiling of an
accelerating boxcar as was seen in Figure 6.13. If a �
3.00 m/s2, find (a) the angle that the string makes with
the vertical and (b) the tension in the string.

26. The Earth rotates about its axis with a period of 24.0 h.
Imagine that the rotational speed can be increased. If
an object at the equator is to have zero apparent weight,
(a) what must the new period be? (b) By what factor
would the speed of the object be increased when the
planet is rotating at the higher speed? (Hint: See Prob-
lem 53 and note that the apparent weight of the object
becomes zero when the normal force exerted on it is
zero. Also, the distance traveled during one period is
2R, where R is the Earth’s radius.)

27. A person stands on a scale in an elevator. As the elevator
starts, the scale has a constant reading of 591 N. As the
elevator later stops, the scale reading is 391 N. Assume
the magnitude of the acceleration is the same during
starting and stopping, and determine (a) the weight of
the person, (b) the person’s mass, and (c) the accelera-
tion of the elevator.

28. A child on vacation wakes up. She is lying on her back.
The tension in the muscles on both sides of her neck is
55.0 N as she raises her head to look past her toes and
out the motel window. Finally, it is not raining! Ten min-
utes later she is screaming and sliding feet first down a
water slide at a constant speed of 5.70 m/s, riding high
on the outside wall of a horizontal curve of radius 2.40 m
(Fig. P6.28). She raises her head to look forward past
her toes; find the tension in the muscles on both sides
of her neck.

22. A roller coaster at the Six Flags Great America amuse-
ment park in Gurnee, Illinois, incorporates some of the
latest design technology and some basic physics. Each
vertical loop, instead of being circular, is shaped like a
teardrop (Fig. P6.22). The cars ride on the inside of the
loop at the top, and the speeds are high enough to en-
sure that the cars remain on the track. The biggest loop
is 40.0 m high, with a maximum speed of 31.0 m/s
(nearly 70 mi/h) at the bottom. Suppose the speed at
the top is 13.0 m/s and the corresponding centripetal
acceleration is 2g. (a) What is the radius of the arc of
the teardrop at the top? (b) If the total mass of the cars
plus people is M, what force does the rail exert on this
total mass at the top? (c) Suppose the roller coaster had
a loop of radius 20.0 m. If the cars have the same speed,
13.0 m/s at the top, what is the centripetal acceleration
at the top? Comment on the normal force at the top in
this situation.

Figure P6.22 (Frank Cezus/FPG International)

Figure P6.24

5.00 kg

24. A 5.00-kg mass attached to a spring scale rests on a fric-
tionless, horizontal surface as in Figure P6.24. The
spring scale, attached to the front end of a boxcar, reads
18.0 N when the car is in motion. (a) If the spring scale
reads zero when the car is at rest, determine the accel-
eration of the car. (b) What will the spring scale read if
the car moves with constant velocity? (c) Describe the
forces acting on the mass as observed by someone in
the car and by someone at rest outside the car.
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29. A plumb bob does not hang exactly along a line di-
rected to the center of the Earth, because of the Earth’s
rotation. How much does the plumb bob deviate from a
radial line at 35.0° north latitude? Assume that the
Earth is spherical. 

(Optional)
Section 6.4 Motion in the Presence of Resistive Forces

30. A sky diver of mass 80.0 kg jumps from a slow-moving
aircraft and reaches a terminal speed of 50.0 m/s. 
(a) What is the acceleration of the sky diver when her
speed is 30.0 m/s? What is the drag force exerted on
the diver when her speed is (b) 50.0 m/s? (c) 30.0 m/s?

31. A small piece of Styrofoam packing material is dropped
from a height of 2.00 m above the ground. Until it
reaches terminal speed, the magnitude of its accelera-
tion is given by a � g � bv. After falling 0.500 m, the
Styrofoam effectively reaches its terminal speed, and
then takes 5.00 s more to reach the ground. (a) What is
the value of the constant b? (b) What is the acceleration
at t � 0? (c) What is the acceleration when the speed is
0.150 m/s?

32. (a) Estimate the terminal speed of a wooden sphere
(density 0.830 g/cm3) falling through the air if its ra-
dius is 8.00 cm. (b) From what height would a freely
falling object reach this speed in the absence of air 
resistance?

33. Calculate the force required to pull a copper ball of ra-
dius 2.00 cm upward through a fluid at the constant
speed 9.00 cm/s. Take the drag force to be proportional
to the speed, with proportionality constant 0.950 kg/s.
Ignore the buoyant force.

34. A fire helicopter carries a 620-kg bucket at the end of a
cable 20.0 m long as in Figure P6.34. As the helicopter
flies to a fire at a constant speed of 40.0 m/s, the cable
makes an angle of 40.0° with respect to the vertical. The
bucket presents a cross-sectional area of 3.80 m2 in a
plane perpendicular to the air moving past it. Deter-
mine the drag coefficient assuming that the resistive

force is proportional to the square of the bucket’s
speed.

35. A small, spherical bead of mass 3.00 g is released from
rest at t � 0 in a bottle of liquid shampoo. The terminal
speed is observed to be vt � 2.00 cm/s. Find (a) the
value of the constant b in Equation 6.4, (b) the time �
the bead takes to reach 0.632vt , and (c) the value of the
resistive force when the bead reaches terminal speed.

36. The mass of a sports car is 1 200 kg. The shape of the
car is such that the aerodynamic drag coefficient is
0.250 and the frontal area is 2.20 m2. Neglecting all
other sources of friction, calculate the initial accelera-
tion of the car if, after traveling at 100 km/h, it is
shifted into neutral and is allowed to coast.

37. A motorboat cuts its engine when its speed is 10.0 m/s
and coasts to rest. The equation governing the motion
of the motorboat during this period is v � vie�ct, where
v is the speed at time t, vi is the initial speed, and c is a
constant. At t � 20.0 s, the speed is 5.00 m/s. (a) Find
the constant c. (b) What is the speed at t � 40.0 s? 
(c) Differentiate the expression for v(t) and thus show
that the acceleration of the boat is proportional to the
speed at any time.

38. Assume that the resistive force acting on a speed skater
is f � � kmv2, where k is a constant and m is the skater’s
mass. The skater crosses the finish line of a straight-line
race with speed vf and then slows down by coasting on
his skates. Show that the skater’s speed at any time t
after crossing the finish line is v(t) � vf/(1 � ktvf).

39. You can feel a force of air drag on your hand if you
stretch your arm out of the open window of a speeding
car. (Note: Do not get hurt.) What is the order of magni-
tude of this force? In your solution, state the quantities
you measure or estimate and their values.

(Optional)
6.5 Numerical Modeling in Particle Dynamics

40. A 3.00-g leaf is dropped from a height of 2.00 m above
the ground. Assume the net downward force exerted on
the leaf is F � mg � bv, where the drag factor is b �
0.030 0 kg/s. (a) Calculate the terminal speed of the
leaf. (b) Use Euler’s method of numerical analysis to
find the speed and position of the leaf as functions of

WEB

Figure P6.28

Figure P6.34

40.0°

620 kg

20.0 m

40.0 m/s
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time, from the instant it is released until 99% of termi-
nal speed is reached. (Hint: Try �t � 0.005 s.)

41. A hailstone of mass 4.80 � 10�4 kg falls through the air
and experiences a net force given by

where C � 2.50 � 10�5 kg/m. (a) Calculate the termi-
nal speed of the hailstone. (b) Use Euler’s method of
numerical analysis to find the speed and position of the
hailstone at 0.2-s intervals, taking the initial speed to be
zero. Continue the calculation until the hailstone
reaches 99% of terminal speed.

42. A 0.142-kg baseball has a terminal speed of 42.5 m/s
(95 mi/h). (a) If a baseball experiences a drag force of
magnitude R � Cv2, what is the value of the constant C?
(b) What is the magnitude of the drag force when the
speed of the baseball is 36.0 m/s? (c) Use a computer 
to determine the motion of a baseball thrown vertically
upward at an initial speed of 36.0 m/s. What maxi-
mum height does the ball reach? How long is it in 
the air? What is its speed just before it hits the ground?

43. A 50.0-kg parachutist jumps from an airplane and falls
with a drag force proportional to the square of the
speed R � Cv2. Take C � 0.200 kg/m with the para-
chute closed and C � 20.0 kg/m with the chute open.
(a) Determine the terminal speed of the parachutist in
both configurations, before and after the chute is
opened. (b) Set up a numerical analysis of the motion
and compute the speed and position as functions of
time, assuming the jumper begins the descent at 
1 000 m above the ground and is in free fall for 10.0 s
before opening the parachute. (Hint: When the para-
chute opens, a sudden large acceleration takes place; a
smaller time step may be necessary in this region.)

44. Consider a 10.0-kg projectile launched with an initial
speed of 100 m/s, at an angle of 35.0° elevation. The re-
sistive force is R � � bv, where b � 10.0 kg/s. (a) Use a
numerical method to determine the horizontal and ver-
tical positions of the projectile as functions of time. 
(b) What is the range of this projectile? (c) Determine
the elevation angle that gives the maximum range for
the projectile. (Hint: Adjust the elevation angle by trial
and error to find the greatest range.)

45. A professional golfer hits a golf ball of mass 46.0 g with
her 5-iron, and the ball first strikes the ground 155 m
(170 yards) away. The ball experiences a drag force of
magnitude and has a terminal speed of 
44.0 m/s. (a) Calculate the drag constant C for the golf
ball. (b) Use a numerical method to analyze the trajec-
tory of this shot. If the initial velocity of the ball makes
an angle of 31.0° (the loft angle) with the horizontal,
what initial speed must the ball have to reach the 155-m
distance? (c) If the same golfer hits the ball with her 9-
iron (47.0° loft) and it first strikes the ground 119 m
away, what is the initial speed of the ball? Discuss the
differences in trajectories between the two shots.

R � Cv2

F � �mg � Cv2

ADDITIONAL PROBLEMS

46. An 1 800-kg car passes over a bump in a road that fol-
lows the arc of a circle of radius 42.0 m as in Figure
P6.46. (a) What force does the road exert on the car as
the car passes the highest point of the bump if the car
travels at 16.0 m/s? (b) What is the maximum speed the
car can have as it passes this highest point before losing
contact with the road? 

47. A car of mass m passes over a bump in a road that fol-
lows the arc of a circle of radius R as in Figure P6.46.
(a) What force does the road exert on the car as the car
passes the highest point of the bump if the car travels at
a speed v? (b) What is the maximum speed the car can
have as it passes this highest point before losing contact
with the road? 

WEB

48. In one model of a hydrogen atom, the electron in orbit
around the proton experiences an attractive force of
about 8.20 � 10�8 N. If the radius of the orbit is 5.30 �
10�11 m, how many revolutions does the electron make
each second? (This number of revolutions per unit time
is called the frequency of the motion.) See the inside
front cover for additional data.

49. A student builds and calibrates an accelerometer, which
she uses to determine the speed of her car around a
certain unbanked highway curve. The accelerometer is
a plumb bob with a protractor that she attaches to the
roof of her car. A friend riding in the car with her ob-
serves that the plumb bob hangs at an angle of 15.0°
from the vertical when the car has a speed of 23.0 m/s.
(a) What is the centripetal acceleration of the car
rounding the curve? (b) What is the radius of the
curve? (c) What is the speed of the car if the plumb bob
deflection is 9.00° while the car is rounding the same
curve?

50. Suppose the boxcar shown in Figure 6.13 is moving with
constant acceleration a up a hill that makes an angle �
with the horizontal. If the hanging pendulum makes a
constant angle � with the perpendicular to the ceiling,
what is a?

51. An air puck of mass 0.250 kg is tied to a string and al-
lowed to revolve in a circle of radius 1.00 m on a fric-

Figure P6.46 Problems 46 and 47.

v



178 C H A P T E R  6 Circular Motion and Other Applications of Newton’s Laws

tionless horizontal table. The other end of the string
passes through a hole in the center of the table, and a
mass of 1.00 kg is tied to it (Fig. P6.51). The suspended
mass remains in equilibrium while the puck on the
tabletop revolves. What are (a) the tension in the string,
(b) the force exerted by the string on the puck, and 
(c) the speed of the puck?

52. An air puck of mass m1 is tied to a string and allowed 
to revolve in a circle of radius R on a frictionless hori-
zontal table. The other end of the string passes 
through a hole in the center of the table, and a mass 
m2 is tied to it (Fig. P6.51). The suspended mass re-
mains in equilibrium while the puck on the tabletop re-
volves. What are (a) the tension in the string? (b) the
central force exerted on the puck? (c) the speed of the
puck?

that, when the mass sits a distance L up along the slop-
ing side, the speed of the mass must be 

v � (g L sin �)1/2

56. The pilot of an airplane executes a constant-speed loop-
the-loop maneuver. His path is a vertical circle. The
speed of the airplane is 300 mi/h, and the radius of the
circle is 1 200 ft. (a) What is the pilot’s apparent weight
at the lowest point if his true weight is 160 lb? (b) What
is his apparent weight at the highest point? (c) Describe
how the pilot could experience apparent weightlessness
if both the radius and the speed can be varied. (Note:
His apparent weight is equal to the force that the seat
exerts on his body.)

57. For a satellite to move in a stable circular orbit at a con-
stant speed, its centripetal acceleration must be in-
versely proportional to the square of the radius r of the
orbit. (a) Show that the tangential speed of a satellite is
proportional to r�1/2. (b) Show that the time required
to complete one orbit is proportional to r3/2.

58. A penny of mass 3.10 g rests on a small 20.0-g block sup-
ported by a spinning disk (Fig. P6.58). If the coeffi-

53. Because the Earth rotates about its axis, a point on the
equator experiences a centripetal acceleration of 
0.033 7 m/s2, while a point at one of the poles experi-
ences no centripetal acceleration. (a) Show that at the
equator the gravitational force acting on an object (the
true weight) must exceed the object’s apparent weight. 
(b) What is the apparent weight at the equator and at
the poles of a person having a mass of 75.0 kg? (Assume
the Earth is a uniform sphere and take g � 9.800 m/s2.)

54. A string under a tension of 50.0 N is used to whirl a
rock in a horizontal circle of radius 2.50 m at a speed of
20.4 m/s. The string is pulled in and the speed of the
rock increases. When the string is 1.00 m long and the
speed of the rock is 51.0 m/s, the string breaks. What is
the breaking strength (in newtons) of the string?

55. A child’s toy consists of a small wedge that has an acute
angle � (Fig. P6.55). The sloping side of the wedge is
frictionless, and a mass m on it remains at constant
height if the wedge is spun at a certain constant speed.
The wedge is spun by rotating a vertical rod that is
firmly attached to the wedge at the bottom end. Show

Figure P6.51 Problems 51 and 52.

Figure P6.55

Figure P6.58
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cients of friction between block and disk are 0.750 (sta-
tic) and 0.640 (kinetic) while those for the penny and
block are 0.450 (kinetic) and 0.520 (static), what is the
maximum rate of rotation (in revolutions per minute)
that the disk can have before either the block or the
penny starts to slip?

59. Figure P6.59 shows a Ferris wheel that rotates four times
each minute and has a diameter of 18.0 m. (a) What is
the centripetal acceleration of a rider? What force does
the seat exert on a 40.0-kg rider (b) at the lowest point
of the ride and (c) at the highest point of the ride? 
(d) What force (magnitude and direction) does the seat
exert on a rider when the rider is halfway between top
and bottom?

63. An amusement park ride consists of a large vertical
cylinder that spins about its axis fast enough that any
person inside is held up against the wall when the floor
drops away (Fig. P6.63). The coefficient of static fric-
tion between person and wall is �s , and the radius of
the cylinder is R. (a) Show that the maximum period of
revolution necessary to keep the person from falling is
T � (42R�s/g)1/2. (b) Obtain a numerical value for TFigure P6.59 (Color Box/FPG)

Figure P6.61

θ

8.00 m

2.50 m

60. A space station, in the form of a large wheel 120 m in
diameter, rotates to provide an “artificial gravity” of 
3.00 m/s2 for persons situated at the outer rim. Find
the rotational frequency of the wheel (in revolutions
per minute) that will produce this effect.

61. An amusement park ride consists of a rotating circular
platform 8.00 m in diameter from which 10.0-kg seats
are suspended at the end of 2.50-m massless chains
(Fig. P6.61). When the system rotates, the chains make
an angle � � 28.0° with the vertical. (a) What is the
speed of each seat? (b) Draw a free-body diagram of a
40.0-kg child riding in a seat and find the tension in the
chain.

62. A piece of putty is initially located at point A on the rim
of a grinding wheel rotating about a horizontal axis.
The putty is dislodged from point A when the diameter
through A is horizontal. The putty then rises vertically
and returns to A the instant the wheel completes one
revolution. (a) Find the speed of a point on the rim of
the wheel in terms of the acceleration due to gravity
and the radius R of the wheel. (b) If the mass of the
putty is m, what is the magnitude of the force that held
it to the wheel? Figure P6.63



180 C H A P T E R  6 Circular Motion and Other Applications of Newton’s Laws

if R � 4.00 m and �s � 0.400. How many revolutions
per minute does the cylinder make?

64. An example of the Coriolis effect. Suppose air resistance is
negligible for a golf ball. A golfer tees off from a loca-
tion precisely at �i � 35.0° north latitude. He hits the
ball due south, with range 285 m. The ball’s initial ve-
locity is at 48.0° above the horizontal. (a) For what
length of time is the ball in flight? The cup is due south
of the golfer’s location, and he would have a hole-in-
one if the Earth were not rotating. As shown in Figure
P6.64, the Earth’s rotation makes the tee move in a cir-
cle of radius RE cos �i � (6.37 � 106 m) cos 35.0°, com-
pleting one revolution each day. (b) Find the eastward
speed of the tee, relative to the stars. The hole is also
moving eastward, but it is 285 m farther south and thus
at a slightly lower latitude �f . Because the hole moves
eastward in a slightly larger circle, its speed must be
greater than that of the tee. (c) By how much does the
hole’s speed exceed that of the tee? During the time the
ball is in flight, it moves both upward and downward, as
well as southward with the projectile motion you studied
in Chapter 4, but it also moves eastward with the speed
you found in part (b). The hole moves to the east at a
faster speed, however, pulling ahead of the ball with the
relative speed you found in part (c). (d) How far to the
west of the hole does the ball land?

Figure P6.64

Figure P6.67φi

RE cos φφi

Golf ball
trajectory

θ

68. The expression F � arv � br2v2 gives the magnitude of
the resistive force (in newtons) exerted on a sphere of
radius r (in meters) by a stream of air moving at speed
v (in meters per second), where a and b are constants
with appropriate SI units. Their numerical values are 
a � 3.10 � 10�4 and b � 0.870. Using this formula, find
the terminal speed for water droplets falling under
their own weight in air, taking the following values for
the drop radii: (a) 10.0 �m, (b) 100 �m, (c) 1.00 mm.
Note that for (a) and (c) you can obtain accurate an-
swers without solving a quadratic equation, by consider-
ing which of the two contributions to the air resistance
is dominant and ignoring the lesser contribution.

69. A model airplane of mass 0.750 kg flies in a horizontal
circle at the end of a 60.0-m control wire, with a speed
of 35.0 m/s. Compute the tension in the wire if it makes
a constant angle of 20.0° with the horizontal. The forces
exerted on the airplane are the pull of the control wire,

66. A car rounds a banked curve as shown in Figure 6.6.
The radius of curvature of the road is R, the banking
angle is �, and the coefficient of static friction is �s . 
(a) Determine the range of speeds the car can have
without slipping up or down the banked surface. 
(b) Find the minimum value for �s such that the mini-
mum speed is zero. (c) What is the range of speeds pos-
sible if R � 100 m, � � 10.0°, and �s � 0.100 (slippery
conditions)?

67. A single bead can slide with negligible friction on a wire
that is bent into a circle of radius 15.0 cm, as in Figure
P6.67. The circle is always in a vertical plane and rotates
steadily about its vertical diameter with a period of
0.450 s. The position of the bead is described by the an-
gle � that the radial line from the center of the loop to
the bead makes with the vertical. (a) At what angle up
from the lowest point can the bead stay motionless rela-
tive to the turning circle? (b) Repeat the problem if the
period of the circle’s rotation is 0.850 s.

65. A curve in a road forms part of a horizontal circle. As a
car goes around it at constant speed 14.0 m/s, the total
force exerted on the driver has magnitude 130 N. What
are the magnitude and direction of the total force ex-
erted on the driver if the speed is 18.0 m/s instead?
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Figure P6.69

20.0°

20.0°

 T

mg

Flift

stable spread position” versus the time of fall t. (a) Con-
vert the distances in feet into meters. (b) Graph d (in
meters) versus t. (c) Determine the value of the termi-
nal speed vt by finding the slope of the straight portion
of the curve. Use a least-squares fit to determine this
slope.

70. A 9.00-kg object starting from rest falls through a vis-
cous medium and experiences a resistive force R �
� bv, where v is the velocity of the object. If the object’s
speed reaches one-half its terminal speed in 5.54 s, 
(a) determine the terminal speed. (b) At what time is
the speed of the object three-fourths the terminal
speed? (c) How far has the object traveled in the first
5.54 s of motion?

71. Members of a skydiving club were given the following
data to use in planning their jumps. In the table, d is
the distance fallen from rest by a sky diver in a “free-fall

its own weight, and aerodynamic lift, which acts at 20.0°
inward from the vertical as shown in Figure P6.69.

t (s) d (ft)

1 16
2 62
3 138
4 242
5 366
6 504
7 652
8 808
9 971

10 1 138
11 1 309
12 1 483
13 1 657
14 1 831
15 2 005
16 2 179
17 2 353
18 2 527
19 2 701
20 2 875

ANSWERS TO QUICK QUIZZES

fact, if the string breaks and there is no other force act-
ing on the ball, Newton’s first law says the ball will travel
along such a tangent line at constant speed.

6.3 At � the path is along the circumference of the larger
circle. Therefore, the wire must be exerting a force on
the bead directed toward the center of the circle. Be-
cause the speed is constant, there is no tangential force
component. At � the path is not curved, and so the wire
exerts no force on the bead. At � the path is again
curved, and so the wire is again exerting a force on the
bead. This time the force is directed toward the center
of the smaller circle. Because the radius of this circle is
smaller, the magnitude of the force exerted on the bead
is larger here than at �.

6.1 No. The tangential acceleration changes just the speed
part of the velocity vector. For the car to move in a cir-
cle, the direction of its velocity vector must change, and
the only way this can happen is for there to be a cen-
tripetal acceleration.

6.2 (a) The ball travels in a circular path that has a larger ra-
dius than the original circular path, and so there must
be some external force causing the change in the veloc-
ity vector’s direction. The external force must not be as
strong as the original tension in the string because if it
were, the ball would follow the original path. (b) The
ball again travels in an arc, implying some kind of exter-
nal force. As in part (a), the external force is directed to-
ward the center of the new arc and not toward the cen-
ter of the original circular path. (c) The ball undergoes
an abrupt change in velocity—from tangent to the cir-
cle to perpendicular to it—and so must have experi-
enced a large force that had one component opposite
the ball’s velocity (tangent to the circle) and another
component radially outward. (d) The ball travels in a
straight line tangent to the original path. If there is an
external force, it cannot have a component perpendicu-
lar to this line because if it did, the path would curve. In �

�

�
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(Daniel J. Cox/Tony Stone Images)
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he concept of energy is one of the most important topics in science and engi-
neering. In everyday life, we think of energy in terms of fuel for transportation

and heating, electricity for lights and appliances, and foods for consumption.
However, these ideas do not really define energy. They merely tell us that fuels are
needed to do a job and that those fuels provide us with something we call energy.

In this chapter, we first introduce the concept of work. Work is done by a force
acting on an object when the point of application of that force moves through
some distance and the force has a component along the line of motion. Next, we
define kinetic energy, which is energy an object possesses because of its motion. In
general, we can think of energy as the capacity that an object has for performing
work. We shall see that the concepts of work and kinetic energy can be applied to
the dynamics of a mechanical system without resorting to Newton’s laws. In a com-
plex situation, in fact, the “energy approach” can often allow a much simpler
analysis than the direct application of Newton’s second law. However, it is impor-
tant to note that the work–energy concepts are based on Newton’s laws and there-
fore allow us to make predictions that are always in agreement with these laws.

This alternative method of describing motion is especially useful when the
force acting on a particle varies with the position of the particle. In this case, the ac-
celeration is not constant, and we cannot apply the kinematic equations developed
in Chapter 2. Often, a particle in nature is subject to a force that varies with the po-
sition of the particle. Such forces include the gravitational force and the force ex-
erted on an object attached to a spring. Although we could analyze situations like
these by applying numerical methods such as those discussed in Section 6.5, utiliz-
ing the ideas of work and energy is often much simpler. We describe techniques for
treating complicated systems with the help of an extremely important theorem
called the work–kinetic energy theorem, which is the central topic of this chapter.

WORK DONE BY A CONSTANT FORCE
Almost all the terms we have used thus far—velocity, acceleration, force, and so
on—convey nearly the same meaning in physics as they do in everyday life. Now,
however, we encounter a term whose meaning in physics is distinctly different
from its everyday meaning. That new term is work.

To understand what work means to the physicist, consider the situation illus-
trated in Figure 7.1. A force is applied to a chalkboard eraser, and the eraser slides
along the tray. If we are interested in how effective the force is in moving the

7.1

T

5.1

Figure 7.1 An eraser being pushed along a chalkboard tray. (Charles D. Winters)

(a) (b) (c)



As an example of the distinction between this definition of work and our
everyday understanding of the word, consider holding a heavy chair at arm’s
length for 3 min. At the end of this time interval, your tired arms may lead you to
think that you have done a considerable amount of work on the chair. According
to our definition, however, you have done no work on it whatsoever.1 You exert a
force to support the chair, but you do not move it. A force does no work on an ob-
ject if the object does not move. This can be seen by noting that if Equation
7.1 gives W � 0—the situation depicted in Figure 7.1c. 

Also note from Equation 7.1 that the work done by a force on a moving object
is zero when the force applied is perpendicular to the object’s displacement. That
is, if � � 90°, then W � 0 because cos 90° � 0. For example, in Figure 7.3, the
work done by the normal force on the object and the work done by the force of
gravity on the object are both zero because both forces are perpendicular to the
displacement and have zero components in the direction of d.

The sign of the work also depends on the direction of F relative to d. The
work done by the applied force is positive when the vector associated with the
component F cos � is in the same direction as the displacement. For example,
when an object is lifted, the work done by the applied force is positive because the
direction of that force is upward, that is, in the same direction as the displace-
ment. When the vector associated with the component F cos � is in the direction
opposite the displacement, W is negative. For example, as an object is lifted, the
work done by the gravitational force on the object is negative. The factor cos � in
the definition of W (Eq. 7.1) automatically takes care of the sign. It is important to
note that work is an energy transfer; if energy is transferred to the system (ob-
ject), W is positive; if energy is transferred from the system, W is negative.

d � 0,
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eraser, we need to consider not only the magnitude of the force but also its direc-
tion. If we assume that the magnitude of the applied force is the same in all three
photographs, it is clear that the push applied in Figure 7.1b does more to move
the eraser than the push in Figure 7.1a. On the other hand, Figure 7.1c shows a
situation in which the applied force does not move the eraser at all, regardless of
how hard it is pushed. (Unless, of course, we apply a force so great that we break
something.) So, in analyzing forces to determine the work they do, we must con-
sider the vector nature of forces. We also need to know how far the eraser moves
along the tray if we want to determine the work required to cause that motion.
Moving the eraser 3 m requires more work than moving it 2 cm.

Let us examine the situation in Figure 7.2, where an object undergoes a dis-
placement d along a straight line while acted on by a constant force F that makes
an angle � with d.

The work W done on an object by an agent exerting a constant force on
the object is the product of the component of the force in the direction of the
displacement and the magnitude of the displacement:

(7.1)W � Fd cos �

Work done by a constant force

5.3

1 Actually, you do work while holding the chair at arm’s length because your muscles are continuously
contracting and relaxing; this means that they are exerting internal forces on your arm. Thus, work is
being done by your body—but internally on itself rather than on the chair.

θ

d

F

F cos θθ

Figure 7.3 When an object is dis-
placed on a frictionless, horizontal,
surface, the normal force n and the
force of gravity mg do no work on
the object. In the situation shown
here, F is the only force doing
work on the object.

Figure 7.2 If an object under-
goes a displacement d under the
action of a constant force F, the
work done by the force is 
(F cos �)d. 

F

θ

n

mg
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If an applied force F acts along the direction of the displacement, then � � 0
and cos 0 � 1. In this case, Equation 7.1 gives

Work is a scalar quantity, and its units are force multiplied by length. There-
fore, the SI unit of work is the newton�meter (N�m). This combination of units is
used so frequently that it has been given a name of its own: the joule (J).

Can the component of a force that gives an object a centripetal acceleration do any work on
the object? (One such force is that exerted by the Sun on the Earth that holds the Earth in
a circular orbit around the Sun.)

In general, a particle may be moving with either a constant or a varying veloc-
ity under the influence of several forces. In these cases, because work is a scalar
quantity, the total work done as the particle undergoes some displacement is the
algebraic sum of the amounts of work done by all the forces.

Quick Quiz 7.1

W � Fd

Mr. CleanEXAMPLE 7.1
A man cleaning a floor pulls a vacuum cleaner with a force of
magnitude F � 50.0 N at an angle of 30.0° with the horizon-
tal (Fig. 7.4a). Calculate the work done by the force on the
vacuum cleaner as the vacuum cleaner is displaced 3.00 m to
the right.

Solution Because they aid us in clarifying which forces are
acting on the object being considered, drawings like Figure
7.4b are helpful when we are gathering information and or-
ganizing a solution. For our analysis, we use the definition of
work (Eq. 7.1):

One thing we should learn from this problem is that the
normal force n, the force of gravity Fg � mg, and the upward
component of the applied force (50.0 N) (sin 30.0°) do no
work on the vacuum cleaner because these forces are perpen-
dicular to its displacement.

Exercise Find the work done by the man on the vacuum
cleaner if he pulls it 3.0 m with a horizontal force of 32 N.

Answer 96 J.

130 J�

  � (50.0 N)(cos 30.0°)(3.00 m) � 130 N�m

W � (F cos �)d  

mg

30.0°

50.0 N

(a)

n

50.0 N

30.0°

n

mg

x

y

(b)

Figure 7.4 (a) A vacuum cleaner being pulled at an angle of 30.0°
with the horizontal. (b) Free-body diagram of the forces acting on
the vacuum cleaner.
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A person lifts a heavy box of mass m a vertical distance h and then walks horizontally a dis-
tance d while holding the box, as shown in Figure 7.5. Determine (a) the work he does on
the box and (b) the work done on the box by the force of gravity.

Quick Quiz  7.2

In general, the scalar product of any two vectors A and B is a scalar quantity
equal to the product of the magnitudes of the two vectors and the cosine of the
angle � between them:

(7.3)A�B � AB cos �

THE SCALAR PRODUCT OF TWO VECTORS
Because of the way the force and displacement vectors are combined in Equation
7.1, it is helpful to use a convenient mathematical tool called the scalar product.
This tool allows us to indicate how F and d interact in a way that depends on how
close to parallel they happen to be. We write this scalar product F�d. (Because of
the dot symbol, the scalar product is often called the dot product.) Thus, we can
express Equation 7.1 as a scalar product:

W � F�d � Fd cos � (7.2)

In other words, F�d (read “F dot d”) is a shorthand notation for Fd cos �.

7.2

2.6

Work expressed as a dot product

Scalar product of any two vectors
A and B

F

mg h

d

Figure 7.5 A person lifts a box of
mass m a vertical distance h and then
walks horizontally a distance d.

This relationship is shown in Figure 7.6. Note that A and B need not have the
same units.

The weightlifter does no work on the weights as he holds them on his shoulders. (If he could rest
the bar on his shoulders and lock his knees, he would be able to support the weights for quite
some time.) Did he do any work when he raised the weights to this height?
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In Figure 7.6, B cos � is the projection of B onto A. Therefore, Equation 7.3
says that A � B is the product of the magnitude of A and the projection of B onto
A.2

From the right-hand side of Equation 7.3 we also see that the scalar product is
commutative.3 That is,

Finally, the scalar product obeys the distributive law of multiplication, so
that

The dot product is simple to evaluate from Equation 7.3 when A is either per-
pendicular or parallel to B. If A is perpendicular to B (� � 90°), then A�B � 0.
(The equality A�B = 0 also holds in the more trivial case when either A or B is
zero.) If vector A is parallel to vector B and the two point in the same direction 
(� � 0), then A�B � AB. If vector A is parallel to vector B but the two point in op-
posite directions (� � 180°), then A�B � � AB. The scalar product is negative
when 90° � � � 180°.

The unit vectors i, j, and k, which were defined in Chapter 3, lie in the posi-
tive x, y, and z directions, respectively, of a right-handed coordinate system. There-
fore, it follows from the definition of that the scalar products of these unit
vectors are

(7.4)

(7.5)

Equations 3.18 and 3.19 state that two vectors A and B can be expressed in
component vector form as

Using the information given in Equations 7.4 and 7.5 shows that the scalar prod-
uct of A and B reduces to

(7.6)

(Details of the derivation are left for you in Problem 7.10.) In the special case in
which A � B, we see that

If the dot product of two vectors is positive, must the vectors have positive rectangular com-
ponents?

Quick Quiz 7.3

A�A � Ax 

2 �  Ay 

2 �  Az 

2 � A2

A�B � Ax  Bx � Ay  By � Az  Bz

B � Bx  i � By   j � Bz  k

A � Ax  i � Ay   j � Az  k

i�j � i�k � j�k � 0

i�i � j�j � k�k � 1

A � B

A�(B � C) � A�B � A�C

A�B � B�A The order of the dot product can
be reversed

Dot products of unit vectors

2 This is equivalent to stating that A�B equals the product of the magnitude of B and the projection of
A onto B.
3 This may seem obvious, but in Chapter 11 you will see another way of combining vectors that proves
useful in physics and is not commutative.

Figure 7.6 The scalar product
A�B equals the magnitude of A
multiplied by B cos �, which is the
projection of B onto A.

B

A

B cos θ

θ

θ

θA . B  =  AB cos
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WORK DONE BY A VARYING FORCE
Consider a particle being displaced along the x axis under the action of a varying
force. The particle is displaced in the direction of increasing x from x � xi to x �
xf . In such a situation, we cannot use W � (F cos �)d to calculate the work done by
the force because this relationship applies only when F is constant in magnitude
and direction. However, if we imagine that the particle undergoes a very small dis-
placement �x, shown in Figure 7.7a, then the x component of the force Fx is ap-
proximately constant over this interval; for this small displacement, we can express
the work done by the force as

This is just the area of the shaded rectangle in Figure 7.7a. If we imagine that the
Fx versus x curve is divided into a large number of such intervals, then the total
work done for the displacement from xi to xf is approximately equal to the sum of
a large number of such terms:

W � �
xf

xi

Fx �x

�W � Fx �x

7.3

The Scalar ProductEXAMPLE 7.2
(b) Find the angle � between A and B.

Solution The magnitudes of A and B are

Using Equation 7.3 and the result from part (a) we find that

60.2° � � cos�1 
4

8.06
�

cos � �
A � B
AB

�
4

√13√5
�

4

√65

B � √Bx 

2 � By 

2 � √(�1)2 � (2)2 � √5

A � √Ax 

2 � Ay 

2 � √(2)2 � (3)2 � √13

The vectors A and B are given by A � 2i � 3j and B � � i �
2j. (a) Determine the scalar product A � B.

Solution

where we have used the facts that i�i � j�j � 1 and i�j � j�i �
0. The same result is obtained when we use Equation 7.6 di-
rectly, where and By � 2.Ax � 2, Ay � 3, Bx � �1,

4 � �2 � 6 �

 � �2(1) � 4(0) � 3(0) � 6(1) 

 � �2i � i � 2i � 2j � 3j � i � 3j � 2j
A�B � (2i � 3j) � (� i � 2j) 

Work Done by a Constant ForceEXAMPLE 7.3
Solution Substituting the expressions for F and d into
Equations 7.4 and 7.5, we obtain

Exercise Calculate the angle between F and d.

Answer 35°.

16 J  � 10 � 0 � 0 � 6 � 16 N�m �

 � 5.0i � 2.0i � 5.0i � 3.0j � 2.0j � 2.0i � 2.0j � 3.0j
W � F�d � (5.0i � 2.0j)�(2.0i � 3.0j) N�m 

A particle moving in the xy plane undergoes a displacement
d � (2.0i � 3.0j) m as a constant force F � (5.0i � 2.0j) N
acts on the particle. (a) Calculate the magnitude of the dis-
placement and that of the force.

Solution

(b) Calculate the work done by F.

5.4 NF � √Fx 

2 � Fy 

2 � √(5.0)2 � (2.0)2 �

3.6 md � √x  

2 � y  

2 � √(2.0)2 � (3.0)2 �

5.2
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If the displacements are allowed to approach zero, then the number of terms in
the sum increases without limit but the value of the sum approaches a definite
value equal to the area bounded by the Fx curve and the x axis:

This definite integral is numerically equal to the area under the Fx -versus-x
curve between xi and xf . Therefore, we can express the work done by Fx as the par-
ticle moves from xi to xf as

(7.7)

This equation reduces to Equation 7.1 when the component Fx � F cos � is con-
stant.

If more than one force acts on a particle, the total work done is just the work
done by the resultant force. If we express the resultant force in the x direction as
�Fx , then the total work, or net work, done as the particle moves from xi to xf is

(7.8)�W � Wnet � �xf

xi
 ��Fx �dx

W � �xf

xi

Fx dx

lim
�x :0

 �
xf

xi

Fx �x � �xf

xi

Fx dx

(a)

Fx

Area  =  ∆A = Fx ∆x

Fx

xxfxi

∆x

(b)

Fx

xxfxi

Work

Calculating Total Work Done from a GraphEXAMPLE 7.4
Solution The work done by the force is equal to the area
under the curve from xA � 0 to xC � 6.0 m. This area is
equal to the area of the rectangular section from � to � plus

A force acting on a particle varies with x, as shown in Figure
7.8. Calculate the work done by the force as the particle
moves from x � 0 to x � 6.0 m.

Figure 7.7 (a) The work done by the force component Fx
for the small displacement �x is Fx �x, which equals the area
of the shaded rectangle. The total work done for the dis-
placement from xi to xf is approximately equal to the sum of
the areas of all the rectangles. (b) The work done by the
component Fx of the varying force as the particle moves from
xi to xf is exactly equal to the area under this curve.

Work done by a varying force
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Work Done by the Sun on a ProbeEXAMPLE 7.5
work is done by the Sun on the probe as the probe–Sun sep-
aration changes from 

Graphical Solution The minus sign in the formula for
the force indicates that the probe is attracted to the Sun. Be-
cause the probe is moving away from the Sun, we expect to
calculate a negative value for the work done on it.

A spreadsheet or other numerical means can be used to
generate a graph like that in Figure 7.9b. Each small square
of the grid corresponds to an area (0.05 N)(0.1 	 1011 m) �
5 	 108 N�m. The work done is equal to the shaded area in
Figure 7.9b. Because there are approximately 60 squares
shaded, the total area (which is negative because it is below
the x axis) is about � 3 	 1010 N�m. This is the work done by
the Sun on the probe.

1.5 	 1011 m to 2.3 	 1011 m.
The interplanetary probe shown in Figure 7.9a is attracted to
the Sun by a force of magnitude

where x is the distance measured outward from the Sun to
the probe. Graphically and analytically determine how much

F � �1.3 	 1022/x  

2

Figure 7.9 (a) An interplanetary probe moves
from a position near the Earth’s orbit radially out-
ward from the Sun, ending up near the orbit of
Mars. (b) Attractive force versus distance for the in-
terplanetary probe.

1 2 3 4 5 6
x(m)0

5

Fx(N)

�

� �

Figure 7.8 The force acting on a particle is constant for the first 4.0 m
of motion and then decreases linearly with x from xB � 4.0 m to xC �

6.0 m. The net work done by this force is the area under the curve.

the area of the triangular section from � to �. The area of
the rectangle is (4.0)(5.0) N�m � 20 J, and the area of the 
triangle is N�m � 5.0 J. Therefore, the total work 

done is 25 J.

1
2(2.0)(5.0)

Mars’s
orbit

Earth’s orbit

Sun

(a)

0.5 1.0 1.5 2.0 2.5 3.0 × 1011

0.0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.7

–0.8

–0.9

–1.0

x(m)

F(N)

(b)
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Work Done by a Spring
A common physical system for which the force varies with position is shown in Fig-
ure 7.10. A block on a horizontal, frictionless surface is connected to a spring. If
the spring is either stretched or compressed a small distance from its unstretched
(equilibrium) configuration, it exerts on the block a force of magnitude

(7.9)

where x is the displacement of the block from its unstretched (x � 0) position and
k is a positive constant called the force constant of the spring. In other words, the
force required to stretch or compress a spring is proportional to the amount of
stretch or compression x. This force law for springs, known as Hooke’s law, is
valid only in the limiting case of small displacements. The value of k is a measure
of the stiffness of the spring. Stiff springs have large k values, and soft springs have
small k values.

What are the units for k, the force constant in Hooke’s law?

The negative sign in Equation 7.9 signifies that the force exerted by the spring
is always directed opposite the displacement. When x 
 0 as in Figure 7.10a, the
spring force is directed to the left, in the negative x direction. When x � 0 as in
Figure 7.10c, the spring force is directed to the right, in the positive x direction.
When x � 0 as in Figure 7.10b, the spring is unstretched and Fs � 0. Because the
spring force always acts toward the equilibrium position (x � 0), it sometimes is
called a restoring force. If the spring is compressed until the block is at the point
� xmax and is then released, the block moves from � xmax through zero to � xmax.
If the spring is instead stretched until the block is at the point xmax and is then re-
leased, the block moves from � xmax through zero to � xmax. It then reverses direc-
tion, returns to � xmax, and continues oscillating back and forth.

Suppose the block has been pushed to the left a distance xmax from equilib-
rium and is then released. Let us calculate the work Ws done by the spring force as
the block moves from xi � � xmax to xf � 0. Applying Equation 7.7 and assuming
the block may be treated as a particle, we obtain

(7.10)Ws � �xf

xi

Fs dx � �0

�x max

 (�kx)dx � 1
2  kx2

max

Quick Quiz 7.4

Fs � �kx

Analytical Solution We can use Equation 7.7 to calcu-
late a more precise value for the work done on the probe by
the Sun. To solve this integral, we use the first formula of
Table B.5 in Appendix B with n � � 2:

 � (�1.3 	 1022)(�x  

�1)�2.3	1011

1.5	1011
 

 � (�1.3 	 1022) �2.3	1011

1.5	1011
x  

�2 dx  

W � �2.3	1011

1.5	1011 � �1.3 	 1022

x  

2 �dx  Exercise Does it matter whether the path of the probe is
not directed along a radial line away from the Sun?

Answer No; the value of W depends only on the initial and
final positions, not on the path taken between these points.

�3.0 	 1010 J  �

 � (�1.3 	 1022)� �1
2.3 	 1011 �

�1
1.5 	 1011 �

Spring force

5.3
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where we have used the indefinite integral with n � 1. The
work done by the spring force is positive because the force is in the same direction
as the displacement (both are to the right). When we consider the work done by
the spring force as the block moves from xi � 0 to xf � xmax, we find that

�x  

ndx � x  

n�1/(n � 1)

(c)

(b)

(a)

x

x = 0

Fs is negative.
  x is positive.

x

x = 0

Fs = 0
 x = 0

x

x = 0
x

x

Fs

x
0

kxmax

xmax Fs = –kx

(d)

Fs is positive.
  x is negative.

Area = – kx2
max

1
2

Figure 7.10 The force exerted by a spring on a block varies with the block’s displacement x
from the equilibrium position x � 0. (a) When x is positive (stretched spring), the spring force is
directed to the left. (b) When x is zero (natural length of the spring), the spring force is zero. 
(c) When x is negative (compressed spring), the spring force is directed to the right. (d) Graph
of Fs versus x for the block–spring system. The work done by the spring force as the block moves
from � xmax to 0 is the area of the shaded triangle, 12  kx 2

max .



7.3 Work Done by a Varying Force 193

because for this part of the motion the displacement is to the right
and the spring force is to the left. Therefore, the net work done by the spring force
as the block moves from xi � � xmax to xf � xmax is zero.

Figure 7.10d is a plot of Fs versus x. The work calculated in Equation 7.10 is
the area of the shaded triangle, corresponding to the displacement from � xmax to
0. Because the triangle has base xmax and height kxmax, its area is the work
done by the spring as given by Equation 7.10.

If the block undergoes an arbitrary displacement from x � xi to x � xf , the
work done by the spring force is

(7.11)

For example, if the spring has a force constant of 80 N/m and is compressed 
3.0 cm from equilibrium, the work done by the spring force as the block moves
from xi � � 3.0 cm to its unstretched position xf � 0 is 3.6 	 10�2 J. From Equa-
tion 7.11 we also see that the work done by the spring force is zero for any motion
that ends where it began (xi � xf). We shall make use of this important result in
Chapter 8, in which we describe the motion of this system in greater detail.

Equations 7.10 and 7.11 describe the work done by the spring on the block.
Now let us consider the work done on the spring by an external agent that stretches
the spring very slowly from xi � 0 to xf � xmax, as in Figure 7.11. We can calculate
this work by noting that at any value of the displacement, the applied force Fapp is
equal to and opposite the spring force Fs , so that Fapp � � (� kx) � kx. Therefore,
the work done by this applied force (the external agent) is

This work is equal to the negative of the work done by the spring force for this dis-
placement.

WFapp
� �x max

0
 Fapp dx � �x max

0
 kx dx � 1

2 kx   

2
max

Ws � �xf

xi

(�kx)dx � 1
2 kxi  

2 � 1
2 kxf  

2

1
2 kx2

max ,

Ws � �1
2 kx  

2
max

Measuring k for a SpringEXAMPLE 7.6
A common technique used to measure the force constant of
a spring is described in Figure 7.12. The spring is hung verti-
cally, and an object of mass m is attached to its lower end. Un-
der the action of the “load” mg, the spring stretches a dis-
tance d from its equilibrium position. Because the spring
force is upward (opposite the displacement), it must balance
the downward force of gravity mg when the system is at rest.
In this case, we can apply Hooke’s law to give 
or

For example, if a spring is stretched 2.0 cm by a suspended
object having a mass of 0.55 kg, then the force constant is

2.7 	 102 N/mk �
mg
d

�
(0.55 kg)(9.80 m/s2)

2.0 	 10�2 m
�

k �
mg
d

� Fs � � kd � mg,

Work done by a spring

Figure 7.12 Determining the force constant k of a spring. The
elongation d is caused by the attached object, which has a weight mg.
Because the spring force balances the force of gravity, it follows that 
k � mg/d.

Figure 7.11 A block being
pulled from xi � 0 to xf � xmax on
a frictionless surface by a force
Fapp . If the process is carried out
very slowly, the applied force is
equal to and opposite the spring
force at all times.

xi = 0 xf = xmax

Fs Fapp

Fs

mg

d

(c)(b)(a)
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KINETIC ENERGY AND THE
WORK – KINETIC ENERGY THEOREM

It can be difficult to use Newton’s second law to solve motion problems involving
complex forces. An alternative approach is to relate the speed of a moving particle
to its displacement under the influence of some net force. If the work done by the
net force on a particle can be calculated for a given displacement, then the change
in the particle’s speed can be easily evaluated.

Figure 7.13 shows a particle of mass m moving to the right under the action of
a constant net force �F. Because the force is constant, we know from Newton’s sec-
ond law that the particle moves with a constant acceleration a. If the particle is dis-
placed a distance d, the net work done by the total force �F is

(7.12)

In Chapter 2 we found that the following relationships are valid when a particle
undergoes constant acceleration:

where vi is the speed at t � 0 and vf is the speed at time t. Substituting these ex-
pressions into Equation 7.12 gives

(7.13)

The quantity represents the energy associated with the motion of the
particle. This quantity is so important that it has been given a special name—ki-
netic energy. The net work done on a particle by a constant net force �F acting
on it equals the change in kinetic energy of the particle.

In general, the kinetic energy K of a particle of mass m moving with a speed v
is defined as

(7.14)K � 1
2 mv  

2

1
2 mv  

2

�W � 1
2 mvf  

2 � 1
2 mvi 

2   

�W � m  � vf � vi

t � 12 (vi � vf )t

d � 1
2 (vi � vf  )t  a �

vf � vi

t

�W � ��F�d � (ma)d

7.4

Kinetic energy is energy associated
with the motion of a body

5.7

vf

d

ΣF
m

vi

Figure 7.13 A particle undergo-
ing a displacement d and a change
in velocity under the action of a
constant net force �F.

TABLE 7.1 Kinetic Energies for Various Objects

Object Mass (kg) Speed (m/s) Kinetic Energy ( J)

Earth orbiting the Sun 5.98 	 1024 2.98 	 104 2.65 	 1033

Moon orbiting the Earth 7.35 	 1022 1.02 	 103 3.82 	 1028

Rocket moving at escape speeda 500 1.12 	 104 3.14 	 1010

Automobile at 55 mi/h 2 000 25 6.3 	 105

Running athlete 70 10 3.5 	 103

Stone dropped from 10 m 1.0 14 9.8 	 101

Golf ball at terminal speed 0.046 44 4.5 	 101

Raindrop at terminal speed 3.5 	 10�5 9.0 1.4 	 10�3

Oxygen molecule in air 5.3 	 10�26 500 6.6 	 10�21

a Escape speed is the minimum speed an object must attain near the Earth’s surface if it is to escape
the Earth’s gravitational force.



7.4 Kinetic Energy and the Work — Kinetic Energy Theorem 195

Kinetic energy is a scalar quantity and has the same units as work. For exam-
ple, a 2.0-kg object moving with a speed of 4.0 m/s has a kinetic energy of 16 J.
Table 7.1 lists the kinetic energies for various objects.

It is often convenient to write Equation 7.13 in the form

(7.15)

That is, 
Equation 7.15 is an important result known as the work–kinetic energy the-

orem. It is important to note that when we use this theorem, we must include all
of the forces that do work on the particle in the calculation of the net work done.
From this theorem, we see that the speed of a particle increases if the net work
done on it is positive because the final kinetic energy is greater than the initial ki-
netic energy. The particle’s speed decreases if the net work done is negative be-
cause the final kinetic energy is less than the initial kinetic energy.

The work–kinetic energy theorem as expressed by Equation 7.15 allows us to
think of kinetic energy as the work a particle can do in coming to rest, or the
amount of energy stored in the particle. For example, suppose a hammer (our
particle) is on the verge of striking a nail, as shown in Figure 7.14. The moving
hammer has kinetic energy and so can do work on the nail. The work done on the
nail is equal to Fd, where F is the average force exerted on the nail by the hammer
and d is the distance the nail is driven into the wall.4

We derived the work–kinetic energy theorem under the assumption of a con-
stant net force, but it also is valid when the force varies. To see this, suppose the
net force acting on a particle in the x direction is �Fx . We can apply Newton’s sec-
ond law, �Fx � max , and use Equation 7.8 to express the net work done as

If the resultant force varies with x, the acceleration and speed also depend on x.
Because we normally consider acceleration as a function of t, we now use the fol-
lowing chain rule to express a in a slightly different way:

Substituting this expression for a into the above equation for �W gives

(7.16)

The limits of the integration were changed from x values to v values because the
variable was changed from x to v. Thus, we conclude that the net work done on a
particle by the net force acting on it is equal to the change in the kinetic energy of
the particle. This is true whether or not the net force is constant.

�W � 1
2 mv  f 

2 � 1
2 mv  i 

2

�W � �xf

xi

mv 
dv
dx

 dx � �vf

vi

mv dv

a �
dv
dt

�
dv
dx

 
dx
dt

� v 
dv
dx

�W � �xf

xi
��Fx �dx � �xf

xi

max dx

Ki � �W � Kf .

�W � Kf � Ki � �K

The net work done on a particle
equals the change in its kinetic
energy

Work–kinetic energy theorem

5.4

4 Note that because the nail and the hammer are systems of particles rather than single particles, part of
the hammer’s kinetic energy goes into warming the hammer and the nail upon impact. Also, as the nail
moves into the wall in response to the impact, the large frictional force between the nail and the wood
results in the continuous transformation of the kinetic energy of the nail into further temperature in-
creases in the nail and the wood, as well as in deformation of the wall. Energy associated with tempera-
ture changes is called internal energy and will be studied in detail in Chapter 20.

Figure 7.14 The moving ham-
mer has kinetic energy and thus
can do work on the nail, driving it
into the wall.
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Situations Involving Kinetic Friction

One way to include frictional forces in analyzing the motion of an object sliding
on a horizontal surface is to describe the kinetic energy lost because of friction.
Suppose a book moving on a horizontal surface is given an initial horizontal veloc-
ity vi and slides a distance d before reaching a final velocity vf as shown in Figure
7.15. The external force that causes the book to undergo an acceleration in the
negative x direction is the force of kinetic friction fk acting to the left, opposite the
motion. The initial kinetic energy of the book is and its final kinetic energy
is Applying Newton’s second law to the book can show this. Because the
only force acting on the book in the x direction is the friction force, Newton’s sec-
ond law gives � fk � max . Multiplying both sides of this expression by d and using
Equation 2.12 in the form for motion under constant accelera-
tion give or

(7.17a)

This result specifies that the amount by which the force of kinetic friction changes
the kinetic energy of the book is equal to � fkd. Part of this lost kinetic energy goes
into warming up the book, and the rest goes into warming up the surface over
which the book slides. In effect, the quantity � fkd is equal to the work done by ki-
netic friction on the book plus the work done by kinetic friction on the surface.
(We shall study the relationship between temperature and energy in Part III of this
text.) When friction—as well as other forces—acts on an object, the work–kinetic
energy theorem reads

(7.17b)

Here, �Wother represents the sum of the amounts of work done on the object by
forces other than kinetic friction.

Ki � �Wother � fk  d � Kf

�Kfriction � � fk  d

(max )d � 1
2 mvxf 

2 � 1
2 mvxi 

2� fkd �
vxf 

2 � vxi 

2 � 2ax  d

1
2 mvf 

2
 .

1
2 mvi 

2,

Figure 7.15 A book sliding to
the right on a horizontal surface
slows down in the presence of a
force of kinetic friction acting to
the left. The initial velocity of the
book is vi , and its final velocity is
vf . The normal force and the force
of gravity are not included in the
diagram because they are perpen-
dicular to the direction of motion
and therefore do not influence the
book’s velocity.

Loss in kinetic energy due to
friction

A Block Pulled on a Frictionless SurfaceEXAMPLE 7.7
Solution We have made a drawing of this situation in Fig-
ure 7.16a. We could apply the equations of kinematics to de-
termine the answer, but let us use the energy approach for

A 6.0-kg block initially at rest is pulled to the right along a
horizontal, frictionless surface by a constant horizontal force
of 12 N. Find the speed of the block after it has moved 3.0 m.

d
vi

fk

vf

(a)

n

F

mg
d

vf

(b)

n

F

mg
d

vf

fk

Figure 7.16 A block pulled to the right by a
constant horizontal force. (a) Frictionless surface. 
(b) Rough surface.

Can frictional forces ever increase an object’s kinetic energy?

Quick Quiz 7.5
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Figure 7.17 A refrigerator attached to a
frictionless wheeled dolly is moved up a ramp
at constant speed.

Exercise Find the acceleration of the block and determine
its final speed, using the kinematics equation 

Answer ax � 2.0 m/s2; vf � 3.5 m/s.

vxi 

2 � 2ax  d.
vxf  

2 �

3.5 m/s vf �

vf 

2 �
2W
m

�
2(36 J)
6.0 kg

� 12 m2/s2practice. The normal force balances the force of gravity on
the block, and neither of these vertically acting forces does
work on the block because the displacement is horizontal.
Because there is no friction, the net external force acting on
the block is the 12-N force. The work done by this force is

Using the work–kinetic energy theorem and noting that
the initial kinetic energy is zero, we obtain

 W � Kf � Ki � 1
2 mvf 

2 � 0 

W � Fd � (12 N)(3.0 m) � 36 N�m � 36 J

A Block Pulled on a Rough SurfaceEXAMPLE 7.8

After sliding the 3-m distance on the rough surface, the block
is moving at a speed of 1.8 m/s; in contrast, after covering
the same distance on a frictionless surface (see Example 7.7),
its speed was 3.5 m/s.

Exercise Find the acceleration of the block from Newton’s
second law and determine its final speed, using equations of
kinematics.

Answer ax � 0.53 m/s2; vf � 1.8 m/s.

1.8 m/svf �

vf 

2 � 2(9.5 J)/(6.0 kg) � 3.18 m2/s2

0 � 36 J � 26.5 J � 1
2  (6.0 kg) vf 

2Find the final speed of the block described in Example 7.7 if
the surface is not frictionless but instead has a coefficient of
kinetic friction of 0.15.

Solution The applied force does work just as in Example
7.7:

In this case we must use Equation 7.17a to calculate the ki-
netic energy lost to friction �K friction . The magnitude of the
frictional force is

The change in kinetic energy due to friction is

The final speed of the block follows from Equation 7.17b:
1
2  mvi 

2 � �Wother � fk  d � 1
2  mvf 

2

�Kfriction � � fk  d � �(8.82 N)(3.0 m) � �26.5 J

fk � �k  n � �k  mg � (0.15)(6.0 kg)(9.80 m/s2) � 8.82 N

W � F d  � (12 N)(3.0 m) � 36 J

Does the Ramp Lessen the Work Required?CONCEPTUAL EXAMPLE 7.9
Solution No. Although less force is required with a longer
ramp, that force must act over a greater distance if the same
amount of work is to be done. Suppose the refrigerator is
wheeled on a dolly up the ramp at constant speed. The 

A man wishes to load a refrigerator onto a truck using a
ramp, as shown in Figure 7.17. He claims that less work would
be required to load the truck if the length L of the ramp were
increased. Is his statement valid?

L



Consider the chum salmon attempting to swim upstream in the photograph at
the beginning of this chapter. The “steps” of a fish ladder built around a dam do
not change the total amount of work that must be done by the salmon as they leap
through some vertical distance. However, the ladder allows the fish to perform
that work in a series of smaller jumps, and the net effect is to raise the vertical posi-
tion of the fish by the height of the dam.
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Useful Physics for Safer DrivingCONCEPTUAL EXAMPLE 7.10
same for both speeds. The net force multiplied by the dis-
placement of the car is equal to the initial kinetic energy of
the car (because Kf � 0). If the speed is doubled, as it is in
this example, the kinetic energy is quadrupled. For a given
constant applied force (in this case, the frictional force), the
distance traveled is four times as great when the initial speed is
doubled, and so the estimated distance that the car slides is 4d.

A certain car traveling at an initial speed v slides a distance d
to a halt after its brakes lock. Assuming that the car’s initial
speed is instead 2v at the moment the brakes lock, estimate
the distance it slides.

Solution Let us assume that the force of kinetic friction
between the car and the road surface is constant and the

QuickLab
Attach two paperclips to a ruler so
that one of the clips is twice the dis-
tance from the end as the other.
Place the ruler on a table with two
small wads of paper against the clips,
which act as stops. Sharply swing the
ruler through a small angle, stopping
it abruptly with your finger. The outer
paper wad will have twice the speed
of the inner paper wad as the two
slide on the table away from the ruler.
Compare how far the two wads slide.
How does this relate to the results of
Conceptual Example 7.10?

These cyclists are working hard and expending energy as they pedal uphill in Marin County, CA.

Paperclips

Crumpled wads of paper

normal force exerted by the ramp on the refrigerator is di-
rected 90° to the motion and so does no work on the refriger-
ator. Because �K � 0, the work–kinetic energy theorem gives

The work done by the force of gravity equals the weight of

�W � Wby man � Wby gravity � 0

the refrigerator mg times the vertical height h through which
it is displaced times cos 180°, or W by gravity � � mgh. (The mi-
nus sign arises because the downward force of gravity is oppo-
site the displacement.) Thus, the man must do work mgh on
the refrigerator, regardless of the length of the ramp.
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A Block – Spring SystemEXAMPLE 7.11
Solution Certainly, the answer has to be less than what we
found in part (a) because the frictional force retards the mo-
tion. We use Equation 7.17 to calculate the kinetic energy lost
because of friction and add this negative value to the kinetic
energy found in the absence of friction. The kinetic energy
lost due to friction is

In part (a), the final kinetic energy without this loss was
found to be 0.20 J. Therefore, the final kinetic energy in the
presence of friction is

As expected, this value is somewhat less than the 0.50 m/s we
found in part (a). If the frictional force were greater, then
the value we obtained as our answer would have been even
smaller.

0.39 m/s vf �

 vf 

2 �
0.24 J
1.6 kg

� 0.15 m2/s2 

1
2 (1.6 kg)vf 

2 � 0.12 J 

 Kf � 0.20 J � 0.080 J � 0.12 J � 1
2 mvf 

2

�K � � fk  d � �(4.0 N)(2.0 	 10�2 m) � �0.080 J

A block of mass 1.6 kg is attached to a horizontal spring that
has a force constant of 1.0 	 103 N/m, as shown in Figure
7.10. The spring is compressed 2.0 cm and is then released
from rest. (a) Calculate the speed of the block as it passes
through the equilibrium position x � 0 if the surface is fric-
tionless.

Solution In this situation, the block starts with vi � 0 at
xi � � 2.0 cm, and we want to find vf at xf � 0. We use Equa-
tion 7.10 to find the work done by the spring with xmax �
xi � � 2.0 cm � � 2.0 	 10�2 m:

Using the work–kinetic energy theorem with vi � 0, we ob-
tain the change in kinetic energy of the block due to the
work done on it by the spring:

(b) Calculate the speed of the block as it passes through
the equilibrium position if a constant frictional force of 4.0 N
retards its motion from the moment it is released.

0.50 m/s vf �

 vf 

2 �
0.40 J
1.6 kg

� 0.25 m2/s2

0.20 J � 1
2 (1.6 kg)vf 

2 � 0 

 Ws � 1
2 mvf 

2 � 1
2 mvi 

2 

Ws � 1
2 kx  

2
max � 1

2 (1.0 	 103 N/m)(�2.0 	 10�2 m)2 � 0.20 J

POWER
Imagine two identical models of an automobile: one with a base-priced four-cylin-
der engine; and the other with the highest-priced optional engine, a mighty eight-
cylinder powerplant. Despite the differences in engines, the two cars have the
same mass. Both cars climb a roadway up a hill, but the car with the optional en-
gine takes much less time to reach the top. Both cars have done the same amount
of work against gravity, but in different time periods. From a practical viewpoint, it
is interesting to know not only the work done by the vehicles but also the rate at
which it is done. In taking the ratio of the amount of work done to the time taken
to do it, we have a way of quantifying this concept. The time rate of doing work is
called power.

If an external force is applied to an object (which we assume acts as a parti-
cle), and if the work done by this force in the time interval �t is W, then the aver-
age power expended during this interval is defined as

The work done on the object contributes to the increase in the energy of the ob-
ject. Therefore, a more general definition of power is the time rate of energy transfer.
In a manner similar to how we approached the definition of velocity and accelera-

� �
W
�t

7.5

5.8

Average power



tion, we can define the instantaneous power � as the limiting value of the aver-
age power as �t approaches zero:

where we have represented the increment of work done by dW. We find from
Equation 7.2, letting the displacement be expressed as ds, that 
Therefore, the instantaneous power can be written

(7.18)

where we use the fact that v � ds/dt. 
The SI unit of power is joules per second (J/s), also called the watt (W) (after

James Watt, the inventor of the steam engine):

1 W � 1 J/s � 1 kg�m2/s3

The symbol W (not italic) for watt should not be confused with the symbol W
(italic) for work.

A unit of power in the British engineering system is the horsepower (hp):

1 hp � 746 W

A unit of energy (or work) can now be defined in terms of the unit of power.
One kilowatt hour (kWh) is the energy converted or consumed in 1 h at the con-
stant rate of 1 kW � 1 000 J/s. The numerical value of 1 kWh is

1 kWh � (103 W)(3 600 s) � 3.60 	 106 J

It is important to realize that a kilowatt hour is a unit of energy, not power.
When you pay your electric bill, you pay the power company for the total electrical
energy you used during the billing period. This energy is the power used multi-
plied by the time during which it was used. For example, a 300-W lightbulb run for
12 h would convert (0.300 kW)(12 h) � 3.6 kWh of electrical energy.

Suppose that an old truck and a sports car do the same amount of work as they climb a hill
but that the truck takes much longer to accomplish this work. How would graphs of � ver-
sus t compare for the two vehicles?

Quick Quiz 7.6

� �
dW
dt

� F �
ds
dt

� F � v

dW � F � ds.

� � lim
�t:0

 
W
�t

�
dW
dt
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The kilowatt hour is a unit of
energy

The watt

Instantaneous power

Power Delivered by an Elevator MotorEXAMPLE 7.12
a free-body diagram in Figure 7.18b and have arbitrarily spec-
ified that the upward direction is positive. From Newton’s sec-
ond law we obtain

where M is the total mass of the system (car plus passengers),
equal to 1 800 kg. Therefore,

 � 2.16 	 104 N 

 � 4.00 	 103 N � (1.80 	 103 kg)(9.80 m/s2)

T � f � Mg 

�Fy � T � f � Mg � 0

An elevator car has a mass of 1 000 kg and is carrying passen-
gers having a combined mass of 800 kg. A constant frictional
force of 4 000 N retards its motion upward, as shown in Fig-
ure 7.18a. (a) What must be the minimum power delivered
by the motor to lift the elevator car at a constant speed of 
3.00 m/s?

Solution The motor must supply the force of magnitude
T that pulls the elevator car upward. Reading that the speed
is constant provides the hint that a � 0, and therefore we
know from Newton’s second law that �Fy � 0. We have drawn
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Figure 7.18 (a) The motor exerts an upward force T on the eleva-
tor car. The magnitude of this force is the tension T in the cable con-
necting the car and motor. The downward forces acting on the car
are a frictional force f and the force of gravity Fg � Mg. (b) The
free-body diagram for the elevator car.

Motor

T

f

Mg

+

(a) (b)

Using Equation 7.18 and the fact that T is in the same direc-
tion as v, we find that

(b) What power must the motor deliver at the instant its
speed is v if it is designed to provide an upward acceleration
of 1.00 m/s2?

Solution Now we expect to obtain a value greater than we
did in part (a), where the speed was constant, because the
motor must now perform the additional task of accelerating
the car. The only change in the setup of the problem is that
now a 
 0. Applying Newton’s second law to the car gives

Therefore, using Equation 7.18, we obtain for the required
power

where v is the instantaneous speed of the car in meters per
second. The power is less than that obtained in part (a) as

(2.34 	 104v ) W� � Tv �

 � 2.34 	 104 N 

 � (1.80 	 103 kg)(1.00 � 9.80)m/s2 � 4.00 	 103 N

 T � M(a � g) � f 
�Fy � T � f � Mg � Ma 

6.48 	 104 W � (2.16 	 104 N)(3.00 m/s) �

� � T�v � Tv 

long as the speed is less than 2.77 m/s, but it is
greater when the elevator’s speed exceeds this value.

�/T �  

CONCEPTUAL EXAMPLE 7.13
Solution The work–kinetic energy theorem tells us that
the net force acting on the system multiplied by the displace-
ment is equal to the change in the kinetic energy of the sys-
tem. In our elevator case, the net force is indeed zero (that is,
T � Mg � f � 0), and so W � d � 0. However, the
power from the motor is calculated not from the net force but
rather from the force exerted by the motor acting in the di-
rection of motion, which in this case is T and not zero.

(�Fy)

In part (a) of the preceding example, the motor delivers
power to lift the car, and yet the car moves at constant speed.
A student analyzing this situation notes that the kinetic en-
ergy of the car does not change because its speed does not
change. This student then reasons that, according to the
work–kinetic energy theorem, W � �K � 0. Knowing that 
� � W/t, the student concludes that the power delivered by
the motor also must be zero. How would you explain this ap-
parent paradox?

Optional Section

ENERGY AND THE AUTOMOBILE
Automobiles powered by gasoline engines are very inefficient machines. Even un-
der ideal conditions, less than 15% of the chemical energy in the fuel is used to
power the vehicle. The situation is much worse under stop-and-go driving condi-
tions in a city. In this section, we use the concepts of energy, power, and friction to
analyze automobile fuel consumption.

7.6



Many mechanisms contribute to energy loss in an automobile. About 67% of
the energy available from the fuel is lost in the engine. This energy ends up in the
atmosphere, partly via the exhaust system and partly via the cooling system. (As we
shall see in Chapter 22, the great energy loss from the exhaust and cooling systems
is required by a fundamental law of thermodynamics.) Approximately 10% of the
available energy is lost to friction in the transmission, drive shaft, wheel and axle
bearings, and differential. Friction in other moving parts dissipates approximately
6% of the energy, and 4% of the energy is used to operate fuel and oil pumps and
such accessories as power steering and air conditioning. This leaves a mere 13% of
the available energy to propel the automobile! This energy is used mainly to bal-
ance the energy loss due to flexing of the tires and the friction caused by the air,
which is more commonly referred to as air resistance.

Let us examine the power required to provide a force in the forward direction
that balances the combination of the two frictional forces. The coefficient of
rolling friction � between the tires and the road is about 0.016. For a 1 450-kg car,
the weight is 14 200 N and the force of rolling friction has a magnitude of �n �
�mg � 227 N. As the speed of the car increases, a small reduction in the normal
force occurs as a result of a decrease in atmospheric pressure as air flows over the
top of the car. (This phenomenon is discussed in Chapter 15.) This reduction in
the normal force causes a slight reduction in the force of rolling friction fr with in-
creasing speed, as the data in Table 7.2 indicate.

Now let us consider the effect of the resistive force that results from the move-
ment of air past the car. For large objects, the resistive force fa associated with air
friction is proportional to the square of the speed (in meters per second; see Sec-
tion 6.4) and is given by Equation 6.6:

where D is the drag coefficient, � is the density of air, and A is the cross-sectional
area of the moving object. We can use this expression to calculate the fa values in
Table 7.2, using D � 0.50, � � 1.293 kg/m3, and A � 2 m2.

The magnitude of the total frictional force ft is the sum of the rolling frictional
force and the air resistive force:

At low speeds, road friction is the predominant resistive force, but at high
speeds air drag predominates, as shown in Table 7.2. Road friction can be de-
creased by a reduction in tire flexing (for example, by an increase in the air pres-

ft � fr � fa

fa � 1
2 D�Av2
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TABLE 7.2 Frictional Forces and Power Requirements for a Typical Cara

v (m/s) n (N) fr (N) fa (N) ft (N) � � ftv (kW)

0 14 200 227 0 227 0
8.9 14 100 226 51 277 2.5

17.8 13 900 222 204 426 7.6
26.8 13 600 218 465 683 18.3
35.9 13 200 211 830 1 041 37.3
44.8 12 600 202 1 293 1 495 67.0

a In this table, n is the normal force, fr is road friction, fa is air friction, ft is total friction, and � is
the power delivered to the wheels.
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sure slightly above recommended values) and by the use of radial tires. Air drag
can be reduced through the use of a smaller cross-sectional area and by streamlin-
ing the car. Although driving a car with the windows open increases air drag and
thus results in a 3% decrease in mileage, driving with the windows closed and the
air conditioner running results in a 12% decrease in mileage.

The total power needed to maintain a constant speed v is ftv, and it is this
power that must be delivered to the wheels. For example, from Table 7.2 we see
that at v � 26.8 m/s (60 mi/h) the required power is

This power can be broken down into two parts: (1) the power frv needed to compen-
sate for road friction, and (2) the power fav needed to compensate for air drag. At v �
26.8 m/s, we obtain the values

Note that 
On the other hand, at v � 44.8 m/s (100 mi/h), �r � 9.05 kW, �a � 57.9 kW,

and � � 67.0 kW. This shows the importance of air drag at high speeds.

� � �r � �a .

�a � fa  v � (465 N) �26.8  

m
s � � 12.5 kW

�r � fr  v � (218 N) �26.8  

m
s � � 5.84 kW

� � ft  v � (683 N) �26.8   

m
s � � 18.3 kW

Gas Consumed by a Compact CarEXAMPLE 7.14
would supply 1.3 	 108 J of energy. Because the engine is
only 18% efficient, each gallon delivers only (0.18)(1.3 	
108 J) � 2.3 	 107 J. Hence, the number of gallons used to
accelerate the car is

At cruising speed, this much gasoline is sufficient to propel
the car nearly 0.5 mi. This demonstrates the extreme energy
requirements of stop-and-start driving.

0.013 gal Number of gallons �
2.9 	 105 J
2.3 	 107 J/gal

�

A compact car has a mass of 800 kg, and its efficiency is rated
at 18%. (That is, 18% of the available fuel energy is delivered
to the wheels.) Find the amount of gasoline used to acceler-
ate the car from rest to 27 m/s (60 mi/h). Use the fact that
the energy equivalent of 1 gal of gasoline is 1.3 	 108 J.

Solution The energy required to accelerate the car from
rest to a speed v is its final kinetic energy 

If the engine were 100% efficient, each gallon of gasoline

K � 1
2 mv  

2 � 1
2 (800 kg)(27 m/s)2 � 2.9 	 105 J

1
2 mv  

2:

Power Delivered to WheelsEXAMPLE 7.15

Because 18% of the available power is used to propel the car,
the power delivered to the wheels is (0.18)(62 kW) �

This is 40% less than the 18.3-kW value obtained  

for the 1 450-kg car discussed in the text. Vehicle mass is
clearly an important factor in power-loss mechanisms.

11 kW.

 �
2.2 	 108 J
3.6 	 103 s

� 62 kW 
Suppose the compact car in Example 7.14 gets 35 mi/gal at
60 mi/h. How much power is delivered to the wheels?

Solution By simply canceling units, we determine that the
car consumes Using the
fact that each gallon is equivalent to 1.3 	 108 J, we find that
the total power used is

� �
(1.7 gal/h)(1.3 	 108 J/gal)

3.6 	 103 s/h

60 mi/h  35 mi/gal � 1.7 gal/h.



Optional Section

KINETIC ENERGY AT HIGH SPEEDS
The laws of Newtonian mechanics are valid only for describing the motion of parti-
cles moving at speeds that are small compared with the speed of light in a vacuum
c When speeds are comparable to c, the equations of Newton-
ian mechanics must be replaced by the more general equations predicted by the
theory of relativity. One consequence of the theory of relativity is that the kinetic
energy of a particle of mass m moving with a speed v is no longer given by

Instead, one must use the relativistic form of the kinetic energy:

(7.19)

According to this expression, speeds greater than c are not allowed because, as
v approaches c, K approaches �. This limitation is consistent with experimental ob-

K � mc2
 � 1

√1 � (v/c )2
� 1�

K � mv  

2/2.

(�3.00 	 108 m/s).

7.7
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Car Accelerating Up a HillEXAMPLE 7.16

1.0 m/s2, and � � 10°, then the various terms in � are calcu-
lated to be

Hence, the total power required is 126 kW, or 

Note that the power requirements for traveling at constant
speed on a horizontal surface are only 20 kW, or 27 hp (the
sum of the last two terms). Furthermore, if the mass were
halved (as in the case of a compact car), then the power re-
quired also is reduced by almost the same factor.

168 hp.

 0.70v  

3 � 0.70(27 m/s)3 � 14 kW � 19 hp 

 218v � 218(27 m/s) � 5.9 kW � 7.9 hp 

 � 67 kW � 89 hp 

mvg sin � � (1450 kg)(27 m/s)(9.80 m/s2)(sin 10°)

 � 39 kW � 52 hp 

 mva � (1450 kg)(27 m/s)(1.0 m/s2) 

Consider a car of mass m that is accelerating up a hill, as
shown in Figure 7.19. An automotive engineer has measured
the magnitude of the total resistive force to be

where v is the speed in meters per second. Determine the
power the engine must deliver to the wheels as a function of
speed.

Solution The forces on the car are shown in Figure 7.19,
in which F is the force of friction from the road that propels
the car; the remaining forces have their usual meaning. Ap-
plying Newton’s second law to the motion along the road sur-
face, we find that

Therefore, the power required to move the car forward is

The term mva represents the power that the engine must de-
liver to accelerate the car. If the car moves at constant speed,
this term is zero and the total power requirement is reduced.
The term mvg sin � is the power required to provide a force
to balance a component of the force of gravity as the car
moves up the incline. This term would be zero for motion on
a horizontal surface. The term 218v is the power required to
provide a force to balance road friction, and the term 0.70v3

is the power needed to do work on the air.
If we take m � 1 450 kg, v � 27 m/s mi/h), a �(�60

� � Fv � mva � mvg sin � � 218v � 0.70v  

3

 � ma � mg sin � � (218 � 0.70v2)

 F � ma � mg sin � � ft 

�Fx � F � ft � mg sin � � ma 

ft � (218 � 0.70v  

2) N

Relativistic kinetic energy

n
F

ft

m g

θ

y

x

Figure 7.19
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servations on subatomic particles, which have shown that no particles travel at
speeds greater than c. (In other words, c is the ultimate speed.) From this relativis-
tic point of view, the work–kinetic energy theorem says that v can only approach c
because it would take an infinite amount of work to attain the speed v � c.

All formulas in the theory of relativity must reduce to those in Newtonian me-
chanics at low particle speeds. It is instructive to show that this is the case for the
kinetic energy relationship by analyzing Equation 7.19 when v is small compared
with c. In this case, we expect K to reduce to the Newtonian expression. We can
check this by using the binomial expansion (Appendix B.5) applied to the quan-
tity [1 � (v/c)2]�1/2, with v/c V 1. If we let x � (v/c)2, the expansion gives

Making use of this expansion in Equation 7.19 gives

Thus, we see that the relativistic kinetic energy expression does indeed reduce to
the Newtonian expression for speeds that are small compared with c. We shall re-
turn to the subject of relativity in Chapter 39.

SUMMARY

The work done by a constant force F acting on a particle is defined as the product
of the component of the force in the direction of the particle’s displacement and
the magnitude of the displacement. Given a force F that makes an angle � with the
displacement vector d of a particle acted on by the force, you should be able to de-
termine the work done by F using the equation

(7.1)

The scalar product (dot product) of two vectors A and B is defined by the re-
lationship

(7.3)

where the result is a scalar quantity and � is the angle between the two vectors. The
scalar product obeys the commutative and distributive laws. 

If a varying force does work on a particle as the particle moves along the x axis
from xi to xf , you must use the expression

(7.7)

where Fx is the component of force in the x direction. If several forces are acting
on the particle, the net work done by all of the forces is the sum of the amounts of
work done by all of the forces.

W � �xf

x i

Fx dx

A�B � AB cos �

W � Fd cos �

   �
1
2

 mv2  for  v
c

V 1   

   �
1
2

 mv2 �
3
8

  m  

v4

c2 � ���   

K � mc2
 �1 �

v2

2c2 �
3
8

  
v4

c4 � ����1�

1
(1 � x)1/2 � 1 �

x
2

�
3
8

  x2 � ���
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The kinetic energy of a particle of mass m moving with a speed v (where v is
small compared with the speed of light) is

(7.14)

The work–kinetic energy theorem states that the net work done on a parti-
cle by external forces equals the change in kinetic energy of the particle:

(7.16)

If a frictional force acts, then the work–kinetic energy theorem can be modified
to give

(7.17b)

The instantaneous power � is defined as the time rate of energy transfer. If
an agent applies a force F to an object moving with a velocity v, the power deliv-
ered by that agent is

(7.18)� �
dW
dt

� F � v

Ki � �Wother � fk  d � Kf

�W � Kf � Ki � 1
2 mvf 

2 � 1
2 mvi 

2

K � 1
2 mv2

QUESTIONS

the ball while his toe is in contact with it? Is he doing 
any work on the ball after it loses contact with his toe?
Are any forces doing work on the ball while it is in 
flight?

10. Discuss the work done by a pitcher throwing a baseball.
What is the approximate distance through which the
force acts as the ball is thrown?

11. Two sharpshooters fire 0.30-caliber rifles using identical
shells. The barrel of rifle A is 2.00 cm longer than that of
rifle B. Which rifle will have the higher muzzle speed?
(Hint: The force of the expanding gases in the barrel ac-
celerates the bullets.)

12. As a simple pendulum swings back and forth, the forces
acting on the suspended mass are the force of gravity, the
tension in the supporting cord, and air resistance. 
(a) Which of these forces, if any, does no work on the
pendulum? (b) Which of these forces does negative work
at all times during its motion? (c) Describe the work done
by the force of gravity while the pendulum is swinging.

13. The kinetic energy of an object depends on the frame of
reference in which its motion is measured. Give an exam-
ple to illustrate this point.

14. An older model car accelerates from 0 to a speed v in 
10 s. A newer, more powerful sports car accelerates from
0 to 2v in the same time period. What is the ratio of pow-
ers expended by the two cars? Consider the energy com-
ing from the engines to appear only as kinetic energy of
the cars.

1. Consider a tug-of-war in which two teams pulling on a
rope are evenly matched so that no motion takes place.
Assume that the rope does not stretch. Is work done on
the rope? On the pullers? On the ground? Is work done
on anything?

2. For what values of � is the scalar product (a) positive and
(b) negative?

3. As the load on a spring hung vertically is increased, one
would not expect the Fs-versus-x curve to always remain
linear, as shown in Figure 7.10d. Explain qualitatively
what you would expect for this curve as m is increased.

4. Can the kinetic energy of an object be negative? Explain.
5. (a) If the speed of a particle is doubled, what happens to

its kinetic energy? (b) If the net work done on a particle
is zero, what can be said about the speed?

6. In Example 7.16, does the required power increase or de-
crease as the force of friction is reduced?

7. An automobile sales representative claims that a “souped-
up” 300-hp engine is a necessary option in a compact car
(instead of a conventional 130-hp engine). Suppose you
intend to drive the car within speed limits (� 55 mi/h)
and on flat terrain. How would you counter this sales
pitch?

8. One bullet has twice the mass of another bullet. If both
bullets are fired so that they have the same speed, which
has the greater kinetic energy? What is the ratio of the ki-
netic energies of the two bullets?

9. When a punter kicks a football, is he doing any work on
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PROBLEMS

9. Vector A extends from the origin to a point having po-
lar coordinates (7, 70°), and vector B extends from the
origin to a point having polar coordinates (4, 130°).
Find A � B.

10. Given two arbitrary vectors A and B, show that A�B �
AxBx � AyBy � AzBz . (Hint: Write A and B in unit vector
form and use Equations 7.4 and 7.5.)

11. A force F � (6i � 2j) N acts on a particle that under-
goes a displacement d � (3i � j)m. Find (a) the work
done by the force on the particle and (b) the angle be-
tween F and d.

12. For A � 3i � j � k, B � � i � 2j � 5k, and C � 2j �
3k, find C�(A � B).

13. Using the definition of the scalar product, find the an-
gles between (a) A � 3i � 2j and B � 4i � 4j; (b) A �
� 2i � 4j and B � 3i � 4j � 2k; (c) A � i � 2j � 2k
and B � 3j � 4k.

14. Find the scalar product of the vectors in Figure P7.14.

Section 7.1 Work Done by a Constant Force
1. A tugboat exerts a constant force of 5 000 N on a ship

moving at constant speed through a harbor. How much
work does the tugboat do on the ship in a distance of
3.00 km?

2. A shopper in a supermarket pushes a cart with a force
of 35.0 N directed at an angle of 25.0° downward from
the horizontal. Find the work done by the shopper as
she moves down an aisle 50.0 m in length.

3. A raindrop (m � 3.35 	 10�5 kg) falls vertically at con-
stant speed under the influence of gravity and air resis-
tance. After the drop has fallen 100 m, what is the work
done (a) by gravity and (b) by air resistance?

4. A sledge loaded with bricks has a total mass of 18.0 kg
and is pulled at constant speed by a rope. The rope is
inclined at 20.0° above the horizontal, and the sledge
moves a distance of 20.0 m on a horizontal surface. The
coefficient of kinetic friction between the sledge and
the surface is 0.500. (a) What is the tension of the rope? 
(b) How much work is done on the sledge by the rope?
(c) What is the energy lost due to friction?

5. A block of mass 2.50 kg is pushed 2.20 m along a fric-
tionless horizontal table by a constant 16.0-N force di-
rected 25.0° below the horizontal. Determine the work
done by (a) the applied force, (b) the normal force ex-
erted by the table, and (c) the force of gravity. (d) De-
termine the total work done on the block.

6. A 15.0-kg block is dragged over a rough, horizontal sur-
face by a 70.0-N force acting at 20.0° above the horizon-
tal. The block is displaced 5.00 m, and the coefficient of
kinetic friction is 0.300. Find the work done by (a) the
70-N force, (b) the normal force, and (c) the force of
gravity. (d) What is the energy loss due to friction? 
(e) Find the total change in the block’s kinetic energy.

7. Batman, whose mass is 80.0 kg, is holding onto the free
end of a 12.0-m rope, the other end of which is fixed to
a tree limb above. He is able to get the rope in motion
as only Batman knows how, eventually getting it to swing
enough so that he can reach a ledge when the rope
makes a 60.0° angle with the vertical. How much work
was done against the force of gravity in this maneuver?

Section 7.2 The Scalar Product of Two Vectors
In Problems 8 to 14, calculate all numerical answers to three
significant figures.

8. Vector A has a magnitude of 5.00 units, and vector B
has a magnitude of 9.00 units. The two vectors make an
angle of 50.0° with each other. Find A � B.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

WEB

118°

132°

y

x

32.8 N

17.3 cm/s

Section 7.3 Work Done by a Varying Force
15. The force acting on a particle varies as shown in Figure

P7.15. Find the work done by the force as the particle
moves (a) from x � 0 to x � 8.00 m, (b) from x � 8.00 m
to x � 10.0 m, and (c) from x � 0 to x � 10.0 m.

16. The force acting on a particle is Fx � (8x � 16) N,
where x is in meters. (a) Make a plot of this force versus
x from x � 0 to x � 3.00 m. (b) From your graph, find
the net work done by this force as the particle moves
from x � 0 to x � 3.00 m.

17. A particle is subject to a force Fx that varies with position
as in Figure P7.17. Find the work done by the force on
the body as it moves (a) from x � 0 to x � 5.00 m, 

Figure P7.14
WEB
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Figure P7.21

Figure P7.17 Problems 17 and 32.

rest 50.0 cm after first contacting the two-spring system,
find the car’s initial speed.

22. A 100-g bullet is fired from a rifle having a barrel 
0.600 m long. Assuming the origin is placed where the
bullet begins to move, the force (in newtons) exerted
on the bullet by the expanding gas is 15 000 �
10 000x � 25 000x2, where x is in meters. (a) Deter-
mine the work done by the gas on the bullet as the bul-
let travels the length of the barrel. (b) If the barrel is
1.00 m long, how much work is done and how does this
value compare with the work calculated in part (a)?

23. If it takes 4.00 J of work to stretch a Hooke’s-law spring
10.0 cm from its unstressed length, determine the extra
work required to stretch it an additional 10.0 cm.

24. If it takes work W to stretch a Hooke’s-law spring a dis-
tance d from its unstressed length, determine the extra
work required to stretch it an additional distance d .

25. A small mass m is pulled to the top of a frictionless half-
cylinder (of radius R) by a cord that passes over the top
of the cylinder, as illustrated in Figure P7.25. (a) If the
mass moves at a constant speed, show that F � mg cos �.
(Hint: If the mass moves at a constant speed, the com-
ponent of its acceleration tangent to the cylinder must
be zero at all times.) (b) By directly integrating

find the work done in moving the mass at
constant speed from the bottom to the top of the half-
W � �F�ds,

(b) from x � 5.00 m to x � 10.0 m, and (c) from x �
10.0 m to x � 15.0 m. (d) What is the total work done
by the force over the distance x � 0 to x � 15.0 m?

18. A force F � (4xi � 3y j) N acts on an object as it moves
in the x direction from the origin to x � 5.00 m. Find
the work done on the object by the force.

19. When a 4.00-kg mass is hung vertically on a certain light
spring that obeys Hooke’s law, the spring stretches 
2.50 cm. If the 4.00-kg mass is removed, (a) how far will
the spring stretch if a 1.50-kg mass is hung on it and 
(b) how much work must an external agent do to
stretch the same spring 4.00 cm from its unstretched
position?

20. An archer pulls her bow string back 0.400 m by exerting
a force that increases uniformly from zero to 230 N. 
(a) What is the equivalent spring constant of the bow?
(b) How much work is done by the archer in pulling
the bow?

21. A 6 000-kg freight car rolls along rails with negligible
friction. The car is brought to rest by a combination of
two coiled springs, as illustrated in Figure P7.21. Both
springs obey Hooke’s law with k1 � 1 600 N/m and 
k2 � 3 400 N/m. After the first spring compresses a dis-
tance of 30.0 cm, the second spring (acting with the
first) increases the force so that additional compression
occurs, as shown in the graph. If the car is brought to

W � �F�dr

Figure P7.15
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cylinder. Here ds represents an incremental displace-
ment of the small mass.

26. Express the unit of the force constant of a spring in
terms of the basic units meter, kilogram, and second.

Section 7.4 Kinetic Energy and the Work – Kinetic Energy
Theorem

27. A 0.600-kg particle has a speed of 2.00 m/s at point A
and kinetic energy of 7.50 J at point B. What is (a) its ki-
netic energy at A? (b) its speed at B? (c) the total work
done on the particle as it moves from A to B?

28. A 0.300-kg ball has a speed of 15.0 m/s. (a) What is its
kinetic energy? (b) If its speed were doubled, what
would be its kinetic energy?

29. A 3.00-kg mass has an initial velocity vi � (6.00i �
2.00j) m/s. (a) What is its kinetic energy at this time?
(b) Find the total work done on the object if its velocity
changes to (8.00i � 4.00j) m/s. (Hint: Remember that
v2 � v � v.)

30. A mechanic pushes a 2 500-kg car, moving it from rest
and making it accelerate from rest to a speed v. He does
5 000 J of work in the process. During this time, the car
moves 25.0 m. If friction between the car and the road
is negligible, (a) what is the final speed v of the car? (b)
What constant horizontal force did he exert on the car?

31. A mechanic pushes a car of mass m, doing work W in
making it accelerate from rest. If friction between the
car and the road is negligible, (a) what is the final
speed of the car? During the time the mechanic pushes
the car, the car moves a distance d. (b) What constant
horizontal force did the mechanic exert on the car?

32. A 4.00-kg particle is subject to a total force that varies
with position, as shown in Figure P7.17. The particle
starts from rest at x � 0. What is its speed at (a) x �
5.00 m, (b) x � 10.0 m, (c) x � 15.0 m?

33. A 40.0-kg box initially at rest is pushed 5.00 m along a
rough, horizontal floor with a constant applied horizon-
tal force of 130 N. If the coefficient of friction between
the box and the floor is 0.300, find (a) the work done
by the applied force, (b) the energy loss due to friction,
(c) the work done by the normal force, (d) the work
done by gravity, (e) the change in kinetic energy of the
box, and (f) the final speed of the box.

34. You can think of the work–kinetic energy theorem as a
second theory of motion, parallel to Newton’s laws in
describing how outside influences affect the motion 
of an object. In this problem, work out parts (a) and
(b) separately from parts (c) and (d) to compare the
predictions of the two theories. In a rifle barrel, a 15.0-g
bullet is accelerated from rest to a speed of 780 m/s. 
(a) Find the work that is done on the bullet. (b) If the
rifle barrel is 72.0 cm long, find the magnitude of the
average total force that acted on it, as F � W/(d cos �).
(c) Find the constant acceleration of a bullet that starts
from rest and gains a speed of 780 m/s over a distance
of 72.0 cm. (d) Find the total force that acted on it as
�F � ma.

35. A crate of mass 10.0 kg is pulled up a rough incline with
an initial speed of 1.50 m/s. The pulling force is 100 N
parallel to the incline, which makes an angle of 20.0°
with the horizontal. The coefficient of kinetic friction is
0.400, and the crate is pulled 5.00 m. (a) How much
work is done by gravity? (b) How much energy is lost
because of friction? (c) How much work is done by the
100-N force? (d) What is the change in kinetic energy of
the crate? (e) What is the speed of the crate after it has
been pulled 5.00 m?

36. A block of mass 12.0 kg slides from rest down a friction-
less 35.0° incline and is stopped by a strong spring with
k � 3.00 	 104 N/m. The block slides 3.00 m from the
point of release to the point where it comes to rest
against the spring. When the block comes to rest, how
far has the spring been compressed?

37. A sled of mass m is given a kick on a frozen pond. The
kick imparts to it an initial speed vi � 2.00 m/s. The co-
efficient of kinetic friction between the sled and the ice
is �k � 0.100. Utilizing energy considerations, find the
distance the sled moves before it stops.

38. A picture tube in a certain television set is 36.0 cm long.
The electrical force accelerates an electron in the tube
from rest to 1.00% of the speed of light over this dis-
tance. Determine (a) the kinetic energy of the electron
as it strikes the screen at the end of the tube, (b) the
magnitude of the average electrical force acting on the
electron over this distance, (c) the magnitude of the av-
erage acceleration of the electron over this distance,
and (d) the time of flight. 

39. A bullet with a mass of 5.00 g and a speed of 600 m/s
penetrates a tree to a depth of 4.00 cm. (a) Use work
and energy considerations to find the average frictional
force that stops the bullet. (b) Assuming that the fric-
tional force is constant, determine how much time
elapsed between the moment the bullet entered the
tree and the moment it stopped.

40. An Atwood’s machine (see Fig. 5.15) supports masses of
0.200 kg and 0.300 kg. The masses are held at rest be-
side each other and then released. Neglecting friction,
what is the speed of each mass the instant it has moved
0.400 m?

Figure P7.25

F
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41. A 2.00-kg block is attached to a spring of force constant
500 N/m, as shown in Figure 7.10. The block is pulled
5.00 cm to the right of equilibrium and is then released
from rest. Find the speed of the block as it passes
through equilibrium if (a) the horizontal surface is fric-
tionless and (b) the coefficient of friction between the
block and the surface is 0.350.

Section 7.5 Power
42. Make an order-of-magnitude estimate of the power a car

engine contributes to speeding up the car to highway
speed. For concreteness, consider your own car (if you
use one). In your solution, state the physical quantities
you take as data and the values you measure or estimate
for them. The mass of the vehicle is given in the
owner’s manual. If you do not wish to consider a car,
think about a bus or truck for which you specify the
necessary physical quantities.

43. A 700-N Marine in basic training climbs a 10.0-m verti-
cal rope at a constant speed in 8.00 s. What is his power
output?

44. If a certain horse can maintain 1.00 hp of output for
2.00 h, how many 70.0-kg bundles of shingles can the
horse hoist (using some pulley arrangement) to the
roof of a house 8.00 m tall, assuming 70.0% efficiency?

45. A certain automobile engine delivers 2.24 	 104 W
(30.0 hp) to its wheels when moving at a constant speed
of 27.0 m/s (� 60 mi/h). What is the resistive force act-
ing on the automobile at that speed?

46. A skier of mass 70.0 kg is pulled up a slope by a motor-
driven cable. (a) How much work is required for him to
be pulled a distance of 60.0 m up a 30.0° slope (assumed
frictionless) at a constant speed of 2.00 m/s? (b) A motor
of what power is required to perform this task?

47. A 650-kg elevator starts from rest. It moves upward for
3.00 s with constant acceleration until it reaches its
cruising speed of 1.75 m/s. (a) What is the average
power of the elevator motor during this period? 
(b) How does this power compare with its power when
it moves at its cruising speed?

48. An energy-efficient lightbulb, taking in 28.0 W of power,
can produce the same level of brightness as a conven-
tional bulb operating at 100-W power. The lifetime of
the energy-efficient bulb is 10 000 h and its purchase
price is $17.0, whereas the conventional bulb has a life-
time of 750 h and costs $0.420 per bulb. Determine the
total savings obtained through the use of one energy-
efficient bulb over its lifetime as opposed to the use of
conventional bulbs over the same time period. Assume
an energy cost of $0.080 0 per kilowatt hour.

(Optional)
Section 7.6 Energy and the Automobile

49. A compact car of mass 900 kg has an overall motor effi-
ciency of 15.0%. (That is, 15.0% of the energy supplied
by the fuel is delivered to the wheels of the car.) (a) If

burning 1 gal of gasoline supplies 1.34 	 108 J of en-
ergy, find the amount of gasoline used by the car in ac-
celerating from rest to 55.0 mi/h. Here you may ignore
the effects of air resistance and rolling resistance. 
(b) How many such accelerations will 1 gal provide? 
(c) The mileage claimed for the car is 38.0 mi/gal at 
55 mi/h. What power is delivered to the wheels (to
overcome frictional effects) when the car is driven at
this speed?

50. Suppose the empty car described in Table 7.2 has a fuel
economy of 6.40 km/L (15 mi/gal) when traveling at
26.8 m/s (60 mi/h). Assuming constant efficiency, de-
termine the fuel economy of the car if the total mass of
the passengers and the driver is 350 kg.

51. When an air conditioner is added to the car described
in Problem 50, the additional output power required to
operate the air conditioner is 1.54 kW. If the fuel econ-
omy of the car is 6.40 km/L without the air conditioner,
what is it when the air conditioner is operating?

(Optional)
Section 7.7 Kinetic Energy at High Speeds

52. An electron moves with a speed of 0.995c. (a) What is its
kinetic energy? (b) If you use the classical expression to
calculate its kinetic energy, what percentage error
results?

53. A proton in a high-energy accelerator moves with a
speed of c/2. Using the work–kinetic energy theorem,
find the work required to increase its speed to 
(a) 0.750c and (b) 0.995c.

54. Find the kinetic energy of a 78.0-kg spacecraft launched
out of the Solar System with a speed of 106 km/s using
(a) the classical equation and (b) the rela-
tivistic equation.

ADDITIONAL PROBLEMS

55. A baseball outfielder throws a 0.150-kg baseball at a
speed of 40.0 m/s and an initial angle of 30.0°. What is
the kinetic energy of the baseball at the highest point of
the trajectory?

56. While running, a person dissipates about 0.600 J of me-
chanical energy per step per kilogram of body mass. If a
60.0-kg runner dissipates a power of 70.0 W during a
race, how fast is the person running? Assume a running
step is 1.50 m in length.

57. A particle of mass m moves with a constant acceleration
a. If the initial position vector and velocity of the parti-
cle are ri and vi , respectively, use energy arguments to
show that its speed vf at any time satisfies the equation

where rf is the position vector of the particle at that
same time.

58. The direction of an arbitrary vector A can be com-
pletely specified with the angles �, �, and � that the vec-

vf
2  � vi 

2 � 2a � (rf � ri  )

K � 1
2 mv2

WEB
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tor makes with the x, y, and z axes, respectively. If A �
Ax i � Ay j � Azk, (a) find expressions for cos �, cos �,
and cos � (known as direction cosines) and (b) show 
that these angles satisfy the relation cos2 � � cos2 � �
cos2 � � 1. (Hint: Take the scalar product of A with i, j,
and k separately.)

59. A 4.00-kg particle moves along the x axis. Its position
varies with time according to x � t � 2.0t3, where x is in
meters and t is in seconds. Find (a) the kinetic energy at
any time t, (b) the acceleration of the particle and the
force acting on it at time t, (c) the power being deliv-
ered to the particle at time t, and (d) the work done on
the particle in the interval t � 0 to t � 2.00 s.

60. A traveler at an airport takes an escalator up one floor
(Fig. P7.60). The moving staircase would itself carry
him upward with vertical velocity component v between
entry and exit points separated by height h. However,
while the escalator is moving, the hurried traveler
climbs the steps of the escalator at a rate of n steps/s.
Assume that the height of each step is hs . (a) Determine
the amount of work done by the traveler during his es-
calator ride, given that his mass is m. (b) Determine the
work the escalator motor does on this person.

calculate the work done by this force when the spring is
stretched 0.100 m.

62. In a control system, an accelerometer consists of a 
4.70-g mass sliding on a low-friction horizontal rail. A
low-mass spring attaches the mass to a flange at one end
of the rail. When subject to a steady acceleration of
0.800g, the mass is to assume a location 0.500 cm away
from its equilibrium position. Find the stiffness constant
required for the spring.

63. A 2 100-kg pile driver is used to drive a steel I-beam into
the ground. The pile driver falls 5.00 m before coming
into contact with the beam, and it drives the beam 
12.0 cm into the ground before coming to rest. Using
energy considerations, calculate the average force the
beam exerts on the pile driver while the pile driver is
brought to rest.

64. A cyclist and her bicycle have a combined mass of 
75.0 kg. She coasts down a road inclined at 2.00° with
the horizontal at 4.00 m/s and down a road inclined at
4.00° at 8.00 m/s. She then holds on to a moving vehi-
cle and coasts on a level road. What power must the ve-
hicle expend to maintain her speed at 3.00 m/s? As-
sume that the force of air resistance is proportional to
her speed and that other frictional forces remain con-
stant. (Warning: You must not attempt this dangerous
maneuver.)

65. A single constant force F acts on a particle of mass m.
The particle starts at rest at t � 0. (a) Show that the in-
stantaneous power delivered by the force at any time t is
(F 2/m)t. (b) If F � 20.0 N and m � 5.00 kg, what is the
power delivered at t � 3.00 s?

66. A particle is attached between two identical springs on a
horizontal frictionless table. Both springs have spring
constant k and are initially unstressed. (a) If the particle
is pulled a distance x along a direction perpendicular to
the initial configuration of the springs, as in Figure
P7.66, show that the force exerted on the particle by the
springs is

(b) Determine the amount of work done by this force
in moving the particle from x � A to x � 0.

F � �2kx  �1 �
L

√x2 � L2 �  i

Figure P7.66

Figure P7.60 (©Ron Chapple/FPG)

61. When a certain spring is stretched beyond its propor-
tional limit, the restoring force satisfies the equation 
F � � kx � �x3. If k � 10.0 N/m and � � 100 N/m3,
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67. Review Problem. Two constant forces act on a 5.00-kg
object moving in the xy plane, as shown in Figure P7.67.
Force F1 is 25.0 N at 35.0°, while  F2 � 42.0 N at 150°.
At time t � 0, the object is at the origin and has velocity
(4.0i � 2.5j) m/s. (a) Express the two forces in
unit–vector notation. Use unit–vector notation for
your other answers. (b) Find the total force on the ob-
ject. (c) Find the object’s acceleration. Now, consider-
ing the instant t � 3.00 s, (d) find the object’s velocity,
(e) its location, (f) its kinetic energy from , and
(g) its kinetic energy from 12 mvi 

2 � �F � d.

1
2 mvf  

2

71. The ball launcher in a pinball machine has a spring that
has a force constant of 1.20 N/cm (Fig. P7.71). The sur-
face on which the ball moves is inclined 10.0° with re-
spect to the horizontal. If the spring is initially com-
pressed 5.00 cm, find the launching speed of a 100-g
ball when the plunger is released. Friction and the mass
of the plunger are negligible.

72. In diatomic molecules, the constituent atoms exert at-
tractive forces on each other at great distances and re-
pulsive forces at short distances. For many molecules,
the Lennard–Jones law is a good approximation to the
magnitude of these forces:

where r is the center-to-center distance between the
atoms in the molecule, � is a length parameter, and F0 is
the force when r � �. For an oxygen molecule, F0 �
9.60 	 10�11 N and � � 3.50 	 10�10 m. Determine
the work done by this force if the atoms are pulled
apart from r � 4.00 	 10�10 m to r � 9.00 	 10�10 m.

73. A horizontal string is attached to a 0.250-kg mass lying
on a rough, horizontal table. The string passes over a
light, frictionless pulley, and a 0.400-kg mass is then at-
tached to its free end. The coefficient of sliding friction
between the 0.250-kg mass and the table is 0.200. Using
the work–kinetic energy theorem, determine (a) the
speed of the masses after each has moved 20.0 m from
rest and (b) the mass that must be added to the 0.250-kg
mass so that, given an initial velocity, the masses con-
tinue to move at a constant speed. (c) What mass must
be removed from the 0.400-kg mass so that the same
outcome as in part (b) is achieved?

74. Suppose a car is modeled as a cylinder moving with a
speed v, as in Figure P7.74. In a time �t, a column of air

F � F0�2� �

r �
13

� � �

r �
7

	

Figure P7.71

Figure P7.67

Figure P7.74

68. When different weights are hung on a spring, the
spring stretches to different lengths as shown in the fol-
lowing table. (a) Make a graph of the applied force ver-
sus the extension of the spring. By least-squares fitting,
determine the straight line that best fits the data. (You
may not want to use all the data points.) (b) From the
slope of the best-fit line, find the spring constant k. 
(c) If the spring is extended to 105 mm, what force
does it exert on the suspended weight?

69. A 200-g block is pressed against a spring of force con-
stant 1.40 kN/m until the block compresses the spring
10.0 cm. The spring rests at the bottom of a ramp in-
clined at 60.0° to the horizontal. Using energy consider-
ations, determine how far up the incline the block
moves before it stops (a) if there is no friction between
the block and the ramp and (b) if the coefficient of ki-
netic friction is 0.400.

70. A 0.400-kg particle slides around a horizontal track. The
track has a smooth, vertical outer wall forming a circle
with a radius of 1.50 m. The particle is given an initial
speed of 8.00 m/s. After one revolution, its speed has
dropped to 6.00 m/s because of friction with the rough
floor of the track. (a) Find the energy loss due to fric-
tion in one revolution. (b) Calculate the coefficient of
kinetic friction. (c) What is the total number of revolu-
tions the particle makes before stopping?

F1
F2

150°

35.0°

y

x

10.0°

A

v

v∆t

F (N) 2.0 4.0 6.0 8.0 10 12 14 16 18
L (mm) 15 32 49 64 79 98 112 126 149

WEB
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ANSWERS TO QUICK QUIZZES

7.4 Force divided by displacement, which in SI units is new-
tons per meter (N/m).

7.5 Yes, whenever the frictional force has a component along
the direction of motion. Consider a crate sitting on the
bed of a truck as the truck accelerates to the east. The
static friction force exerted on the crate by the truck acts
to the east to give the crate the same acceleration as the
truck (assuming that the crate does not slip). Because
the crate accelerates, its kinetic energy must increase.

7.6 Because the two vehicles perform the same amount of
work, the areas under the two graphs are equal. How-
ever, the graph for the low-power truck extends over a
longer time interval and does not extend as high on the
� axis as the graph for the sports car does.

7.1 No. The force does no work on the object because the
force is pointed toward the center of the circle and is
therefore perpendicular to the motion.

7.2 (a) Assuming the person lifts with a force of magnitude
mg, the weight of the box, the work he does during the
vertical displacement is mgh because the force is in the
direction of the displacement. The work he does during
the horizontal displacement is zero because now the
force he exerts on the box is perpendicular to the dis-
placement. The net work he does is mgh � 0 � mgh.
(b) The work done by the gravitational force on the box
as the box is displaced vertically is � mgh because the di-
rection of this force is opposite the direction of the dis-
placement. The work done by the gravitational force is
zero during the horizontal displacement because now
the direction of this force is perpendicular to the direc-
tion of the displacement. The net work done by the
gravitational force � mgh � 0 � � mgh. The total work
done on the box is � mgh � mgh � 0. 

7.3 No. For example, consider the two vectors A � 3i � 2j
and B � 2i � j. Their dot product is A � B � 8, yet both
vectors have negative y components.

Let � be the power of an agent causing motion; w,
the thing moved; d, the distance covered; and t, the
time taken. Then (1) a power equal to � will in a 
period of time equal to t move w/2 a distance 2d; 
or (2) it will move w/2 the given distance d in time
t/2. Also, if (3) the given power � moves the given
object w a distance d/2 in time t/2, then (4) �/2 
will move w/2 the given distance d in the given 
time t.

(a) Show that Aristotle’s proportions are included in
the equation �t � bwd, where b is a proportionality con-
stant. (b) Show that our theory of motion includes this
part of Aristotle’s theory as one special case. In particu-
lar, describe a situation in which it is true, derive the
equation representing Aristotle’s proportions, and de-
termine the proportionality constant.

of mass �m must be moved a distance v �t and, hence,
must be given a kinetic energy Using this
model, show that the power loss due to air resistance is

and that the resistive force is where � is the
density of air.

75. A particle moves along the x axis from x � 12.8 m to 
x � 23.7 m under the influence of a force

where F is in newtons and x is in meters. Using numeri-
cal integration, determine the total work done by this
force during this displacement. Your result should be
accurate to within 2%.

76. More than 2 300 years ago the Greek teacher Aristotle
wrote the first book called Physics. The following pas-
sage, rephrased with more precise terminology, is from
the end of the book’s Section Eta:

F �
375

x3 � 3.75 x

1
2 �Av2,1

2 �Av3

1
2 (�m)v2.

�

t

High-power sports car

Low-power truck
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n Chapter 7 we introduced the concept of kinetic energy, which is the energy
associated with the motion of an object. In this chapter we introduce another
form of energy—potential energy, which is the energy associated with the arrange-

ment of a system of objects that exert forces on each other. Potential energy can
be thought of as stored energy that can either do work or be converted to kinetic
energy. 

The potential energy concept can be used only when dealing with a special
class of forces called conservative forces. When only conservative forces act within an
isolated system, the kinetic energy gained (or lost) by the system as its members
change their relative positions is balanced by an equal loss (or gain) in potential
energy. This balancing of the two forms of energy is known as the principle of conser-
vation of mechanical energy.

Energy is present in the Universe in various forms, including mechanical, elec-
tromagnetic, chemical, and nuclear. Furthermore, one form of energy can be con-
verted to another. For example, when an electric motor is connected to a battery,
the chemical energy in the battery is converted to electrical energy in the motor,
which in turn is converted to mechanical energy as the motor turns some device.
The transformation of energy from one form to another is an essential part of the
study of physics, engineering, chemistry, biology, geology, and astronomy.

When energy is changed from one form to another, the total amount present
does not change. Conservation of energy means that although the form of energy
may change, if an object (or system) loses energy, that same amount of energy ap-
pears in another object or in the object’s surroundings.

POTENTIAL ENERGY
An object that possesses kinetic energy can do work on another object—for exam-
ple, a moving hammer driving a nail into a wall. Now we shall introduce another
form of energy. This energy, called potential energy U, is the energy associated
with a system of objects.

Before we describe specific forms of potential energy, we must first define a
system, which consists of two or more objects that exert forces on one another. If
the arrangement of the system changes, then the potential energy of the
system changes. If the system consists of only two particle-like objects that exert
forces on each other, then the work done by the force acting on one of the objects
causes a transformation of energy between the object’s kinetic energy and other
forms of the system’s energy.

Gravitational Potential Energy

As an object falls toward the Earth, the Earth exerts a gravitational force mg on the
object, with the direction of the force being the same as the direction of the ob-
ject’s motion. The gravitational force does work on the object and thereby in-
creases the object’s kinetic energy. Imagine that a brick is dropped from rest di-
rectly above a nail in a board lying on the ground. When the brick is released, it
falls toward the ground, gaining speed and therefore gaining kinetic energy. The
brick–Earth system has potential energy when the brick is at any distance above
the ground (that is, it has the potential to do work), and this potential energy is
converted to kinetic energy as the brick falls. The conversion from potential en-
ergy to kinetic energy occurs continuously over the entire fall. When the brick
reaches the nail and the board lying on the ground, it does work on the nail,

8.1

I

5.3
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driving it into the board. What determines how much work the brick is able to do
on the nail? It is easy to see that the heavier the brick, the farther in it drives the
nail; also the higher the brick is before it is released, the more work it does when it
strikes the nail.

The product of the magnitude of the gravitational force mg acting on an ob-
ject and the height y of the object is so important in physics that we give it a name:
the gravitational potential energy. The symbol for gravitational potential energy
is Ug , and so the defining equation for gravitational potential energy is

(8.1)

Gravitational potential energy is the potential energy of the object–Earth system.
This potential energy is transformed into kinetic energy of the system by the gravi-
tational force. In this type of system, in which one of the members (the Earth) is
much more massive than the other (the object), the massive object can be mod-
eled as stationary, and the kinetic energy of the system can be represented entirely
by the kinetic energy of the lighter object. Thus, the kinetic energy of the system is
represented by that of the object falling toward the Earth. Also note that Equation
8.1 is valid only for objects near the surface of the Earth, where g is approximately
constant.1

Let us now directly relate the work done on an object by the gravitational
force to the gravitational potential energy of the object–Earth system. To do this,
let us consider a brick of mass m at an initial height yi above the ground, as shown
in Figure 8.1. If we neglect air resistance, then the only force that does work on
the brick as it falls is the gravitational force exerted on the brick mg. The work Wg
done by the gravitational force as the brick undergoes a downward displacement 
d is

where we have used the fact that (Eq. 7.4). If an object undergoes 
both a horizontal and a vertical displacement, so that 
then the work done by the gravitational force is still because

Thus, the work done by the gravitational force depends only
on the change in y and not on any change in the horizontal position x.

We just learned that the quantity mgy is the gravitational potential energy of
the system Ug , and so we have

(8.2)

From this result, we see that the work done on any object by the gravitational force
is equal to the negative of the change in the system’s gravitational potential energy.
Also, this result demonstrates that it is only the difference in the gravitational poten-
tial energy at the initial and final locations that matters. This means that we are
free to place the origin of coordinates in any convenient location. Finally, the work
done by the gravitational force on an object as the object falls to the Earth is the
same as the work done were the object to start at the same point and slide down an
incline to the Earth. Horizontal motion does not affect the value of Wg .

The unit of gravitational potential energy is the same as that of work—the
joule. Potential energy, like work and kinetic energy, is a scalar quantity.

Wg � Ui � Uf � �(Uf � Ui) � ��Ug

�mg j � (xf � xi)i � 0.
mgyi � mgyf

d � (xf � xi)i � (yf � yi)j,
j � j � 1

Wg � (mg) � d � (�mg j) � (yf � yi) j � mgyi � mgyf

Ug � mgy

1 The assumption that the force of gravity is constant is a good one as long as the vertical displacement
is small compared with the Earth’s radius.

Gravitational potential energy

m g

yi

m g

yf

d

Figure 8.1 The work done on
the brick by the gravitational force
as the brick falls from a height yi to
a height yf is equal to mgy i � mgy f .
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Can the gravitational potential energy of a system ever be negative?

Quick Quiz 8.1

The Bowler and the Sore ToeEXAMPLE 8.1
the ball reaches his toe gives (7 kg)
(9.80 m/s2)(0.03 m) � 2.06 J. So, the work done by the gravi-
tational force is We should probably
keep only one digit because of the roughness of our esti-
mates; thus, we estimate that the gravitational force does 30 J
of work on the bowling ball as it falls. The system had 30 J of
gravitational potential energy relative to the top of the toe be-
fore the ball began its fall.

When we use the bowler’s head (which we estimate to be
1.50 m above the floor) as our origin of coordinates, we find
that (7 kg)(9.80 m/s2)(� 1 m) � � 68.6 J and
that (7 kg)(9.80 m/s2)(� 1.47 m) � � 100.8 J.
The work being done by the gravitational force is still 

30 J.Wg � Ui � Uf � 32.24 J �

Uf � mgyf �
Ui � mgyi �

Wg � Ui � Uf � 32.24 J.

Uf � mgyf �A bowling ball held by a careless bowler slips from the
bowler’s hands and drops on the bowler’s toe. Choosing floor
level as the y � 0 point of your coordinate system, estimate
the total work done on the ball by the force of gravity as the
ball falls. Repeat the calculation, using the top of the bowler’s
head as the origin of coordinates.

Solution First, we need to estimate a few values. A bowling
ball has a mass of approximately 7 kg, and the top of a per-
son’s toe is about 0.03 m above the floor. Also, we shall as-
sume the ball falls from a height of 0.5 m. Holding nonsignif-
icant digits until we finish the problem, we calculate the
gravitational potential energy of the ball–Earth system just
before the ball is released to be (7 kg)
(9.80 m/s2)(0.5 m) � 34.3 J. A similar calculation for when

Ui � mgyi �

Elastic Potential Energy

Now consider a system consisting of a block plus a spring, as shown in Figure 8.2.
The force that the spring exerts on the block is given by In the previous
chapter, we learned that the work done by the spring force on a block connected
to the spring is given by Equation 7.11:

(8.3)

In this situation, the initial and final x coordinates of the block are measured from
its equilibrium position, x � 0. Again we see that Ws depends only on the initial
and final x coordinates of the object and is zero for any closed path. The elastic
potential energy function associated with the system is defined by

(8.4)

The elastic potential energy of the system can be thought of as the energy stored
in the deformed spring (one that is either compressed or stretched from its equi-
librium position). To visualize this, consider Figure 8.2, which shows a spring on a
frictionless, horizontal surface. When a block is pushed against the spring (Fig.
8.2b) and the spring is compressed a distance x, the elastic potential energy stored
in the spring is kx2/2. When the block is released from rest, the spring snaps back
to its original length and the stored elastic potential energy is transformed into ki-
netic energy of the block (Fig. 8.2c). The elastic potential energy stored in the
spring is zero whenever the spring is undeformed (x � 0). Energy is stored in the
spring only when the spring is either stretched or compressed. Furthermore, the
elastic potential energy is a maximum when the spring has reached its maximum
compression or extension (that is, when is a maximum). Finally, because the
elastic potential energy is proportional to x2, we see that Us is always positive in a
deformed spring.

� x �

Us � 1
2kx2

Ws � 1
2kxi 

2 � 1
2kxf 

2

Fs � �kx.

Elastic potential energy stored in a
spring
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CONSERVATIVE AND NONCONSERVATIVE FORCES
The work done by the gravitational force does not depend on whether an object
falls vertically or slides down a sloping incline. All that matters is the change in the
object’s elevation. On the other hand, the energy loss due to friction on that in-
cline depends on the distance the object slides. In other words, the path makes no
difference when we consider the work done by the gravitational force, but it does
make a difference when we consider the energy loss due to frictional forces. We
can use this varying dependence on path to classify forces as either conservative or
nonconservative.

Of the two forces just mentioned, the gravitational force is conservative and
the frictional force is nonconservative.

Conservative Forces

Conservative forces have two important properties:

1. A force is conservative if the work it does on a particle moving between any two
points is independent of the path taken by the particle.

2. The work done by a conservative force on a particle moving through any closed
path is zero. (A closed path is one in which the beginning and end points are
identical.)

The gravitational force is one example of a conservative force, and the force
that a spring exerts on any object attached to the spring is another. As we learned
in the preceding section, the work done by the gravitational force on an object
moving between any two points near the Earth’s surface is 
From this equation we see that Wg depends only on the initial and final y coordi-

Wg � mgyi � mgyf .

8.2

Properties of a conservative force

Figure 8.2 (a) An undeformed
spring on a frictionless horizontal
surface. (b) A block of mass m is
pushed against the spring, compress-
ing it a distance x. (c) When the
block is released from rest, the elastic
potential energy stored in the spring
is transferred to the block in the
form of kinetic energy. 

x = 0

x

m

x = 0

v

(c)

(b)

(a)

Us =    kx21
2

Ki = 0

Kf =    mv21
2

Us = 0

m

m
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nates of the object and hence is independent of the path. Furthermore, Wg is zero
when the object moves over any closed path (where 

For the case of the object–spring system, the work Ws done by the spring force
is given by (Eq. 8.3). Again, we see that the spring force is con-
servative because Ws depends only on the initial and final x coordinates of the ob-
ject and is zero for any closed path. 

We can associate a potential energy with any conservative force and can do this
only for conservative forces. In the previous section, the potential energy associated
with the gravitational force was defined as In general, the work Wc done
on an object by a conservative force is equal to the initial value of the potential en-
ergy associated with the object minus the final value:

(8.5)

This equation should look familiar to you. It is the general form of the equation
for work done by the gravitational force (Eq. 8.2) and that for the work done by
the spring force (Eq. 8.3).

Nonconservative Forces

A force is nonconservative if it causes a change in mechanical energy E,
which we define as the sum of kinetic and potential energies. For example, if a
book is sent sliding on a horizontal surface that is not frictionless, the force of ki-
netic friction reduces the book’s kinetic energy. As the book slows down, its kinetic
energy decreases. As a result of the frictional force, the temperatures of the book
and surface increase. The type of energy associated with temperature is internal en-
ergy, which we will study in detail in Chapter 20. Experience tells us that this inter-
nal energy cannot be transferred back to the kinetic energy of the book. In other
words, the energy transformation is not reversible. Because the force of kinetic
friction changes the mechanical energy of a system, it is a nonconservative force. 

From the work–kinetic energy theorem, we see that the work done by a con-
servative force on an object causes a change in the kinetic energy of the object.
The change in kinetic energy depends only on the initial and final positions of the
object, and not on the path connecting these points. Let us compare this to the
sliding book example, in which the nonconservative force of friction is acting be-
tween the book and the surface. According to Equation 7.17a, the change in ki-
netic energy of the book due to friction is , where d is the length
of the path over which the friction force acts. Imagine that the book slides from A
to B over the straight-line path of length d in Figure 8.3. The change in kinetic en-
ergy is . Now, suppose the book slides over the semicircular path from A to B.
In this case, the path is longer and, as a result, the change in kinetic energy is
greater in magnitude than that in the straight-line case. For this particular path,
the change in kinetic energy is , since d is the diameter of the semicircle.
Thus, we see that for a nonconservative force, the change in kinetic energy de-
pends on the path followed between the initial and final points. If a potential en-
ergy is involved, then the change in the total mechanical energy depends on the
path followed. We shall return to this point in Section 8.5.

CONSERVATIVE FORCES AND POTENTIAL ENERGY
In the preceding section we found that the work done on a particle by a conserva-
tive force does not depend on the path taken by the particle. The work depends
only on the particle’s initial and final coordinates. As a consequence, we can de-

8.3

�fk� d/2

�fkd

�Kfriction � �fkd

Wc � Ui � Uf � ��U

Ug � mgy.

Ws � 1
2kxi 

2 � 1
2kxf 

2

yi � yf).

Work done by a conservative force

Properties of a nonconservative
force5.3

Figure 8.3 The loss in mechani-
cal energy due to the force of ki-
netic friction depends on the path
taken as the book is moved from A
to B. The loss in mechanical energy
is greater along the red path than
along the blue path. 

A

B
d
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fine a potential energy function U such that the work done by a conservative
force equals the decrease in the potential energy of the system. The work done by
a conservative force F as a particle moves along the x axis is2

(8.6)

where Fx is the component of F in the direction of the displacement. That is, the
work done by a conservative force equals the negative of the change in the
potential energy associated with that force, where the change in the potential
energy is defined as 

We can also express Equation 8.6 as

(8.7)

Therefore, �U is negative when Fx and dx are in the same direction, as when an ob-
ject is lowered in a gravitational field or when a spring pushes an object toward
equilibrium.

The term potential energy implies that the object has the potential, or capability,
of either gaining kinetic energy or doing work when it is released from some point
under the influence of a conservative force exerted on the object by some other
member of the system. It is often convenient to establish some particular location
xi as a reference point and measure all potential energy differences with respect to
it. We can then define the potential energy function as

(8.8)

The value of Ui is often taken to be zero at the reference point. It really does
not matter what value we assign to Ui , because any nonzero value merely shifts
Uf(x) by a constant amount, and only the change in potential energy is physically
meaningful.

If the conservative force is known as a function of position, we can use Equa-
tion 8.8 to calculate the change in potential energy of a system as an object within
the system moves from xi to xf . It is interesting to note that in the case of one-
dimensional displacement, a force is always conservative if it is a function of posi-
tion only. This is not necessarily the case for motion involving two- or three-dimen-
sional displacements.

CONSERVATION OF MECHANICAL ENERGY
An object held at some height h above the floor has no kinetic energy. However, as
we learned earlier, the gravitational potential energy of the object–Earth system is
equal to mgh. If the object is dropped, it falls to the floor; as it falls, its speed and
thus its kinetic energy increase, while the potential energy of the system decreases.
If factors such as air resistance are ignored, whatever potential energy the system
loses as the object moves downward appears as kinetic energy of the object. In
other words, the sum of the kinetic and potential energies—the total mechanical
energy E—remains constant. This is an example of the principle of conservation

8.4

Uf(x) � ��xf

xi

Fx dx � Ui

�U � Uf � Ui � ��xf

xi

Fx dx

�U � Uf � Ui .

Wc � �xf

xi

Fx dx � ��U

2 For a general displacement, the work done in two or three dimensions also equals where

We write this formally as W � �f

i
F � ds � Ui � Uf .U � U(x, y, z).

Ui � Uf ,

5.9



8.4 Conservation of Mechanical Energy 221

of mechanical energy. For the case of an object in free fall, this principle tells us
that any increase (or decrease) in potential energy is accompanied by an equal de-
crease (or increase) in kinetic energy. Note that the total mechanical energy of
a system remains constant in any isolated system of objects that interact
only through conservative forces.

Because the total mechanical energy E of a system is defined as the sum of the
kinetic and potential energies, we can write

(8.9)

We can state the principle of conservation of energy as and so we have

(8.10)

It is important to note that Equation 8.10 is valid only when no energy is
added to or removed from the system. Furthermore, there must be no nonconser-
vative forces doing work within the system.

Consider the carnival Ring-the-Bell event illustrated at the beginning of the
chapter. The participant is trying to convert the initial kinetic energy of the ham-
mer into gravitational potential energy associated with a weight that slides on a
vertical track. If the hammer has sufficient kinetic energy, the weight is lifted high
enough to reach the bell at the top of the track. To maximize the hammer’s ki-
netic energy, the player must swing the heavy hammer as rapidly as possible. The
fast-moving hammer does work on the pivoted target, which in turn does work on
the weight. Of course, greasing the track (so as to minimize energy loss due to fric-
tion) would also help but is probably not allowed!

If more than one conservative force acts on an object within a system, a poten-
tial energy function is associated with each force. In such a case, we can apply the
principle of conservation of mechanical energy for the system as

(8.11)

where the number of terms in the sums equals the number of conservative forces
present. For example, if an object connected to a spring oscillates vertically, two
conservative forces act on the object: the spring force and the gravitational force.

Ki � �Ui � Kf � �Uf

Ki � Ui � Kf � Uf

Ei � Ef ,

E � K � U Total mechanical energy

The mechanical energy of an
isolated system remains constant

QuickLab
Dangle a shoe from its lace and use it
as a pendulum. Hold it to the side, re-
lease it, and note how high it swings
at the end of its arc. How does this
height compare with its initial height?
You may want to check Question 8.3
as part of your investigation.

Twin Falls on the Island of Kauai, Hawaii. The gravitational po-
tential energy of the water–Earth system when the water is at
the top of the falls is converted to kinetic energy once that wa-
ter begins falling. How did the water get to the top of the cliff?
In other words, what was the original source of the gravita-
tional potential energy when the water was at the top? (Hint:
This same source powers nearly everything on the planet.)
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A ball is connected to a light spring suspended vertically, as shown in Figure 8.4. When dis-
placed downward from its equilibrium position and released, the ball oscillates up and down.
If air resistance is neglected, is the total mechanical energy of the system (ball plus spring
plus Earth) conserved? How many forms of potential energy are there for this situation?

Quick Quiz 8.2

Ball in Free FallEXAMPLE 8.2
A ball of mass m is dropped from a height h above the
ground, as shown in Figure 8.6. (a) Neglecting air resistance,
determine the speed of the ball when it is at a height y above
the ground.

Solution Because the ball is in free fall, the only force act-
ing on it is the gravitational force. Therefore, we apply the
principle of conservation of mechanical energy to the
ball–Earth system. Initially, the system has potential energy
but no kinetic energy. As the ball falls, the total mechanical
energy remains constant and equal to the initial potential en-
ergy of the system.

At the instant the ball is released, its kinetic energy is
and the potential energy of the system is 

When the ball is at a distance y above the ground, its kinetic
energy is and the potential energy relative to the
ground is Applying Equation 8.10, we obtain

 vf 

2 � 2g(h � y) 

 0 � mgh � 1
2mvf 

2 � mgy

 Ki � Ui � Kf � Uf 

Uf � mgy.
Kf � 1

2mvf 

2

Ui � mgh.Ki � 0

1

3

2

Figure 8.5 Three identical balls are thrown
with the same initial speed from the top of a
building. 

m

Figure 8.4 A ball connected to a
massless spring suspended verti-
cally. What forms of potential en-
ergy are associated with the
ball– spring–Earth system when
the ball is displaced downward?

Three identical balls are thrown from the top of a building, all with the same initial speed.
The first is thrown horizontally, the second at some angle above the horizontal, and the
third at some angle below the horizontal, as shown in Figure 8.5. Neglecting air resistance,
rank the speeds of the balls at the instant each hits the ground.

Quick Quiz 8.3

Figure 8.6 A ball is dropped from a height h above the ground.
Initially, the total energy of the ball–Earth system is potential energy,
equal to mgh relative to the ground. At the elevation y, the total en-
ergy is the sum of the kinetic and potential energies.

h

y
vf

yi = h
Ui = mgh
Ki = 0

y = 0
Ug = 0

yf = y
Uf = mgy
Kf =   mvf

21
2
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The PendulumEXAMPLE 8.3
If we measure the y coordinates of the sphere from the

center of rotation, then and There-
fore, and Applying the prin-
ciple of conservation of mechanical energy to the system gives

(1)

(b) What is the tension TB in the cord at �?

Solution Because the force of tension does no work, we
cannot determine the tension using the energy method. To
find TB , we can apply Newton’s second law to the radial direc-
tion. First, recall that the centripetal acceleration of a particle
moving in a circle is equal to v2/r directed toward the center
of rotation. Because r � L in this example, we obtain

(2)

Substituting (1) into (2) gives the tension at point �:

(3)

From (2) we see that the tension at � is greater than the
weight of the sphere. Furthermore, (3) gives the expected re-
sult that when the initial angle 

Exercise A pendulum of length 2.00 m and mass 0.500 kg
is released from rest when the cord makes an angle of 30.0°
with the vertical. Find the speed of the sphere and the ten-
sion in the cord when the sphere is at its lowest point.

Answer 2.29 m/s; 6.21 N.

�A � 0.TB � mg

mg(3 � 2 cos �A)�

TB � mg � 2 mg(1 � cos �A)

�Fr � TB � mg � mar � m 
vB 

2

L

√2 gL(1 � cos �A)vB �

   0 � mgL cos �A � 1
2mvB 

2 � mgL

   KA � UA � KB � UB   

UB � �mgL.UA � �mgL cos �A

yB � �L.yA � �L cos �A

A pendulum consists of a sphere of mass m attached to a light
cord of length L, as shown in Figure 8.7. The sphere is re-
leased from rest when the cord makes an angle �A with the
vertical, and the pivot at P is frictionless. (a) Find the speed
of the sphere when it is at the lowest point �.

Solution The only force that does work on the sphere is
the gravitational force. (The force of tension is always perpen-
dicular to each element of the displacement and hence does
no work.) Because the gravitational force is conservative, the
total mechanical energy of the pendulum–Earth system is
constant. (In other words, we can classify this as an “energy
conservation” problem.) As the pendulum swings, continuous
transformation between potential and kinetic energy occurs.
At the instant the pendulum is released, the energy of the sys-
tem is entirely potential energy. At point � the pendulum has
kinetic energy, but the system has lost some potential energy.
At � the system has regained its initial potential energy, and
the kinetic energy of the pendulum is again zero.

Figure 8.7 If the sphere is released from rest at the angle �A it will
never swing above this position during its motion. At the start of the
motion, position �, the energy is entirely potential. This initial po-
tential energy is all transformed into kinetic energy at the lowest ele-
vation �. As the sphere continues to move along the arc, the energy
again becomes entirely potential energy at �.

The speed is always positive. If we had been asked to find the
ball’s velocity, we would use the negative value of the square
root as the y component to indicate the downward motion.

(b) Determine the speed of the ball at y if at the instant of
release it already has an initial speed vi at the initial altitude h.

Solution In this case, the initial energy includes kinetic
energy equal to and Equation 8.10 gives

1
2mvi 

2 � mgh � 1
2mvf 

2 � mgy

1
2mvi 

2,

√2g(h � y) vf �

This result is consistent with the expression 
from kinematics, where Further-

more, this result is valid even if the initial velocity is at an an-
gle to the horizontal (the projectile situation) for two rea-
sons: (1) energy is a scalar, and the kinetic energy depends
only on the magnitude of the velocity; and (2) the change in
the gravitational potential energy depends only on the
change in position in the vertical direction.

yi � h.vy i 

2 � 2g(yf � yi)
vy f 

2 �

√vi 

2 � 2g(h � y) vf �

 vf 

2 � vi 

2 � 2g(h � y)

�

�

�

θAL cos θA

L

T

P

m g

θ θ
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WORK DONE BY NONCONSERVATIVE FORCES
As we have seen, if the forces acting on objects within a system are conservative,
then the mechanical energy of the system remains constant. However, if some of
the forces acting on objects within the system are not conservative, then the me-
chanical energy of the system does not remain constant. Let us examine two types
of nonconservative forces: an applied force and the force of kinetic friction.

Work Done by an Applied Force

When you lift a book through some distance by applying a force to it, the force
you apply does work Wapp on the book, while the gravitational force does work Wg
on the book. If we treat the book as a particle, then the net work done on the
book is related to the change in its kinetic energy as described by the work–
kinetic energy theorem given by Equation 7.15:

(8.12)

Because the gravitational force is conservative, we can use Equation 8.2 to express
the work done by the gravitational force in terms of the change in potential en-
ergy, or Substituting this into Equation 8.12 gives

(8.13)

Note that the right side of this equation represents the change in the mechanical
energy of the book–Earth system. This result indicates that your applied force
transfers energy to the system in the form of kinetic energy of the book and gravi-
tational potential energy of the book–Earth system. Thus, we conclude that if an
object is part of a system, then an applied force can transfer energy into or out
of the system.

Situations Involving Kinetic Friction

Kinetic friction is an example of a nonconservative force. If a book is given some
initial velocity on a horizontal surface that is not frictionless, then the force of ki-
netic friction acting on the book opposes its motion and the book slows down and
eventually stops. The force of kinetic friction reduces the kinetic energy of the
book by transforming kinetic energy to internal energy of the book and part of the
horizontal surface. Only part of the book’s kinetic energy is transformed to inter-
nal energy in the book. The rest appears as internal energy in the surface. (When
you trip and fall while running across a gymnasium floor, not only does the skin on
your knees warm up but so does the floor!)

As the book moves through a distance d, the only force that does work is the
force of kinetic friction. This force causes a decrease in the kinetic energy of the
book. This decrease was calculated in Chapter 7, leading to Equation 7.17a, which
we repeat here:

(8.14)

If the book moves on an incline that is not frictionless, a change in the gravita-
tional potential energy of the book–Earth system also occurs, and is the
amount by which the mechanical energy of the system changes because of the
force of kinetic friction. In such cases,

(8.15)

where .Ei � �E � Ef

�E � �K � �U � � fkd

� fkd

�Kfriction � � fkd

Wapp � �K � �U

Wg � ��U.

Wapp � Wg � �K

8.5

QuickLab
Find a friend and play a game of 
racquetball. After a long volley, feel
the ball and note that it is warm. Why
is that?
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Problem-Solving Hints
Conservation of Energy
We can solve many problems in physics using the principle of conservation of
energy. You should incorporate the following procedure when you apply this
principle:

• Define your system, which may include two or more interacting particles, as
well as springs or other systems in which elastic potential energy can be
stored. Choose the initial and final points.

• Identify zero points for potential energy (both gravitational and spring). If
there is more than one conservative force, write an expression for the po-
tential energy associated with each force.

• Determine whether any nonconservative forces are present. Remember that
if friction or air resistance is present, mechanical energy is not conserved.

• If mechanical energy is conserved, you can write the total initial energy
at some point. Then, write an expression for the total final en-

ergy at the final point that is of interest. Because mechanical
energy is conserved, you can equate the two total energies and solve for the
quantity that is unknown.

• If frictional forces are present (and thus mechanical energy is not conserved),
first write expressions for the total initial and total final energies. In this
case, the difference between the total final mechanical energy and the total
initial mechanical energy equals the change in mechanical energy in the sys-
tem due to friction.

Ef � K f � Uf

Ei � K i � Ui

Crate Sliding Down a RampEXAMPLE 8.4
A 3.00-kg crate slides down a ramp. The ramp is 1.00 m in
length and inclined at an angle of 30.0°, as shown in Figure
8.8. The crate starts from rest at the top, experiences a con-
stant frictional force of magnitude 5.00 N, and continues to
move a short distance on the flat floor after it leaves the
ramp. Use energy methods to determine the speed of the
crate at the bottom of the ramp.

Solution Because the initial kinetic energy at the
top of the ramp is zero. If the y coordinate is measured from
the bottom of the ramp (the final position where the poten-
tial energy is zero) with the upward direction being positive,
then m. Therefore, the total mechanical energy of
the crate–Earth system at the top is all potential energy:

 � (3.00 kg)(9.80    m/s2)(0.500 m) � 14.7 J

Ei � Ki � Ui � 0 � Ui � mgyi 

yi � 0.500

vi � 0,

Write down the work–kinetic energy theorem for the general case of two objects that are
connected by a spring and acted upon by gravity and some other external applied force. In-
clude the effects of friction as �Efriction .

Quick Quiz 8.4

30.0°

vf

d = 1.00 m

vi = 0

0.500 m

Figure 8.8 A crate slides down a ramp under the influence of grav-
ity. The potential energy decreases while the kinetic energy increases. 
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Motion on a Curved TrackEXAMPLE 8.5

Note that the result is the same as it would be had the child
fallen vertically through a distance h! In this example,

m, giving

(b) If a force of kinetic friction acts on the child, how
much mechanical energy does the system lose? Assume that

m/s and kg.

Solution In this case, mechanical energy is not conserved,
and so we must use Equation 8.15 to find the loss of mechani-
cal energy due to friction:

Again, �E is negative because friction is reducing mechanical
energy of the system (the final mechanical energy is less than
the initial mechanical energy). Because the slide is curved,
the normal force changes in magnitude and direction during
the motion. Therefore, the frictional force, which is propor-
tional to n, also changes during the motion. Given this chang-
ing frictional force, do you think it is possible to determine
�k from these data?

�302 J�

 � 1
2(20.0 kg)(3.00 m/s)2 � (20.0 kg)(9.80 m/s2)(2.00 m)

 � (1
2mvf 

2 � 0) � (0 � mgh) � 1
2mvf 

2 � mgh 

�E � Ef � Ei � (Kf � Uf) � (Ki � Ui) 

m � 20.0vf � 3.00

6.26 m/svf � √2gh � √2(9.80 m/s2)(2.00 m) �

h � 2.00

  vf � √2gh  

0 � mgh � 1
2mvf 

2 � 0

 Ki � Ui � Kf � Uf A child of mass m rides on an irregularly curved slide of
height as shown in Figure 8.9. The child starts
from rest at the top. (a) Determine his speed at the bottom,
assuming no friction is present.

Solution The normal force n does no work on the child
because this force is always perpendicular to each element of
the displacement. Because there is no friction, the mechani-
cal energy of the child–Earth system is conserved. If we mea-
sure the y coordinate in the upward direction from the bot-
tom of the slide, then and we obtainyi � h, yf � 0,

h � 2.00 m,

Figure 8.9 If the slide is frictionless, the speed of the child at the
bottom depends only on the height of the slide. 

When the crate reaches the bottom of the ramp, the po-
tential energy of the system is zero because the elevation of
the crate is Therefore, the total mechanical energy of
the system when the crate reaches the bottom is all kinetic
energy:

We cannot say that because a nonconservative force
reduces the mechanical energy of the system: the force of ki-
netic friction acting on the crate. In this case, Equation 8.15
gives where d is the displacement along the
ramp. (Remember that the forces normal to the ramp do no
work on the crate because they are perpendicular to the dis-
placement.) With N and m, we have

This result indicates that the system loses some mechanical
energy because of the presence of the nonconservative fric-
tional force. Applying Equation 8.15 gives

�E � � fkd � �(5.00 N)(1.00 m) � �5.00 J

d � 1.00fk � 5.00

�E � � fkd,

Ei � Ef

Ef � Kf � Uf � 1
2mvf 

2 � 0

yf � 0.

Exercise Use Newton’s second law to find the acceleration
of the crate along the ramp, and use the equations of kine-
matics to determine the final speed of the crate.

Answer 3.23 m/s2; 2.54 m/s.

Exercise Assuming the ramp to be frictionless, find the fi-
nal speed of the crate and its acceleration along the ramp. 

Answer 3.13 m/s; 4.90 m/s2.

2.54 m/s  vf �

 vf 

2 �
19.4 J

3.00 kg
� 6.47 m2/s2 

 12mvf 

2 � 14.7 J � 5.00 J � 9.70 J

Ef � Ei � 1
2mvf 

2 � mgyi � � fkd

2.00 m

n

Fg = m g
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Let’s Go Skiing!EXAMPLE 8.6
To find the distance the skier travels before coming to

rest, we take With m/s and the frictional
force given by we obtain

Exercise Find the horizontal distance the skier travels be-
fore coming to rest if the incline also has a coefficient of ki-
netic friction equal to 0.210.

Answer 40.3 m.

95.2 m�

 d �
vB 

2

2�kg
�

(19.8 m/s)2

2(0.210)(9.80 m/s2)

 � ��kmgd 

(KC � UC) � (KB � UB) � (0 � 0) � (1
2mvB 

2 � 0) 

 �E � EC � EB � ��kmgd 

fk � �kn � �kmg,
vB � 19.8KC � 0.

A skier starts from rest at the top of a frictionless incline of
height 20.0 m, as shown in Figure 8.10. At the bottom of the
incline, she encounters a horizontal surface where the coeffi-
cient of kinetic friction between the skis and the snow is
0.210. How far does she travel on the horizontal surface be-
fore coming to rest?

Solution First, let us calculate her speed at the bottom of
the incline, which we choose as our zero point of potential
energy. Because the incline is frictionless, the mechanical en-
ergy of the skier–Earth system remains constant, and we find,
as we did in the previous example, that

Now we apply Equation 8.15 as the skier moves along the
rough horizontal surface from � to �. The change in me-
chanical energy along the horizontal is where d is
the horizontal displacement.

�E � � fkd,

vB � √2gh � √2(9.80 m/s2)(20.0 m) � 19.8 m/s

The Spring-Loaded PopgunEXAMPLE 8.7
tional potential energy of the projectile–Earth system to be at
the lowest position of the projectile xA , then the initial gravita-
tional potential energy also is zero. The mechanical energy of
this system is constant because no nonconservative forces are
present.

Initially, the only mechanical energy in the system is the
elastic potential energy stored in the spring of the gun,

where the compression of the spring is
m. The projectile rises to a maximum heightx � 0.120

UsA � kx2/2,

The launching mechanism of a toy gun consists of a spring of
unknown spring constant (Fig. 8.11a). When the spring is
compressed 0.120 m, the gun, when fired vertically, is able to
launch a 35.0-g projectile to a maximum height of 20.0 m
above the position of the projectile before firing. (a) Neglect-
ing all resistive forces, determine the spring constant.

Solution Because the projectile starts from rest, the initial
kinetic energy is zero. If we take the zero point for the gravita-

Figure 8.10 The skier slides down the slope and onto a level surface, stopping after a distance d
from the bottom of the hill.

d

20.0°

20.0 m

x

y

�

� �



228 C H A P T E R  8 Potential Energy and Conservation of Energy

Block – Spring CollisionEXAMPLE 8.8
energy and the spring is uncompressed, so that the elastic po-
tential energy stored in the spring is zero. Thus, the total me-
chanical energy of the system before the collision is just

After the collision, at �, the spring is fully com-
pressed; now the block is at rest and so has zero kinetic en-
ergy, while the energy stored in the spring has its maximum
value where the origin of coordinates is
chosen to be the equilibrium position of the spring and xm is

x � 01
2kx2 � 1

2kxm 

2
 ,

1
2mvA 

2
 .

A block having a mass of 0.80 kg is given an initial velocity
m/s to the right and collides with a spring of negli-

gible mass and force constant N/m, as shown in Fig-
ure 8.12. (a) Assuming the surface to be frictionless, calculate
the maximum compression of the spring after the collision.

Solution Our system in this example consists of the block
and spring. Before the collision, at �, the block has kinetic

k � 50
vA � 1.2

Figure 8.11 A spring-loaded popgun.

m, and so the final gravitational potential en-
ergy when the projectile reaches its peak is mgh. The final ki-
netic energy of the projectile is zero, and the final elastic po-
tential energy stored in the spring is zero. Because the
mechanical energy of the system is constant, we find that

xC � h � 20.0

(b) Find the speed of the projectile as it moves through
the equilibrium position of the spring (where m)
as shown in Figure 8.11b.

Solution As already noted, the only mechanical energy in
the system at � is the elastic potential energy kx2/2. The to-
tal energy of the system as the projectile moves through the
equilibrium position of the spring comprises the kinetic en-
ergy of the projectile mvB

2/2, and the gravitational potential
energy mgxB . Hence, the principle of the conservation of me-
chanical energy in this case gives

Solving for vB gives

You should compare the different examples we have pre-
sented so far in this chapter. Note how breaking the problem
into a sequence of labeled events helps in the analysis.

Exercise What is the speed of the projectile when it is at a
height of 10.0 m?

Answer 14.0 m/s.

19.7 m/s�

 � √ (953 N/m)(0.120 m)2

0.0350 kg
� 2(9.80 m/s2)(0.120 m)

vB � √ kx2

m
� 2gxB

 0 � 0 � 1
2kx2 � 1

2mvB 

2 � mgxB � 0 

KA � UgA � UsA � KB � Ug B � UsB

 EA � EB 

xB � 0.120

953 N/m k �

 12k(0.120 m)2 � (0.0350 kg)(9.80 m/s2)(20.0 m)

 0 � 0 � 1
2kx2 � 0 � mgh � 0 

KA � UgA � UsA � KC � Ug C � UsC 

 EA � EC

(a)

v

(b)

x x
xA = 0

�

�

xB = 0.120 m

xC = 20.0 m�
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Figure 8.12 A block sliding on a smooth, horizontal surface col-
lides with a light spring. (a) Initially the mechanical energy is all ki-
netic energy. (b) The mechanical energy is the sum of the kinetic 
energy of the block and the elastic potential energy in the spring. 
(c) The energy is entirely potential energy. (d) The energy is trans-
formed back to the kinetic energy of the block. The total energy re-
mains constant throughout the motion.

Multiflash photograph of a pole vault event. How
many forms of energy can you identify in this picture?

the maximum compression of the spring, which in this case
happens to be xC . The total mechanical energy of the system
is conserved because no nonconservative forces act on ob-
jects within the system.

Because mechanical energy is conserved, the kinetic en-
ergy of the block before the collision must equal the maxi-
mum potential energy stored in the fully compressed spring:

Note that we have not included Ug terms because no change
in vertical position occurred.

(b) Suppose a constant force of kinetic friction acts be-
tween the block and the surface, with If the speed�k � 0.50.

0.15 m�

 xm � √ m
k

 vA � √ 0.80 kg
50 N/m

 (1.2 m/s)

1
2mvA 

2 � 0 � 0 � 1
2kxm 

2 

 KA � UsA � KC � UsC 

 EA � EC 

of the block at the moment it collides with the spring is 
1.2 m/s, what is the maximum compression in the spring?

Solution In this case, mechanical energy is not conserved
because a frictional force acts on the block. The magnitude
of the frictional force is

Therefore, the change in the block’s mechanical energy due
to friction as the block is displaced from the equilibrium posi-
tion of the spring (where we have set our origin) to xB is

Substituting this into Equation 8.15 gives

Solving the quadratic equation for xB gives m and
m. The physically meaningful root is 

The negative root does not apply to this situation 

because the block must be to the right of the origin (positive
value of x) when it comes to rest. Note that 0.092 m is less
than the distance obtained in the frictionless case of part (a).
This result is what we expect because friction retards the mo-
tion of the system.

0.092 m.

xB �xB � �0.25
xB � 0.092

25xB 

2 � 3.92xB � 0.576 � 0

1
2(50)xB 

2 � 1
2(0.80)(1.2)2 � �3.92xB

�E � Ef � Ei � (0 � 1
2kxB 

2) � (1
2mvA 

2 � 0) � � fkxB

�E � � fkxB � �3.92xB 

fk � �kn � �kmg � 0.50(0.80 kg)(9.80 m/s2) � 3.92 N

vA �

E = – mvA
21

2

x = 0

(a)

(b)

(c)

vC = 0

(d)

xm

�

�

�

�

E = – mvB
2 + – kxB

21
2

1
2

E = – mvD
2 = – mvA

21
2

1
2

E = – kxm
21

2

vA

vB

xB

vD = –vA
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Connected Blocks in MotionEXAMPLE 8.9
where is the change in the system’s gravita-
tional potential energy and is the change in
the system’s elastic potential energy. As the hanging block
falls a distance h, the horizontally moving block moves the
same distance h to the right. Therefore, using Equation 8.15,
we find that the loss in energy due to friction between the
horizontally sliding block and the surface is

(2)

The change in the gravitational potential energy of the sys-
tem is associated with only the falling block because the verti-
cal coordinate of the horizontally sliding block does not
change. Therefore, we obtain

(3)

where the coordinates have been measured from the lowest
position of the falling block. 

The change in the elastic potential energy stored in the
spring is 

(4)

Substituting Equations (2), (3), and (4) into Equation (1)
gives

This setup represents a way of measuring the coefficient of
kinetic friction between an object and some surface. As you
can see from the problem, sometimes it is easier to work with
the changes in the various types of energy rather than the ac-
tual values. For example, if we wanted to calculate the numer-
ical value of the gravitational potential energy associated with
the horizontally sliding block, we would need to specify the
height of the horizontal surface relative to the lowest position
of the falling block. Fortunately, this is not necessary because
the gravitational potential energy associated with the first
block does not change.

m2g � 1
2kh

m1g
    �k �

��km1gh � �m2gh � 1
2kh2

�Us � Us f � Usi � 1
2kh2 � 0

�Ug � Ug f � Ugi � 0 � m2gh

�E � � fkh � ��km1gh

�Us � Usf � Usi

�Ug � Ug f � Ug iTwo blocks are connected by a light string that passes over a
frictionless pulley, as shown in Figure 8.13. The block of mass
m1 lies on a horizontal surface and is connected to a spring of
force constant k. The system is released from rest when the
spring is unstretched. If the hanging block of mass m2 falls a
distance h before coming to rest, calculate the coefficient of
kinetic friction between the block of mass m1 and the surface.

Solution The key word rest appears twice in the problem
statement, telling us that the initial and final velocities and ki-
netic energies are zero. (Also note that because we are con-
cerned only with the beginning and ending points of the mo-
tion, we do not need to label events with circled letters as we
did in the previous two examples. Simply using i and f is suffi-
cient to keep track of the situation.) In this situation, the sys-
tem consists of the two blocks, the spring, and the Earth. We
need to consider two forms of potential energy: gravitational
and elastic. Because the initial and final kinetic energies of
the system are zero, and we can write

(1) �E � �Ug � �Us

�K � 0,

Figure 8.13 As the hanging block moves from its highest eleva-
tion to its lowest, the system loses gravitational potential energy but
gains elastic potential energy in the spring. Some mechanical energy
is lost because of friction between the sliding block and the surface.

A Grand EntranceEXAMPLE 8.10
stage to the floor. Let us call the angle that the actor’s cable
makes with the vertical �. What is the maximum value � can
have before the sandbag lifts off the floor?

Solution We need to draw on several concepts to solve
this problem. First, we use the principle of the conservation
of mechanical energy to find the actor’s speed as he hits the
floor as a function of � and the radius R of the circular path
through which he swings. Next, we apply Newton’s second

You are designing apparatus to support an actor of mass 
65 kg who is to “fly” down to the stage during the perfor-
mance of a play. You decide to attach the actor’s harness to a
130-kg sandbag by means of a lightweight steel cable running
smoothly over two frictionless pulleys, as shown in Figure
8.14a. You need 3.0 m of cable between the harness and the
nearest pulley so that the pulley can be hidden behind a cur-
tain. For the apparatus to work successfully, the sandbag must
never lift above the floor as the actor swings from above the

k

h

m1

m2
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Figure 8.14 (a) An actor uses some clever staging to make his en-
trance. (b) Free-body diagram for actor at the bottom of the circular
path. (c) Free-body diagram for sandbag.

law to the actor at the bottom of his path to find the cable
tension as a function of the given parameters. Finally, we note
that the sandbag lifts off the floor when the upward force ex-
erted on it by the cable exceeds the gravitational force acting
on it; the normal force is zero when this happens.

Applying conservation of energy to the actor–Earth sys-
tem gives 

(1) 0 � mactor gyi � 1
2mactorvf 

2 � 0

 Ki � Ui � Kf � Uf 

where yi is the initial height of the actor above the floor and vf is
the speed of the actor at the instant before he lands. (Note that

because he starts from rest and that because we
set the level of the actor’s harness when he is standing on the
floor as the zero level of potential energy.) From the geometry
in Figure 8.14a, we see that 
Using this relationship in Equation (1), we obtain

(2)

Now we apply Newton’s second law to the actor when he is at
the bottom of the circular path, using the free-body diagram
in Figure 8.14b as a guide:

(3)

A force of the same magnitude as T is transmitted to the
sandbag. If it is to be just lifted off the floor, the normal force
on it becomes zero, and we require that as shown
in Figure 8.14c. Using this condition together with Equations
(2) and (3), we find that

Solving for � and substituting in the given parameters, we ob-
tain

Notice that we did not need to be concerned with the length
R of the cable from the actor’s harness to the leftmost pulley.
The important point to be made from this problem is that it
is sometimes necessary to combine energy considerations
with Newton’s laws of motion.

Exercise If the initial angle � � 40°, find the speed of the
actor and the tension in the cable just before he reaches the
floor. (Hint: You cannot ignore the length R � 3.0 m in this
calculation.)

Answer 3.7 m/s; 940 N.

60°    � �

cos � �
3mactor � mbag

2mactor
�

3(65 kg) � 130 kg
2(65 kg)

�
1
2

mbagg � mactorg � mactor 
2gR(1 � cos �)

R

T � mbagg,

T � mactorg � mactor 
vf

2

R
  

 �Fy � T � mactorg � mactor 
vf

2

R

vf 

2 � 2gR(1 � cos �)

yi � R � R cos � � R(1 � cos �).

Uf � 0Ki � 0

(a)

θR

Actor Sandbag

(b)

mactor

mactorg

T

m bag

m bagg

(c)

T

RELATIONSHIP BETWEEN CONSERVATIVE FORCES
AND POTENTIAL ENERGY

Once again let us consider a particle that is part of a system. Suppose that the par-
ticle moves along the x axis, and assume that a conservative force with an x compo-

8.6
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Relationship between force 
and potential energy

3 In three dimensions, the expression is where and so forth, are 

partial derivatives. In the language of vector calculus, F equals the negative of the gradient of the scalar 
quantity U(x, y, z).

	U
	x

 ,F � � i 
	U
	x

� j 
	U
	y

� k 
	U
	z

 ,

nent Fx acts on the particle. Earlier in this chapter, we showed how to determine
the change in potential energy of a system when we are given the conservative
force. We now show how to find Fx if the potential energy of the system is known.

In Section 8.2 we learned that the work done by the conservative force as its
point of application undergoes a displacement �x equals the negative of the
change in the potential energy associated with that force; that is,

If the point of application of the force undergoes an infinitesi-
mal displacement dx, we can express the infinitesimal change in the potential en-
ergy of the system dU as

Therefore, the conservative force is related to the potential energy function
through the relationship3

(8.16)

That is, any conservative force acting on an object within a system equals the
negative derivative of the potential energy of the system with respect to x.

We can easily check this relationship for the two examples already discussed.
In the case of the deformed spring, and therefore

which corresponds to the restoring force in the spring. Because the gravitational
potential energy function is it follows from Equation 8.16 that

when we differentiate Ug with respect to y instead of x.
We now see that U is an important function because a conservative force can

be derived from it. Furthermore, Equation 8.16 should clarify the fact that adding
a constant to the potential energy is unimportant because the derivative of a con-
stant is zero.

What does the slope of a graph of U(x) versus x represent?

Optional Section

ENERGY DIAGRAMS AND THE
EQUILIBRIUM OF A SYSTEM

The motion of a system can often be understood qualitatively through a graph of
its potential energy versus the separation distance between the objects in the sys-
tem. Consider the potential energy function for a block–spring system, given by

This function is plotted versus x in Figure 8.15a. (A common mistake is
to think that potential energy on the graph represents height. This is clearly not
Us � 1

2kx2.

8.7

Quick Quiz 8.5

Fg � �mg
Ug � mgy,

Fs � �
dUs

dx
� �

d
dx

(1
2kx2) � �kx

Us � 1
2kx2,

Fx � �
dU
dx

dU � �Fx dx

W � Fx �x � ��U.
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the case here, where the block is only moving horizontally.) The force Fs exerted
by the spring on the block is related to Us through Equation 8.16:

As we saw in Quick Quiz 8.5, the force is equal to the negative of the slope of the
U versus x curve. When the block is placed at rest at the equilibrium position of
the spring where it will remain there unless some external force
Fext acts on it. If this external force stretches the spring from equilibrium, x is posi-
tive and the slope dU/dx is positive; therefore, the force Fs exerted by the spring is
negative, and the block accelerates back toward when released. If the exter-
nal force compresses the spring, then x is negative and the slope is negative; there-
fore, Fs is positive, and again the mass accelerates toward upon release.

From this analysis, we conclude that the position for a block–spring sys-
tem is one of stable equilibrium. That is, any movement away from this position
results in a force directed back toward In general, positions of stable
equilibrium correspond to points for which U(x) is a minimum.

From Figure 8.15 we see that if the block is given an initial displacement xm
and is released from rest, its total energy initially is the potential energy stored in
the spring As the block starts to move, the system acquires kinetic energy
and loses an equal amount of potential energy. Because the total energy must re-
main constant, the block oscillates (moves back and forth) between the two points

and called the turning points. In fact, because no energy is lost
(no friction), the block will oscillate between � xm and � xm forever. (We discuss
these oscillations further in Chapter 13.) From an energy viewpoint, the energy of
the system cannot exceed therefore, the block must stop at these points
and, because of the spring force, must accelerate toward 

Another simple mechanical system that has a position of stable equilibrium is
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its
lowest position, it tends to return to that position when released.

x � 0.

1
2kxm 

2;

x � �xm ,x � �xm

1
2kxm 

2.

x � 0.

x � 0
x � 0

x � 0

Fs � 0,(x � 0),

Fs � �
dUs

dx
� �kx

Figure 8.15 (a) Potential energy as a
function of x for the block–spring sys-
tem shown in (b). The block oscillates
between the turning points, which have
the coordinates x � 
 xm . Note that the
restoring force exerted by the spring al-
ways acts toward x � 0, the position of
stable equilibrium.

E

–xm 0

Us

x
xm

(a)

xm

(b)

m

x = 0

= – kx21
2

Us
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Now consider a particle moving along the x axis under the influence of a con-
servative force Fx , where the U versus x curve is as shown in Figure 8.16. Once
again, at and so the particle is in equilibrium at this point. However,
this is a position of unstable equilibrium for the following reason: Suppose that
the particle is displaced to the right (x � 0). Because the slope is negative for 
x � 0, is positive and the particle accelerates away from x � 0. If in-
stead the particle is at x � 0 and is displaced to the left (x � 0), the force is nega-
tive because the slope is positive for x � 0, and the particle again accelerates away
from the equilibrium position. The position x � 0 in this situation is one of unsta-
ble equilibrium because for any displacement from this point, the force pushes the
particle farther away from equilibrium. The force pushes the particle toward a posi-
tion of lower potential energy. A pencil balanced on its point is in a position of un-
stable equilibrium. If the pencil is displaced slightly from its absolutely vertical po-
sition and is then released, it will surely fall over. In general, positions of
unstable equilibrium correspond to points for which U(x) is a maximum.

Finally, a situation may arise where U is constant over some region and hence
This is called a position of neutral equilibrium. Small displacements from

this position produce neither restoring nor disrupting forces. A ball lying on a flat
horizontal surface is an example of an object in neutral equilibrium.

Fx � 0.

Fx � �dU/dx

x � 0,Fx � 0

Force and Energy on an Atomic ScaleEXAMPLE 8.11
are at their critical separation, and then increases again as
the atoms move apart. When U(x) is a minimum, the atoms
are in stable equilbrium; this indicates that this is the most
likely separation between them.

(b) Determine Fx(x)—the force that one atom exerts on
the other in the molecule as a function of separation—and
argue that the way this force behaves is physically plausible
when the atoms are close together and far apart.

Solution Because the atoms combine to form a molecule,
we reason that the force must be attractive when the atoms
are far apart. On the other hand, the force must be repulsive
when the two atoms get very close together. Otherwise, the
molecule would collapse in on itself. Thus, the force must
change sign at the critical separation, similar to the way
spring forces switch sign in the change from extension to
compression. Applying Equation 8.16 to the Lennard–Jones
potential energy function gives

This result is graphed in Figure 8.17b. As expected, the force
is positive (repulsive) at small atomic separations, zero when
the atoms are at the position of stable equilibrium [recall
how we found the minimum of U(x)], and negative (attrac-
tive) at greater separations. Note that the force approaches
zero as the separation between the atoms becomes very great.

4� 12�12

x13 �
6�6

x7 �  �

Fx � �
dU(x)

dx
� �4 

d
dx ��

�

x �
12

� � �

x �
6

�

The potential energy associated with the force between two
neutral atoms in a molecule can be modeled by the
Lennard–Jones potential energy function:

where x is the separation of the atoms. The function U(x) con-
tains two parameters � and  that are determined from experi-
ments. Sample values for the interaction between two atoms
in a molecule are � � 0.263 nm and  � 1.51 � 10�22 J. 
(a) Using a spreadsheet or similar tool, graph this function
and find the most likely distance between the two atoms.

Solution We expect to find stable equilibrium when the
two atoms are separated by some equilibrium distance and
the potential energy of the system of two atoms (the mole-
cule) is a minimum. One can minimize the function U(x) by
taking its derivative and setting it equal to zero:

Solving for x—the equilibrium separation of the two atoms
in the molecule—and inserting the given information yield

We graph the Lennard–Jones function on both sides of
this critical value to create our energy diagram, as shown in
Figure 8.17a. Notice how U(x) is extremely large when the
atoms are very close together, is a minimum when the atoms

2.95 � 10�10 m.x �

 � 4� �12�12

x13 �
�6�6

x7 � � 0 

dU(x)
dx

� 4 
d
dx ��

�

x �
12

� � �

x �
6

� � 0

U(x) � 4�� �

x �
12

� � �

x �
6

�

0
x

U

Negative slope
x > 0

Positive slope
x < 0

Figure 8.16 A plot of U versus x
for a particle that has a position of
unstable equilibrium located at x �
0. For any finite displacement of
the particle, the force on the parti-
cle is directed away from x � 0.
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CONSERVATION OF ENERGY IN GENERAL
We have seen that the total mechanical energy of a system is constant when only
conservative forces act within the system. Furthermore, we can associate a poten-
tial energy function with each conservative force. On the other hand, as we saw in
Section 8.5, mechanical energy is lost when nonconservative forces such as friction
are present.

In our study of thermodynamics later in this course, we shall find that me-
chanical energy can be transformed into energy stored inside the various objects
that make up the system. This form of energy is called internal energy. For example,
when a block slides over a rough surface, the mechanical energy lost because of
friction is transformed into internal energy that is stored temporarily inside the
block and inside the surface, as evidenced by a measurable increase in the temper-
ature of both block and surface. We shall see that on a submicroscopic scale, this
internal energy is associated with the vibration of atoms about their equilibrium
positions. Such internal atomic motion involves both kinetic and potential energy.
Therefore, if we include in our energy expression this increase in the internal en-
ergy of the objects that make up the system, then energy is conserved.

This is just one example of how you can analyze an isolated system and al-
ways find that the total amount of energy it contains does not change, as long as
you account for all forms of energy. That is, energy can never be created or
destroyed. Energy may be transformed from one form to another, but the

8.8
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Figure 8.17 (a) Potential energy curve associated with a molecule. The distance x is the separation be-
tween the two atoms making up the molecule. (b) Force exerted on one atom by the other.

Total energy is always conserved
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total energy of an isolated system is always constant. From a universal
point of view, we can say that the total energy of the Universe is constant. If
one part of the Universe gains energy in some form, then another part must
lose an equal amount of energy. No violation of this principle has ever been
found.

Optional Section

MASS – ENERGY EQUIVALENCE
This chapter has been concerned with the important principle of energy conserva-
tion and its application to various physical phenomena. Another important princi-
ple, conservation of mass, states that in any physical or chemical process,
mass is neither created nor destroyed. That is, the mass before the process
equals the mass after the process.

For centuries, scientists believed that energy and mass were two quantities that
were separately conserved. However, in 1905 Einstein made the brilliant discovery
that the mass of any system is a measure of the energy of that system. Hence, en-
ergy and mass are related concepts. The relationship between the two is given by
Einstein’s most famous formula:

(8.17)

where c is the speed of light and ER is the energy equivalent of a mass m. The sub-
script R on the energy refers to the rest energy of an object of mass m—that is,
the energy of the object when its speed is .

The rest energy associated with even a small amount of matter is enormous.
For example, the rest energy of 1 kg of any substance is

This is equivalent to the energy content of about 15 million barrels of crude oil—
about one day’s consumption in the United States! If this energy could easily be re-
leased as useful work, our energy resources would be unlimited.

In reality, only a small fraction of the energy contained in a material sample
can be released through chemical or nuclear processes. The effects are greatest in
nuclear reactions, in which fractional changes in energy, and hence mass, of ap-
proximately 10�3 are routinely observed. A good example is the enormous
amount of energy released when the uranium-235 nucleus splits into two smaller
nuclei. This happens because the sum of the masses of the product nuclei is
slightly less than the mass of the original 235U nucleus. The awesome nature of the
energy released in such reactions is vividly demonstrated in the explosion of a nu-
clear weapon.

Equation 8.17 indicates that energy has mass. Whenever the energy of an object
changes in any way, its mass changes as well. If �E is the change in energy of an ob-
ject, then its change in mass is

(8.18)

Anytime energy �E in any form is supplied to an object, the change in the mass of
the object is However, because c 2 is so large, the changes in mass in
any ordinary mechanical experiment or chemical reaction are too small to be
detected.

�m � �E/c 2.

�m �
�E
c 2

ER � mc 2 � (1 kg)(3 � 108 m/s)2 � 9 � 1016 J

v � 0

ER � mc 2

8.9
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Optional Section

QUANTIZATION OF ENERGY
Certain physical quantities such as electric charge are quantized; that is, the quanti-
ties have discrete values rather than continuous values. The quantized nature of
energy is especially important in the atomic and subatomic world. As an example,
let us consider the energy levels of the hydrogen atom (which consists of an elec-
tron orbiting around a proton). The atom can occupy only certain energy levels,
called quantum states, as shown in Figure 8.18a. The atom cannot have any energy
values lying between these quantum states. The lowest energy level E1 is called the

8.10

Here Comes the SunEXAMPLE 8.12
The Sun radiates uniformly in all directions, and so only a
very tiny fraction of its total output is collected by the Earth.
Nonetheless this amount is sufficient to supply energy to
nearly everything on the Earth. (Nuclear and geothermal en-
ergy are the only alternatives.) Plants absorb solar energy and
convert it to chemical potential energy (energy stored in the
plant’s molecules). When an animal eats the plant, this chem-
ical potential energy can be turned into kinetic and other
forms of energy. You are reading this book with solar-
powered eyes!

The Sun converts an enormous amount of matter to energy.
Each second, 4.19 � 109 kg—approximately the capacity of
400 average-sized cargo ships—is changed to energy. What is
the power output of the Sun?

Solution We find the energy liberated per second by
means of a straightforward conversion:

We then apply the definition of power:

3.77 � 1026 W� �
3.77 � 1026 J

1.00 s
�

ER � (4.19 � 109 kg)(3.00 � 108 m/s)2 � 3.77 � 1026 J

Figure 8.18 Energy-level diagrams: (a) Quantum states of the hydrogen atom. The lowest state
E1 is the ground state. (b) The energy levels of an Earth satellite are also quantized but are so
close together that they cannot be distinguished from one another.
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ground state of the atom. The ground state corresponds to the state that an isolated
atom usually occupies. The atom can move to higher energy states by absorbing
energy from some external source or by colliding with other atoms. The highest
energy on the scale shown in Figure 8.18a, E� , corresponds to the energy of the
atom when the electron is completely removed from the proton. The energy dif-
ference is called the ionization energy. Note that the energy levels get
closer together at the high end of the scale.

Next, consider a satellite in orbit about the Earth. If you were asked to de-
scribe the possible energies that the satellite could have, it would be reasonable
(but incorrect) to say that it could have any arbitrary energy value. Just like that of
the hydrogen atom, however, the energy of the satellite is quantized. If you
were to construct an energy level diagram for the satellite showing its allowed en-
ergies, the levels would be so close to one another, as shown in Figure 8.18b, that it
would be difficult to discern that they were not continuous. In other words, we
have no way of experiencing quantization of energy in the macroscopic world;
hence, we can ignore it in describing everyday experiences.

SUMMARY

If a particle of mass m is at a distance y above the Earth’s surface, the gravita-
tional potential energy of the particle–Earth system is

(8.1)

The elastic potential energy stored in a spring of force constant k is

(8.4)

You should be able to apply these two equations in a variety of situations to deter-
mine the potential an object has to perform work.

A force is conservative if the work it does on a particle moving between two
points is independent of the path the particle takes between the two points. Fur-
thermore, a force is conservative if the work it does on a particle is zero when the
particle moves through an arbitrary closed path and returns to its initial position.
A force that does not meet these criteria is said to be  nonconservative.

A potential energy function U can be associated only with a conservative
force. If a conservative force F acts on a particle that moves along the x axis from
xi to xf , then the change in the potential energy of the system equals the negative
of the work done by that force:

(8.7)

You should be able to use calculus to find the potential energy associated with a
conservative force and vice versa.

The total mechanical energy of a system is defined as the sum of the ki-
netic energy and the potential energy:

(8.9)

If no external forces do work on a system and if no nonconservative forces are
acting on objects inside the system, then the total mechanical energy of the system
is constant:

(8.10)Ki � Ui � Kf � Uf

E � K � U

Uf � Ui � ��xf

x i

Fx dx

Us � 1
2kx2

Ug � mgy

E� � E1
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QUESTIONS

of the student’s nose as in Figure Q8.3. If the student re-
mains stationary, explain why she will not be struck by the
ball on its return swing. Would the student be safe if she
pushed the ball as she released it?

4. One person drops a ball from the top of a building, while
another person at the bottom observes its motion. Will
these two people agree on the value of the potential en-
ergy of the ball–Earth system? on its change in potential
energy? on the kinetic energy of the ball?

5. When a person runs in a track event at constant velocity,
is any work done? (Note: Although the runner moves with
constant velocity, the legs and arms accelerate.) How does
air resistance enter into the picture? Does the center of
mass of the runner move horizontally?

6. Our body muscles exert forces when we lift, push, run,
jump, and so forth. Are these forces conservative?

7. If three conservative forces and one nonconservative
force act on a system, how many potential energy terms
appear in the equation that describes this system?

8. Consider a ball fixed to one end of a rigid rod whose
other end pivots on a horizontal axis so that the rod can
rotate in a vertical plane. What are the positions of stable
and unstable equilibrium?

9. Is it physically possible to have a situation where

10. What would the curve of U versus x look like if a particle
were in a region of neutral equilibrium?

11. Explain the energy transformations that occur during 
(a) the pole vault, (b) the shot put, (c) the high jump.
What is the source of energy in each case?

12. Discuss some of the energy transformations that occur
during the operation of an automobile.

13. If only one external force acts on a particle, does it 
necessarily change the particle’s (a) kinetic energy? 
(b) velocity?

E � U � 0?

1. Many mountain roads are constructed so that they spiral
around a mountain rather than go straight up the slope.
Discuss this design from the viewpoint of energy and
power.

2. A ball is thrown straight up into the air. At what position
is its kinetic energy a maximum? At what position is the
gravitational potential energy a maximum? 

3. A bowling ball is suspended from the ceiling of a lecture
hall by a strong cord. The bowling ball is drawn away from
its equilibrium position and released from rest at the tip

If nonconservative forces (such as friction) act on objects inside a system, then
mechanical energy is not conserved. In these situations, the difference between the
total final mechanical energy and the total initial mechanical energy of the system
equals the energy transferred to or from the system by the nonconservative forces.

Figure Q8.3

PROBLEMS

be the zero level for gravitational potential energy. Find
the potential energy of the roller coaster–Earth system
at points A and B and the change in its potential energy
as the coaster moves. (b) Repeat part (a), setting the
zero reference level at point A.

Section 8.1 Potential Energy
Section 8.2 Conservative and Nonconservative Forces

1. A 1 000-kg roller coaster is initially at the top of a rise, at
point A. It then moves 135 ft, at an angle of 40.0° below
the horizontal, to a lower point B. (a) Choose point B to

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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Figure P8.10

Figure P8.3 Problems 3, 4, and 5.

2. A 40.0-N child is in a swing that is attached to ropes 
2.00 m long. Find the gravitational potential energy of
the child–Earth system relative to the child’s lowest po-
sition when (a) the ropes are horizontal, (b) the ropes
make a 30.0° angle with the vertical, and (c) the child is
at the bottom of the circular arc.

3. A 4.00-kg particle moves from the origin to position C,
which has coordinates x � 5.00 m and y � 5.00 m 
(Fig. P8.3). One force on it is the force of gravity acting
in the negative y direction. Using Equation 7.2, calcu-
late the work done by gravity as the particle moves from
O to C along (a) OAC, (b) OBC, and (c) OC. Your re-
sults should all be identical. Why?

time tf ? (b) If the potential energy of the system at time
tf is 5.00 J, are any nonconservative forces acting on the
particle? Explain.

7. A single conservative force acts on a 5.00-kg particle.
The equation N, where x is in meters, de-
scribes this force. As the particle moves along the x axis
from m to m, calculate (a) the work
done by this force, (b) the change in the potential en-
ergy of the system, and (c) the kinetic energy of the par-
ticle at m if its speed at m is 3.00 m/s.

8. A single constant force N acts on a 
4.00-kg particle. (a) Calculate the work done by this
force if the particle moves from the origin to the point
having the vector position m. Does this
result depend on the path? Explain. (b) What is the
speed of the particle at r if its speed at the origin is 
4.00 m/s? (c) What is the change in the potential
energy of the system?

9. A single conservative force acting on a particle varies as
N, where A and B are constants and

x is in meters. (a) Calculate the potential energy func-
tion U(x) associated with this force, taking at

(b) Find the change in potential energy and
change in kinetic energy as the particle moves from

m to m.
10. A particle of mass 0.500 kg is shot from P as shown in

Figure P8.10. The particle has an initial velocity vi with a
horizontal component of 30.0 m/s. The particle rises to
a maximum height of 20.0 m above P. Using the law of
conservation of energy, determine (a) the vertical com-
ponent of vi , (b) the work done by the gravitational
force on the particle during its motion from P to B, and
(c) the horizontal and the vertical components of the
velocity vector when the particle reaches B.

x � 3.00x � 2.00

x � 0.
U � 0

F � (�Ax � Bx2)i

r � (2i � 3j)

F � (3i � 5j)
x � 1.00x � 5.00

x � 5.00x � 1.00

Fx � (2x � 4)

11. A 3.00-kg mass starts from rest and slides a distance d
down a frictionless 30.0° incline. While sliding, it comes
into contact with an unstressed spring of negligible
mass, as shown in Figure P8.11. The mass slides an addi-
tional 0.200 m as it is brought momentarily to rest by
compression of the spring (k � 400 N/m). Find the ini-
tial separation d between the mass and the spring.

4. (a) Suppose that a constant force acts on an object. The
force does not vary with time, nor with the position or
velocity of the object. Start with the general definition
for work done by a force

and show that the force is conservative. (b) As a special
case, suppose that the force N acts on a
particle that moves from O to C in Figure P8.3. Calcu-
late the work done by F if the particle moves along each
one of the three paths OAC, OBC, and OC. (Your three
answers should be identical.)

5. A force acting on a particle moving in the xy plane is
given by N, where x and y are in me-
ters. The particle moves from the origin to a final posi-
tion having coordinates x � 5.00 m and y � 5.00 m, as
in Figure P8.3. Calculate the work done by F along 
(a) OAC, (b) OBC, (c) OC. (d) Is F conservative or non-
conservative? Explain.

Section 8.3 Conservative Forces and Potential Energy
Section 8.4 Conservation of Mechanical Energy

6. At time ti , the kinetic energy of a particle in a system is
30.0 J and the potential energy of the system is 10.0 J. At
some later time tf , the kinetic energy of the particle is
18.0 J. (a) If only conservative forces act on the particle,
what are the potential energy and the total energy at

F � (2 y i � x2 j)

F � (3i � 4j)

W � �f

i
F � d s

(5.00, 5.00) m
C

B

y

x
AO

20.0 m
θ

60.0 m
g

P

vi

A B

WEB
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Figure P8.15

Figure P8.13

Figure P8.11 Problems 11 and 12.

12. A mass m starts from rest and slides a distance d down a
frictionless incline of angle �. While sliding,  it contacts
an unstressed spring of negligible mass, as shown in Fig-
ure P8.11. The mass slides an additional distance x as it
is brought momentarily to rest by compression of the
spring (of force constant k). Find the initial separation
d between the mass and the spring.

cal spring of constant k � 5 000 N/m and is pushed
downward so that the spring is compressed 0.100 m. Af-
ter the block is released, it travels upward and then
leaves the spring. To what maximum height above the
point of release does it rise?

18. Dave Johnson, the bronze medalist at the 1992 Olympic
decathlon in Barcelona, leaves the ground for his high
jump with a vertical velocity component of 6.00 m/s.
How far up does his center of gravity move as he makes
the jump?

19. A 0.400-kg ball is thrown straight up into the air and
reaches a maximum altitude of 20.0 m. Taking its initial
position as the point of zero potential energy and using
energy methods, find (a) its initial speed, (b) its total
mechanical energy, and (c) the ratio of its kinetic en-
ergy to the potential energy of the ball–Earth system
when the ball is at an altitude of 10.0 m.

20. In the dangerous “sport” of bungee-jumping, a daring
student jumps from a balloon with a specially designed

14. A simple, 2.00-m-long pendulum is released from rest
when the support string is at an angle of 25.0° from the
vertical. What is the speed of the suspended mass at the
bottom of the swing?

15. A bead slides without friction around a loop-the-loop
(Fig. P8.15). If the bead is released from a height h �
3.50R, what is its speed at point A? How great is the nor-
mal force on it if its mass is 5.00 g?

16. A 120-g mass is attached to the bottom end of an un-
stressed spring. The spring is hanging vertically and has
a spring constant of 40.0 N/m. The mass is dropped.
(a) What is its maximum speed? (b) How far does it
drop before coming to rest momentarily?

17. A block of mass 0.250 kg is placed on top of a light verti-

13. A particle of mass m � 5.00 kg is released from point �
and slides on the frictionless track shown in Figure
P8.13. Determine (a) the particle’s speed at points �
and � and (b) the net work done by the force of gravity
in moving the particle from � to �.

m = 3.00 kg

d

k = 400 N/m

θ = 30.0°θ

3.20 m

�

�

�

m

2.00 m

5.00 m

A

R

h

Figure P8.20 Bungee-jumping. (Gamma)
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elastic cord attached to his ankles, as shown in Figure
P8.20. The unstretched length of the cord is 25.0 m, the
student weighs 700 N, and the balloon is 36.0 m above
the surface of a river below. Assuming that Hooke’s law
describes the cord, calculate the required force constant
if the student is to stop safely 4.00 m above the river.

21. Two masses are connected by a light string passing over a
light frictionless pulley, as shown in Figure P8.21. The
5.00-kg mass is released from rest. Using the law of con-
servation of energy, (a) determine the speed of the 3.00-
kg mass just as the 5.00-kg mass hits the ground and (b)
find the maximum height to which the 3.00-kg mass rises.

22. Two masses are connected by a light string passing over
a light frictionless pulley, as shown in Figure P8.21. The
mass m1 (which is greater than m2) is released from rest.
Using the law of conservation of energy, (a) determine
the speed of m2 just as m1 hits the ground in terms of
m1, m2, and h, and (b) find the maximum height to
which m2 rises.

cal circular arc (Fig. P8.25). Suppose a performer with
mass m and holding the bar steps off an elevated plat-
form, starting from rest with the ropes at an angle of �i
with respect to the vertical. Suppose the size of the per-
former’s body is small compared with the length �, that
she does not pump the trapeze to swing higher, and that
air resistance is negligible. (a) Show that when the ropes
make an angle of � with respect to the vertical, the per-
former must exert a force

in order to hang on. (b) Determine the angle �i at which
the force required to hang on at the bottom of the swing
is twice the performer’s weight.

F � mg (3 cos � � 2 cos �i)

Figure P8.25

Figure P8.21 Problems 21 and 22.

23. A 20.0-kg cannon ball is fired from a cannon with a
muzzle speed of 1 000 m/s at an angle of 37.0° with the
horizontal. A second ball is fired at an angle of 90.0°.
Use the law of conservation of mechanical energy to
find (a) the maximum height reached by each ball and
(b) the total mechanical energy at the maximum height
for each ball. Let y � 0 at the cannon.

24. A 2.00-kg ball is attached to the bottom end of a length
of 10-lb (44.5-N) fishing line. The top end of the fishing
line is held stationary. The ball is released from rest
while the line is taut and horizontal (� � 90.0°). At
what angle � (measured from the vertical) will the fish-
ing line break?

25. The circus apparatus known as the trapeze consists of a
bar suspended by two parallel ropes, each of length �.
The trapeze allows circus performers to swing in a verti-

26. After its release at the top of the first rise, a roller-
coaster car moves freely with negligible friction. The
roller coaster shown in Figure P8.26 has a circular loop
of radius 20.0 m. The car barely makes it around the
loop: At the top of the loop, the riders are upside down
and feel weightless. (a) Find the speed of the roller
coaster car at the top of the loop (position 3). Find the
speed of the roller coaster car (b) at position 1 and 
(c) at position 2. (d) Find the difference in height be-
tween positions 1 and 4 if the speed at position 4 is 
10.0 m/s.

27. A light rigid rod is 77.0 cm long. Its top end is pivoted
on a low-friction horizontal axle. The rod hangs straight
down at rest, with a small massive ball attached to its
bottom end. You strike the ball, suddenly giving it a hor-
izontal velocity so that it swings around in a full circle.
What minimum speed at the bottom is required to
make the ball go over the top of the circle?

h � 4.00 mm2 � 3.00 kg

m1 � 5.00 kg

�

θ
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Section 8.5 Work Done by Nonconservative Forces
28. A 70.0-kg diver steps off a 10.0-m tower and drops

straight down into the water. If he comes to rest 5.00 m
beneath the surface of the water, determine the average
resistance force that the water exerts on the diver.

29. A force Fx , shown as a function of distance in Figure
P8.29, acts on a 5.00-kg mass. If the particle starts from
rest at x � 0 m, determine the speed of the particle at 
x � 2.00, 4.00, and 6.00 m.

32. A 2 000-kg car starts from rest and coasts down from the
top of a 5.00-m-long driveway that is sloped at an angle
of 20.0° with the horizontal. If an average friction force
of 4 000 N impedes the motion of the car, find the
speed of the car at the bottom of the driveway.

33. A 5.00-kg block is set into motion up an inclined plane
with an initial speed of 8.00 m/s (Fig. P8.33). The block
comes to rest after traveling 3.00 m along the plane,
which is inclined at an angle of 30.0° to the horizontal.
For this motion determine (a) the change in the block’s
kinetic energy, (b) the change in the potential energy,
and (c) the frictional force exerted on it (assumed to be
constant). (d) What is the coefficient of kinetic friction?

Figure P8.33

Figure P8.31

Figure P8.29

Figure P8.26

34. A boy in a wheelchair (total mass, 47.0 kg) wins a race
with a skateboarder. He has a speed of 1.40 m/s at the
crest of a slope 2.60 m high and 12.4 m long. At the bot-
tom of the slope, his speed is 6.20 m/s. If air resistance
and rolling resistance can be modeled as a constant fric-
tional force of 41.0 N, find the work he did in pushing
forward on his wheels during the downhill ride.

35. A parachutist of mass 50.0 kg jumps out of a balloon at
a height of 1 000 m and lands on the ground with a
speed of 5.00 m/s. How much energy was lost to air fric-
tion during this jump?

36. An 80.0-kg sky diver jumps out of a balloon at an alti-
tude of 1 000 m and opens the parachute at an altitude
of 200.0 m. (a) Assuming that the total retarding force

30. A softball pitcher swings a ball of mass 0.250 kg around
a vertical circular path of radius 60.0 cm before releas-
ing it from her hand. The pitcher maintains a compo-
nent of force on the ball of constant magnitude 30.0 N
in the direction of motion around the complete path.
The speed of the ball at the top of the circle is 15.0 m/s.
If the ball is released at the bottom of the circle, what is
its speed upon release?

31. The coefficient of friction between the 3.00-kg block
and the surface in Figure P8.31 is 0.400. The system
starts from rest. What is the speed of the 5.00-kg ball
when it has fallen 1.50 m?

1

2

3
4

87654321
0 x(m)
1
2
3
4
5

Fx(N)

3.00 kg

5.00 kg

3.00 m
vi = 8.00 m/s

30.0°

WEB



244 C H A P T E R  8 Potential Energy and Conservation of Energy

on the diver is constant at 50.0 N with the parachute
closed and constant at 3 600 N with the parachute open,
what is the speed of the diver when he lands on the
ground? (b) Do you think the sky diver will get hurt? Ex-
plain. (c) At what height should the parachute be opened
so that the final speed of the sky diver when he hits the
ground is 5.00 m/s? (d) How realistic is the assumption
that the total retarding force is constant? Explain.

37. A toy cannon uses a spring to project a 5.30-g soft rub-
ber ball. The spring is originally compressed by 5.00 cm
and has a stiffness constant of 8.00 N/m. When it is
fired, the ball moves 15.0 cm through the barrel of the
cannon, and there is a constant frictional force of 
0.032 0 N between the barrel and the ball. (a) With
what speed does the projectile leave the barrel of the
cannon? (b) At what point does the ball have maximum
speed? (c) What is this maximum speed?

38. A 1.50-kg mass is held 1.20 m above a relaxed, massless
vertical spring with a spring constant of 320 N/m. The
mass is dropped onto the spring. (a) How far does it
compress the spring? (b) How far would it compress the
spring if the same experiment were performed on the
Moon, where g � 1.63 m/s2? (c) Repeat part (a), but
this time assume that a constant air-resistance force of
0.700 N acts on the mass during its motion.

39. A 3.00-kg block starts at a height h � 60.0 cm on a
plane that has an inclination angle of 30.0°, as shown in
Figure P8.39. Upon reaching the bottom, the block
slides along a horizontal surface. If the coefficient of
friction on both surfaces is �k � 0.200, how far does the
block slide on the horizontal surface before coming to
rest? (Hint: Divide the path into two straight-line parts.)

42. A potential energy function for a two-dimensional force
is of the form Find the force that acts at
the point (x, y).

(Optional)
Section 8.7 Energy Diagrams and the Equilibrium of a
System

43. A particle moves along a line where the potential en-
ergy depends on its position r, as graphed in Figure
P8.43. In the limit as r increases without bound, U(r)
approaches � 1 J. (a) Identify each equilibrium position
for this particle. Indicate whether each is a point of sta-
ble, unstable, or neutral equilibrium. (b) The particle
will be bound if its total energy is in what range? Now
suppose the particle has energy � 3 J. Determine 
(c) the range of positions where it can be found, 
(d) its maximum kinetic energy, (e) the location at
which it has maximum kinetic energy, and (f) its bind-
ing energy—that is, the additional energy that it would
have to be given in order for it to move out to r : �.

U � 3x3y � 7x.

Figure P8.43

Figure P8.39

44. A right circular cone can be balanced on a horizontal
surface in three different ways. Sketch these three equi-
librium configurations and identify them as positions of
stable, unstable, or neutral equilibrium.

45. For the potential energy curve shown in Figure P8.45,
(a) determine whether the force Fx is positive, negative,
or zero at the five points indicated. (b) Indicate points
of stable, unstable, and neutral equilibrium. (c) Sketch
the curve for Fx versus x from x � 0 to x � 9.5 m.

46. A hollow pipe has one or two weights attached to its in-
ner surface, as shown in Figure P8.46. Characterize
each configuration as being stable, unstable, or neutral
equilibrium and explain each of your choices (“CM” in-
dicates center of mass).

47. A particle of mass m is attached between two identical
springs on a horizontal frictionless tabletop. The

40. A 75.0-kg sky diver is falling with a terminal speed of
60.0 m/s. Determine the rate at which he is losing me-
chanical energy.

Section 8.6 Relationship Between Conservative 
Forces and Potential Energy

41. The potential energy of a two-particle system separated
by a distance r is given by where A is a con-
stant. Find the radial force Fr that each particle exerts
on the other.

U(r) � A/r,

θ = 30.0°

m = 3.00 kg

h = 60.0 cm

θ

0
r(mm)

+2

U( J)

+4

+6

+2

–2

–4

–6

2 4 6

WEB
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springs have spring constant k, and each is initially un-
stressed. (a) If the mass is pulled a distance x along a di-
rection perpendicular to the initial configuration of the
springs, as in Figure P8.47, show that the potential en-
ergy of the system is

(Hint: See Problem 66 in Chapter 7.) (b) Make a plot of
U(x) versus x and identify all equilibrium points. As-
sume that L � 1.20 m and k � 40.0 N/m. (c) If the
mass is pulled 0.500 m to the right and then released,
what is its speed when it reaches the equilibrium point
x � 0?

U(x) � kx2 � 2kL(L � √x2 � L2)

51. Close to the center of a campus is a tall silo topped with
a hemispherical cap. The cap is frictionless when wet.
Someone has somehow balanced a pumpkin at the
highest point. The line from the center of curvature of
the cap to the pumpkin makes an angle �i � 0° with the
vertical. On a rainy night, a breath of wind makes the
pumpkin start sliding downward from rest. It loses con-
tact with the cap when the line from the center of the
hemisphere to the pumpkin makes a certain angle with
the vertical; what is this angle?

52. A 200-g particle is released from rest at point � along
the horizontal diameter on the inside of a frictionless,
hemispherical bowl of radius cm (Fig. P8.52).
Calculate (a) the gravitational potential energy when
the particle is at point � relative to point �, (b) the ki-
netic energy of the particle at point �, (c) its speed at
point �, and (d) its kinetic energy and the potential
energy at point �.

R � 30.0

Figure P8.50

Figure P8.47

Figure P8.46

Figure P8.45

(Optional)
Section 8.9 Mass – Energy Equivalence

48. Find the energy equivalents of (a) an electron of mass
9.11 � 10�31 kg, (b) a uranium atom with a mass of
4.00 � 10�25 kg, (c) a paper clip of mass 2.00 g, and
(d) the Earth (of mass 5.99 � 1024 kg). 

49. The expression for the kinetic energy of a particle moving
with speed v is given by Equation 7.19, which can be writ-
ten as where 
The term �mc 2 is the total energy of the particle, and the
term mc2 is its rest energy. A proton moves with a speed of
0.990c, where c is the speed of light. Find (a) its rest en-
ergy, (b) its total energy, and (c) its kinetic energy.

ADDITIONAL PROBLEMS

50. A block slides down a curved frictionless track and then
up an inclined plane as in Figure P8.50. The coefficient
of kinetic friction between the block and the incline is
�k . Use energy methods to show that the maximum
height reached by the block is

ymax �
h

1 � �k cot �

� � [1 � (v/c)2]�1/2.K � �mc 2 � mc 2,
8

x(m)
642

0

–2

–4

2

4

6

U (J)

�

�

�

�

�

(b) (c)(a)

CMO ×
CM×

O
CM×

O

Top View

L

L

x m

k

k

x

ymax
θ

h
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53. The particle described in Problem 52 (Fig. P8.52) is re-
leased from rest at �, and the surface of the bowl is
rough. The speed of the particle at � is 1.50 m/s. 
(a) What is its kinetic energy at �? (b) How much en-
ergy is lost owing to friction as the particle moves from
� to �? (c) Is it possible to determine � from these re-
sults in any simple manner? Explain.

54. Review Problem. The mass of a car is 1 500 kg. The
shape of the body is such that its aerodynamic drag co-
efficient is D � 0.330 and the frontal area is 2.50 m2. As-
suming that the drag force is proportional to v2 and ne-
glecting other sources of friction, calculate the power
the car requires to maintain a speed of 100 km/h as it
climbs a long hill sloping at 3.20°.

55. Make an order-of-magnitude estimate of your power
output as you climb stairs. In your solution, state the
physical quantities you take as data and the values you
measure or estimate for them. Do you consider your
peak power or your sustainable power?

56. A child’s pogo stick (Fig. P8.56) stores energy in a
spring (k � 2.50 � 104 N/m). At position � (xA �
� 0.100 m), the spring compression is a maximum and
the child is momentarily at rest. At position � (xB � 0),
the spring is relaxed and the child is moving upward. At
position �, the child is again momentarily at rest at the
top of the jump. Assuming that the combined mass of
the child and the pogo stick is 25.0 kg, (a) calculate the
total energy of the system if both potential energies are
zero at x � 0, (b) determine xC , (c) calculate the speed
of the child at x � 0, (d) determine the value of x for

which the kinetic energy of the system is a maximum,
and (e) calculate the child’s maximum upward speed.

57. A 10.0-kg block is released from point � in Figure
P8.57. The track is frictionless except for the portion
between � and �, which has a length of 6.00 m. The
block travels down the track, hits a spring of force con-
stant k � 2 250 N/m, and compresses the spring 
0.300 m from its equilibrium position before coming to
rest momentarily. Determine the coefficient of kinetic
friction between the block and the rough surface be-
tween � and �.

58. A 2.00-kg block situated on a rough incline is connected
to a spring of negligible mass having a spring constant
of 100 N/m (Fig. P8.58). The pulley is frictionless. The
block is released from rest when the spring is un-
stretched. The block moves 20.0 cm down the incline
before coming to rest. Find the coefficient of kinetic
friction between block and incline.

Figure P8.57

Figure P8.56

Figure P8.52 Problems 52 and 53.

3.00 m

6.00 m

�

� �

xA

xC

�

�

�

2R/3

R

�

�

�
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63. A block of mass 0.500 kg is pushed against a horizontal
spring of negligible mass until the spring is compressed
a distance �x (Fig. P8.63). The spring constant is 
450 N/m. When it is released, the block travels along a
frictionless, horizontal surface to point B, at the bottom
of a vertical circular track of radius m, and
continues to move up the track. The speed of the block
at the bottom of the track is vB � 12.0 m/s, and the
block experiences an average frictional force of 7.00 N
while sliding up the track. (a) What is �x? (b) What
speed do you predict for the block at the top of the
track? (c) Does the block actually reach the top of the
track, or does it fall off before reaching the top?

64. A uniform chain of length 8.00 m initially lies stretched
out on a horizontal table. (a) If the coefficient of static
friction between the chain and the table is 0.600, show
that the chain will begin to slide off the table if at least
3.00 m of it hangs over the edge of the table. (b) Deter-
mine the speed of the chain as all of it leaves the table,
given that the coefficient of kinetic friction between the
chain and the table is 0.400.

R � 1.00

62. A 1.00-kg mass slides to the right on a surface having a
coefficient of friction � � 0.250 (Fig. P8.62). The mass
has a speed of vi � 3.00 m/s when it makes contact with
a light spring that has a spring constant k � 50.0 N/m.
The mass comes to rest after the spring has been com-
pressed a distance d. The mass is then forced toward the

59. Review Problem. Suppose the incline is frictionless for
the system described in Problem 58 (see Fig. P8.58).
The block is released from rest with the spring initially
unstretched. (a) How far does it move down the incline
before coming to rest? (b) What is its acceleration at its
lowest point? Is the acceleration constant? (c) Describe
the energy transformations that occur during the de-
scent.

60. The potential energy function for a system is given by
U(x) � � x3 � 2x2 � 3x. (a) Determine the force Fx as
a function of x. (b) For what values of x is the force
equal to zero? (c) Plot U(x) versus x and Fx versus x, and
indicate points of stable and unstable equilibrium.

61. A 20.0-kg block is connected to a 30.0-kg block by a
string that passes over a frictionless pulley. The 30.0-kg
block is connected to a spring that has negligible mass
and a force constant of 250 N/m, as shown in Figure
P8.61. The spring is unstretched when the system is as
shown in the figure, and the incline is frictionless. The
20.0-kg block is pulled 20.0 cm down the incline (so
that the 30.0-kg block is 40.0 cm above the floor) and is
released from rest. Find the speed of each block when
the 30.0-kg block is 20.0 cm above the floor (that is,
when the spring is unstretched).

left by the spring and continues to move in that direc-
tion beyond the spring’s unstretched position. Finally,
the mass comes to rest at a distance D to the left of the
unstretched spring. Find (a) the distance of compres-
sion d, (b) the speed v of the mass at the unstretched
position when the mass is moving to the left, and 
(c) the distance D between the unstretched spring and
the point at which the mass comes to rest.

Figure P8.62

Figure P8.61

Figure P8.58 Problems 58 and 59.

v

k

vi

d
vf = 0

v = 0

D

m

20.0 kg

40.0°

30.0 kg

20.0 cm

37.0°

2.00 kg

k = 100 N/m
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65. An object of mass m is suspended from a post on top of
a cart by a string of length L as in Figure P8.65a. The
cart and object are initially moving to the right at con-
stant speed vi . The cart comes to rest after colliding and
sticking to a bumper as in Figure P8.65b, and the sus-
pended object swings through an angle �. (a) Show that 
the speed is (b) If L � 1.20 m
and � � 35.0°, find the initial speed of the cart. (Hint:
The force exerted by the string on the object does no
work on the object.)

vi � √2gL(1 � cos �).

Figure P8.68

Figure P8.67

Figure P8.66

Figure P8.65

Figure P8.63

T

vT

vB

B

R

m
k∆x

69. A ball at the end of a string whirls around in a vertical
circle. If the ball’s total energy remains constant, show
that the tension in the string at the bottom is greater

68. A ball is tied to one end of a string. The other end of
the string is fixed. The ball is set in motion around a
vertical circle without friction. At the top of the circle,
the ball has a speed of as shown in Figure
P8.68. At what angle � should the string be cut so that
the ball will travel through the center of the circle?

vi � √Rg,

67. A ball having mass m is connected by a strong string of
length L to a pivot point and held in place in a vertical
position. A wind exerting constant force of magnitude F
is blowing from left to right as in Figure P8.67a. (a) If
the ball is released from rest, show that the maximum
height H it reaches, as measured from its initial height,
is

Check that the above formula is valid both when 
0 � H � L and when L � H � 2L. (Hint: First deter-
mine the potential energy associated with the constant
wind force.) (b) Compute the value of H using the val-
ues m � 2.00 kg, L � 2.00 m, and F � 14.7 N. (c) Using
these same values, determine the equilibrium height of
the ball. (d) Could the equilibrium height ever be
greater than L? Explain.

H �
2L

1 � (mg/F )2

66. A child slides without friction from a height h along a
curved water slide (Fig. P8.66). She is launched from a
height h/5 into the pool. Determine her maximum air-
borne height y in terms of h and �.

(a)

vi

L

m

(b)

θ

h

θ

h/5
y

L

(a)

F

m

L

Pivot

(b)

F

Pivot

H
m

The path
after string
is cut

R

θ
C

m

vi =     Rg
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Figure P8.74

Figure P8.72

Figure P8.71

Figure P8.70

73. A 5.00-kg block free to move on a horizontal, friction-
less surface is attached to one end of a light horizontal
spring. The other end of the spring is fixed. The spring
is compressed 0.100 m from equilibrium and is then re-
leased. The speed of the block is 1.20 m/s when it
passes the equilibrium position of the spring. The same
experiment is now repeated with the frictionless surface
replaced by a surface for which �k � 0.300. Determine
the speed of the block at the equilibrium position of the
spring.

74. A 50.0-kg block and a 100-kg block are connected by a
string as in Figure P8.74. The pulley is frictionless and
of negligible mass. The coefficient of kinetic friction be-
tween the 50.0-kg block and the incline is �k � 0.250.
Determine the change in the kinetic energy of the 
50.0-kg block as it moves from � to �, a distance of
20.0 m.

the other side? (Hint: First determine the potential en-
ergy associated with the wind force.) (b) Once the res-
cue is complete, Tarzan and Jane must swing back
across the river. With what minimum speed must they
begin their swing? Assume that Tarzan has a mass of
80.0 kg.

72. A child starts from rest and slides down the frictionless
slide shown in Figure P8.72. In terms of R and H, at what
height h will he lose contact with the section of radius R?

71. Jane, whose mass is 50.0 kg, needs to swing across a
river (having width D) filled with man-eating crocodiles
to save Tarzan from danger. However, she must swing
into a wind exerting constant horizontal force F on a
vine having length L and initially making an angle �
with the vertical (Fig. P8.71). Taking D � 50.0 m, F �
110 N, L � 40.0 m, and � � 50.0°, (a) with what mini-
mum speed must Jane begin her swing to just make it to

than the tension at the top by a value six times the
weight of the ball.

70. A pendulum comprising a string of length L and a
sphere swings in the vertical plane. The string hits a peg
located a distance d below the point of suspension (Fig.
P8.70). (a) Show that if the sphere is released from a
height below that of the peg, it will return to this height
after striking the peg. (b) Show that if the pendulum is
released from the horizontal position (� � 90°) and is
to swing in a complete circle centered on the peg, then
the minimum value of d must be 3L/5.

dL

Peg

θ

Wind

 θ

L

F

D

φ

Tarzan

Jane

H

R

50.0 kg

100 kg

37.0°
v

�

�
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ANSWERS TO QUICK QUIZZES

Wapp � 0, then the system energy increases. If Wapp � 0,
then the system energy decreases. The effect of friction
is to decrease the total system energy. Equation 8.15
then becomes

You may find it easier to think of this equation with its
terms in a different order, saying

total initial energy � net change � total final energy

8.5 The slope of a U(x)-versus-x graph is by definition
dU(x)/dx. From Equation 8.16, we see that this expres-
sion is equal to the negative of the x component of the
conservative force acting on an object that is part of the
system.

K 1f � K 2f � Ug1f � Ug 2f � Usf

K 1i � K 2i � Ug1i � Ug2i � Usi � Wapp � fkd �

   � [(Ug1f � Ug 2f � Usf) � (Ug1i � Ug 2i � Usi)]

  � [K 1f � K 2f) � (K 1i � K 2i)] 

 � �K � �U 

�E � Wapp � �Efriction 

8.1 Yes, because we are free to choose any point whatsoever
as our origin of coordinates, which is the Ug � 0 point.
If the object is below the origin of coordinates that we
choose, then Ug � 0 for the object–Earth system.

8.2 Yes, the total mechanical energy of the system is con-
served because the only forces acting are conservative:
the force of gravity and the spring force. There are two
forms of potential energy: (1) gravitational potential en-
ergy and (2) elastic potential energy stored in the spring. 

8.3 The first and third balls speed up after they are thrown,
while the second ball initially slows down but then
speeds up after reaching its peak. The paths of all three
balls are parabolas, and the balls take different times to
reach the ground because they have different initial ve-
locities. However, all three balls have the same speed at
the moment they hit the ground because all start with
the same kinetic energy and undergo the same change
in gravitational potential energy. In other words,

is the same for all three balls at the
start of the motion.

8.4 Designate one object as No. 1 and the other as No. 2.
The external force does work Wapp on the system. If 

Etotal � 1
2mv2 � mgh
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Airbags have saved countless lives by
reducing the forces exerted on vehicle
occupants during collisions. How can
airbags change the force needed to
bring a person from a high speed to a
complete stop? Why are they usually
safer than seat belts alone? (Courtesy 

of Saab)
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onsider what happens when a golf ball is struck by a club. The ball is given a
very large initial velocity as a result of the collision; consequently, it is able to
travel more than 100 m through the air. The ball experiences a large accelera-

tion. Furthermore, because the ball experiences this acceleration over a very short
time interval, the average force exerted on it during the collision is very great. Ac-
cording to Newton’s third law, the ball exerts on the club a reaction force that is
equal in magnitude to and opposite in direction to the force exerted by the club
on the ball. This reaction force causes the club to accelerate. Because the club is
much more massive than the ball, however, the acceleration of the club is much
less than the acceleration of the ball.

One of the main objectives of this chapter is to enable you to understand and
analyze such events. As a first step, we introduce the concept of momentum, which is
useful for describing objects in motion and as an alternate and more general
means of applying Newton’s laws. For example, a very massive football player is of-
ten said to have a great deal of momentum as he runs down the field. A much less
massive player, such as a halfback, can have equal or greater momentum if his
speed is greater than that of the more massive player. This follows from the fact
that momentum is defined as the product of mass and velocity. The concept of
momentum leads us to a second conservation law, that of conservation of momen-
tum. This law is especially useful for treating problems that involve collisions be-
tween objects and for analyzing rocket propulsion. The concept of the center of
mass of a system of particles also is introduced, and we shall see that the motion of
a system of particles can be described by the motion of one representative particle
located at the center of mass.

LINEAR MOMENTUM AND ITS CONSERVATION
In the preceding two chapters we studied situations too complex to analyze easily
with Newton’s laws. In fact, Newton himself used a form of his second law slightly
different from (Eq. 5.2)—a form that is considerably easier to apply in
complicated circumstances. Physicists use this form to study everything from sub-
atomic particles to rocket propulsion. In studying situations such as these, it is of-
ten useful to know both something about the object and something about its mo-
tion. We start by defining a new term that incorporates this information:

�F � ma

9.1

The linear momentum of a particle of mass m moving with a velocity v is de-
fined to be the product of the mass and velocity:

(9.1)p � mv

C

Linear momentum is a vector quantity because it equals the product of a scalar
quantity m and a vector quantity v. Its direction is along v, it has dimensions
ML/T, and its SI unit is kg � m/s.

If a particle is moving in an arbitrary direction, p must have three compo-
nents, and Equation 9.1 is equivalent to the component equations

(9.2)

As you can see from its definition, the concept of momentum provides a quantita-
tive distinction between heavy and light particles moving at the same velocity. For
example, the momentum of a bowling ball moving at 10 m/s is much greater than
that of a tennis ball moving at the same speed. Newton called the product mv

px � mvx  py � mvy  pz � mvz

Definition of linear momentum of
a particle

6.2
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quantity of motion; this is perhaps a more graphic description than our present-day
word momentum, which comes from the Latin word for movement.

Two objects have equal kinetic energies. How do the magnitudes of their momenta com-
pare? (a) (b) (c) (d) not enough information to tell.

Using Newton’s second law of motion, we can relate the linear momentum of a
particle to the resultant force acting on the particle: The time rate of change of the
linear momentum of a particle is equal to the net force acting on the particle:

(9.3)

In addition to situations in which the velocity vector varies with time, we can
use Equation 9.3 to study phenomena in which the mass changes. The real value
of Equation 9.3 as a tool for analysis, however, stems from the fact that when the
net force acting on a particle is zero, the time derivative of the momentum of the
particle is zero, and therefore its linear momentum1 is constant. Of course, if 
the particle is isolated, then by necessity and p remains unchanged. This
means that p is conserved. Just as the law of conservation of energy is useful in
solving complex motion problems, the law of conservation of momentum can
greatly simplify the analysis of other types of complicated motion.

Conservation of Momentum for a Two-Particle System

Consider two particles 1 and 2 that can interact with each other but are isolated
from their surroundings (Fig. 9.1). That is, the particles may exert a force on each
other, but no external forces are present. It is important to note the impact of
Newton’s third law on this analysis. If an internal force from particle 1 (for exam-
ple, a gravitational force) acts on particle 2, then there must be a second internal
force—equal in magnitude but opposite in direction—that particle 2 exerts on
particle 1.

Suppose that at some instant, the momentum of particle 1 is p1 and that of
particle 2 is p2 . Applying Newton’s second law to each particle, we can write

where F21 is the force exerted by particle 2 on particle 1 and F12 is the force ex-
erted by particle 1 on particle 2. Newton’s third law tells us that F12 and F21 are
equal in magnitude and opposite in direction. That is, they form an action–reac-
tion pair F12 � � F21 . We can express this condition as

or as

dp1

dt
�

dp2

dt
�

d
dt

 (p1 � p2) � 0

F21 � F12 � 0

  F21 �
dp1

dt
        and         F12 �

dp2

dt

�F � 0

�F �
dp
dt

�
d(mv)

dt

p1 � p 2 ,p1 � p 2 ,p1 � p 2 ,

Quick Quiz 9.1

1In this chapter, the terms momentum and linear momentum have the same meaning. Later, in Chapter
11, we shall use the term angular momentum when dealing with rotational motion.

6.2

Newton’s second law for a particle

p2 = m2v2

m2

m1

F21

F12

p1 = m1v1

Figure 9.1 At some instant, the
momentum of particle 1 is p1 �
m1v1 and the momentum of parti-
cle 2 is p2 � m 2v2 . Note that F12 �
� F21 . The total momentum of the
system ptot is equal to the vector
sum p1 � p2 .
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Because the time derivative of the total momentum ptot � p1 � p2 is zero, we con-
clude that the total momentum of the system must remain constant:

(9.4)

or, equivalently,

(9.5)

where pli and p2i are the initial values and p1f and p2f the final values of the mo-
mentum during the time interval dt over which the reaction pair interacts. Equa-
tion 9.5 in component form demonstrates that the total momenta in the x, y, and z
directions are all independently conserved:

(9.6)

This result, known as the law of conservation of linear momentum, can be ex-
tended to any number of particles in an isolated system. It is considered one of the
most important laws of mechanics. We can state it as follows:

�
system

 pix � �
system

 pf x  �
system

 piy � �
system

 pf y  �
system

 piz � �
system

 pf z

p1i � p2i � p1f � p2f

ptot � �
system

 p � p1 � p2 � constant

Whenever two or more particles in an isolated system interact, the total momen-
tum of the system remains constant.

This law tells us that the total momentum of an isolated system at all times
equals its initial momentum.

Notice that we have made no statement concerning the nature of the forces
acting on the particles of the system. The only requirement is that the forces must
be internal to the system.

Your physical education teacher throws a baseball to you at a certain speed, and you catch
it. The teacher is next going to throw you a medicine ball whose mass is ten times the mass
of the baseball. You are given the following choices: You can have the medicine ball thrown
with (a) the same speed as the baseball, (b) the same momentum, or (c) the same kinetic
energy. Rank these choices from easiest to hardest to catch.

Quick Quiz 9.2

The Floating AstronautEXAMPLE 9.1
A SkyLab astronaut discovered that while concentrating on
writing some notes, he had gradually floated to the middle of
an open area in the spacecraft. Not wanting to wait until he
floated to the opposite side, he asked his colleagues for a
push. Laughing at his predicament, they decided not to help,
and so he had to take off his uniform and throw it in one di-
rection so that he would be propelled in the opposite direc-
tion. Estimate his resulting velocity.

Solution We begin by making some reasonable guesses of
relevant data. Let us assume we have a 70-kg astronaut who
threw his 1-kg uniform at a speed of 20 m/s. For conve-

Conservation of momentum

Figure 9.2 A hapless astronaut has discarded his uniform to get
somewhere.

v2fv1f
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IMPULSE AND MOMENTUM
As we have seen, the momentum of a particle changes if a net force acts on the
particle. Knowing the change in momentum caused by a force is useful in solving
some types of problems. To begin building a better understanding of this impor-
tant concept, let us assume that a single force F acts on a particle and that this
force may vary with time. According to Newton’s second law, or

(9.7)

We can integrate2 this expression to find the change in the momentum of a parti-
cle when the force acts over some time interval. If the momentum of the particle

dp � F dt

F � dp/dt,

9.2

Breakup of a Kaon at RestEXAMPLE 9.2
The important point behind this problem is that even though
it deals with objects that are very different from those in the
preceding example, the physics is identical: Linear momen-
tum is conserved in an isolated system.

One type of nuclear particle, called the neutral kaon (K0),
breaks up into a pair of other particles called pions (�� and
��) that are oppositely charged but equal in mass, as illus-
trated in Figure 9.3. Assuming the kaon is initially at rest,
prove that the two pions must have momenta that are equal
in magnitude and opposite in direction.

Solution The breakup of the kaon can be written

If we let p� be the momentum of the positive pion and p�

the momentum of the negative pion, the final momentum of
the system consisting of the two pions can be written

Because the kaon is at rest before the breakup, we know that
pi � 0. Because momentum is conserved, so that

or
p� � �p�

p� � p� � 0,
pi � pf � 0,

pf � p� � p�

K0 9: �� � ��

6.3
&
6.4

Figure 9.3 A kaon at rest breaks up spontaneously into a pair of
oppositely charged pions. The pions move apart with momenta that
are equal in magnitude but opposite in direction.

nience, we set the positive direction of the x axis to be the di-
rection of the throw (Fig. 9.2). Let us also assume that the x
axis is tangent to the circular path of the spacecraft.

We take the system to consist of the astronaut and the uni-
form. Because of the gravitational force (which keeps the as-
tronaut, his uniform, and the entire spacecraft in orbit), the
system is not really isolated. However, this force is directed
perpendicular to the motion of the system. Therefore, mo-
mentum is constant in the x direction because there are no
external forces in this direction.

The total momentum of the system before the throw is
zero Therefore, the total momentum af-
ter the throw must be zero; that is,

m1v1f � m2v2f � 0

(m1v1i � m2v2i � 0).

With m/s, and kg, solving for
v1f , we find the recoil velocity of the astronaut to be

The negative sign for v1f indicates that the astronaut is mov-
ing to the left after the throw, in the direction opposite the
direction of motion of the uniform, in accordance with New-
ton’s third law. Because the astronaut is much more massive
than his uniform, his acceleration and consequent velocity
are much smaller than the acceleration and velocity of the
uniform.

�0.3i m/sv1f � �
m2

m1
 v2f � �� 1 kg

70 kg �(20i m/s) �

m2 � 1v2f � 20im1 � 70 kg,

Κ
Before
decay

(at rest)

p+p–

π– π+

After decay

π π

0

2Note that here we are integrating force with respect to time. Compare this with our efforts in Chapter 7,
where we integrated force with respect to position to express the work done by the force.
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changes from pi at time ti to pf at time tf , integrating Equation 9.7 gives

(9.8)

To evaluate the integral, we need to know how the force varies with time. The
quantity on the right side of this equation is called the impulse of the force F act-
ing on a particle over the time interval Impulse is a vector defined by

(9.9)I � �tf

ti

 F dt � 	p

	t � tf � ti .

	p � pf � pi � �tf

ti
 F dt

The impulse of the force F acting on a particle equals the change in the mo-
mentum of the particle caused by that force.

This statement, known as the impulse–momentum theorem,3 is equivalent to
Newton’s second law. From this definition, we see that impulse is a vector quantity
having a magnitude equal to the area under the force–time curve, as described in
Figure 9.4a. In this figure, it is assumed that the force varies in time in the general
manner shown and is nonzero in the time interval The direction of
the impulse vector is the same as the direction of the change in momentum. Im-
pulse has the dimensions of momentum—that is, ML/T. Note that impulse is not
a property of a particle; rather, it is a measure of the degree to which an external
force changes the momentum of the particle. Therefore, when we say that an im-
pulse is given to a particle, we mean that momentum is transferred from an exter-
nal agent to that particle.

Because the force imparting an impulse can generally vary in time, it is conve-
nient to define a time-averaged force

(9.10)

where (This is an application of the mean value theorem of calculus.)
Therefore, we can express Equation 9.9 as

(9.11)

This time-averaged force, described in Figure 9.4b, can be thought of as the con-
stant force that would give to the particle in the time interval 	t the same impulse
that the time-varying force gives over this same interval.

In principle, if F is known as a function of time, the impulse can be calculated
from Equation 9.9. The calculation becomes especially simple if the force acting
on the particle is constant. In this case, and Equation 9.11 becomes

(9.12)

In many physical situations, we shall use what is called the impulse approxi-
mation, in which we assume that one of the forces exerted on a particle acts
for a short time but is much greater than any other force present. This ap-
proximation is especially useful in treating collisions in which the duration of the

I � F 	t

F � F

I � F 	t

	t � tf � ti .

F �
1
	t
�tf

t i

 F dt

	t � tf � ti .

Impulse–momentum theorem

Impulse of a force

3Although we assumed that only a single force acts on the particle, the impulse–momentum theorem is
valid when several forces act; in this case, we replace F in Equation 9.9 with �F.

t i t f

t i

F

(a)

t f
t

F

(b)

t

F

Area = F∆t

Figure 9.4 (a) A force acting on
a particle may vary in time. The im-
pulse imparted to the particle by
the force is the area under the
force versus time curve. (b) In the
time interval 	t, the time-averaged
force (horizontal dashed line)
gives the same impulse to a particle
as does the time-varying force de-
scribed in part (a).
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collision is very short. When this approximation is made, we refer to the force as
an impulsive force. For example, when a baseball is struck with a bat, the time of the
collision is about 0.01 s and the average force that the bat exerts on the ball in this
time is typically several thousand newtons. Because this is much greater than the
magnitude of the gravitational force, the impulse approximation justifies our ig-
noring the weight of the ball and bat. When we use this approximation, it is impor-
tant to remember that pi and pf represent the momenta immediately before and af-
ter the collision, respectively. Therefore, in any situation in which it is proper to
use the impulse approximation, the particle moves very little during the collision.

Two objects are at rest on a frictionless surface. Object 1 has a greater mass than object 2.
When a force is applied to object 1, it accelerates through a distance d. The force is re-
moved from object 1 and is applied to object 2. At the moment when object 2 has acceler-
ated through the same distance d, which statements are true? (a) (b) 
(c) (d) (e) (f) K1 � K2 .K1 � K2 ,K1 � K2 ,p 1 � p 2 ,

p 1 � p 2 ,p 1 � p 2 ,

Quick Quiz 9.3

During the brief time the club is in contact with the ball, the ball gains momentum as a result of
the collision, and the club loses the same amount of momentum.

QuickLab
If you can find someone willing, play
catch with an egg. What is the best
way to move your hands so that the
egg does not break when you change
its momentum to zero?

Teeing OffEXAMPLE 9.3
the club loses contact with the ball as the ball starts on its tra-
jectory, and � to denote its landing. Neglecting air resis-
tance, we can use Equation 4.14 for the range of a projectile:

Let us assume that the launch angle 
B is 45°, the angle that
provides the maximum range for any given launch velocity.
This assumption gives sin 2
B � 1, and the launch velocity of

R � xC �
v B 

2

g
 sin 2
 B

A golf ball of mass 50 g is struck with a club (Fig. 9.5). The
force exerted on the ball by the club varies from zero, at the in-
stant before contact, up to some maximum value (at which the
ball is deformed) and then back to zero when the ball leaves
the club. Thus, the force–time curve is qualitatively described
by Figure 9.4. Assuming that the ball travels 200 m, estimate the
magnitude of the impulse caused by the collision.

Solution Let us use � to denote the moment when the
club first contacts the ball, � to denote the moment when
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How Good Are the Bumpers?EXAMPLE 9.4
The initial and final momenta of the automobile are

Hence, the impulse is

The average force exerted on the automobile is

1.76 � 105i NF �
	p
	t

�
2.64 � 104 i kg�m/s

0.150 s
�

2.64 � 104i kg�m/s I �

  � (�2.25 � 104i kg�m/s) 

I � 	p � pf � pi � 0.39 � 104i kg�m/s

pf � mvf � (1 500 kg)(2.60 i m/s) � 0.39 � 104i kg�m/s 

pi � mvi � (1 500 kg)(�15.0i m/s) � �2.25 � 104i kg�m/s

In a particular crash test, an automobile of mass 1 500 kg col-
lides with a wall, as shown in Figure 9.6. The initial and final
velocities of the automobile are m/s and

m/s, respectively. If the collision lasts for 0.150 s,
find the impulse caused by the collision and the average
force exerted on the automobile.

Solution Let us assume that the force exerted on the car
by the wall is large compared with other forces on the car so
that we can apply the impulse approximation. Furthermore,
we note that the force of gravity and the normal force ex-
erted by the road on the car are perpendicular to the motion
and therefore do not affect the horizontal momentum.

vf � 2.60i
vi � �15.0i

Figure 9.6 (a) This car’s momentum
changes as a result of its collision with
the wall. (b) In a crash test, much of the
car’s initial kinetic energy is transformed
into energy used to damage the car.

Figure 9.5 A golf ball being struck by a club. (© Harold E. Edgerton/
Courtesy of Palm Press, Inc.)

the ball is

Considering the time interval for the collision, 
and for the ball. Hence, the magnitude of the im-
pulse imparted to the ball is

Exercise If the club is in contact with the ball for a time of
4.5 � 10�4 s, estimate the magnitude of the average force ex-
erted by the club on the ball.

Answer 4.9 � 103 N, a value that is extremely large when
compared with the weight of the ball, 0.49 N.

2.2 kg�m/s�

I � 	p � mv B � mvA � (50 � 10�3 kg)(44 m/s) � 0

vf � v B

vi � vA � 0

v B � √xCg � √(200 m)(9.80 m/s2) � 44 m/s

Before

After

2.60 m/s

–15.0 m/s

(a) (b)
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Rank an automobile dashboard, seatbelt, and airbag in terms of (a) the impulse and 
(b) the average force they deliver to a front-seat passenger during a collision.

COLLISIONS
In this section we use the law of conservation of linear momentum to describe
what happens when two particles collide. We use the term collision to represent
the event of two particles’ coming together for a short time and thereby producing
impulsive forces on each other. These forces are assumed to be much greater
than any external forces present.

A collision may entail physical contact between two macroscopic objects, as de-
scribed in Figure 9.7a, but the notion of what we mean by collision must be gener-
alized because “physical contact” on a submicroscopic scale is ill-defined and
hence meaningless. To understand this, consider a collision on an atomic scale
(Fig. 9.7b), such as the collision of a proton with an alpha particle (the nucleus of
a helium atom). Because the particles are both positively charged, they never
come into physical contact with each other; instead, they repel each other because
of the strong electrostatic force between them at close separations. When two par-
ticles 1 and 2 of masses m1 and m2 collide as shown in Figure 9.7, the impulsive
forces may vary in time in complicated ways, one of which is described in Figure
9.8. If F21 is the force exerted by particle 2 on particle 1, and if we assume that no
external forces act on the particles, then the change in momentum of particle 1
due to the collision is given by Equation 9.8:

Likewise, if F12 is the force exerted by particle 1 on particle 2, then the change in
momentum of particle 2 is

From Newton’s third law, we conclude that

Because the total momentum of the system is we conclude that
the change in the momentum of the system due to the collision is zero:

This is precisely what we expect because no external forces are acting on the sys-
tem (see Section 9.2). Because the impulsive forces are internal, they do not
change the total momentum of the system (only external forces can do that).

psystem � p1 � p2 � constant

psystem � p1 � p2 ,

	p1 � 	p2 � 0 

 	p1 � �	p2

	p2 � �tf

ti
 F12 dt

	p1 � �tf

ti
 F21 dt

9.3

Quick Quiz 9.4

signs of the velocities indicated the reversal of directions.
What would the mathematics be describing if both the initial
and final velocities had the same sign?

Note that the magnitude of this force is large compared with
the weight of the car ( N), which justifies
our initial assumption. Of note in this problem is how the

mg � 1.47 � 104

p

+

+ +

He

(b)

m2
m1

(a)

F12F21

4

t

F12

F21

F

Figure 9.8 The impulse force as
a function of time for the two col-
liding particles described in Figure
9.7a. Note that F12 � � F21.

Figure 9.7 (a) The collision be-
tween two objects as the result of
direct contact. (b) The “collision”
between two charged particles.

6.5
&
6.6



As a ball falls toward the Earth, the ball’s momentum increases because its speed increases.
Does this mean that momentum is not conserved in this situation?

A skater is using very low-friction rollerblades. A friend throws a Frisbee straight at her. In
which case does the Frisbee impart the greatest impulse to the skater: (a) she catches the
Frisbee and holds it, (b) she catches it momentarily but drops it, (c) she catches it and at
once throws it back to her friend?

ELASTIC AND INELASTIC COLLISIONS
IN ONE DIMENSION

As we have seen, momentum is conserved in any collision in which external forces
are negligible. In contrast, kinetic energy may or may not be constant, depend-
ing on the type of collision. In fact, whether or not kinetic energy is the same before
and after the collision is used to classify collisions as being either elastic or inelastic.

An elastic collision between two objects is one in which total kinetic energy (as
well as total momentum) is the same before and after the collision. Billiard-ball collisions
and the collisions of air molecules with the walls of a container at ordinary temper-
atures are approximately elastic. Truly elastic collisions do occur, however, between
atomic and subatomic particles. Collisions between certain objects in the macro-
scopic world, such as billiard-ball collisions, are only approximately elastic because
some deformation and loss of kinetic energy take place.

9.4

Quick Quiz 9.6

Quick Quiz 9.5

260 C H A P T E R  9 Linear Momentum and Collisions

Therefore, we conclude that the total momentum of an isolated system just
before a collision equals the total momentum of the system just after the
collision.

Carry Collision Insurance!EXAMPLE 9.5
the entangled cars is

Equating the momentum before to the momentum after
and solving for vf , the final velocity of the entangled cars, we
have

The direction of the final velocity is the same as the velocity
of the initially moving car.

Exercise What would be the final speed if the two cars each
had a mass of 900 kg?

Answer 10.0 m/s.

6.67 m/svf �
pi

m1 � m2
�

1.80 � 104 kg�m/s
2 700 kg

�

pf � (m1 � m2)vf � (2 700 kg)vf

A car of mass 1800 kg stopped at a traffic light is struck from
the rear by a 900-kg car, and the two become entangled. If
the smaller car was moving at 20.0 m/s before the collision,
what is the velocity of the entangled cars after the collision?

Solution We can guess that the final speed is less than
20.0 m/s, the initial speed of the smaller car. The total mo-
mentum of the system (the two cars) before the collision
must equal the total momentum immediately after the colli-
sion because momentum is conserved in any type of collision.
The magnitude of the total momentum before the collision is
equal to that of the smaller car because the larger car is ini-
tially at rest:

After the collision, the magnitude of the momentum of

pi � m1v1i � (900 kg)(20.0 m/s) � 1.80 � 104 kg�m/s

Elastic collision

Momentum is conserved for any
collision

When the bowling ball and pin col-
lide, part of the ball’s momentum
is transferred to the pin. Conse-
quently, the pin acquires momen-
tum and kinetic energy, and the
ball loses momentum and kinetic
energy. However, the total momen-
tum of the system (ball and pin) re-
mains constant.
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Inelastic collision

Figure 9.9 Schematic representa-
tion of a perfectly inelastic head-on
collision between two particles: 
(a) before collision and (b) after
collision.

An inelastic collision is one in which total kinetic energy is not the same before and
after the collision (even though momentum is constant). Inelastic collisions are of two
types. When the colliding objects stick together after the collision, as happens
when a meteorite collides with the Earth, the collision is called perfectly inelastic.
When the colliding objects do not stick together, but some kinetic energy is lost, as
in the case of a rubber ball colliding with a hard surface, the collision is called in-
elastic (with no modifying adverb). For example, when a rubber ball collides with
a hard surface, the collision is inelastic because some of the kinetic energy of the
ball is lost when the ball is deformed while it is in contact with the surface.

In most collisions, kinetic energy is not the same before and after the collision
because some of it is converted to internal energy, to elastic potential energy when
the objects are deformed, and to rotational energy. Elastic and perfectly inelastic
collisions are limiting cases; most collisions fall somewhere between them.

In the remainder of this section, we treat collisions in one dimension and con-
sider the two extreme cases—perfectly inelastic and elastic collisions. The impor-
tant distinction between these two types of collisions is that momentum is con-
stant in all collisions, but kinetic energy is constant only in elastic
collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along a straight line, as shown in Figure 9.9. The two particles collide head-on, 
stick together, and then move with some common velocity vf after the collision. 
Because momentum is conserved in any collision, we can say that the total momen-
tum before the collision equals the total momentum of the composite system after
the collision:

(9.13)

(9.14)

Which is worse, crashing into a brick wall at 40 mi/h or crashing head-on into an oncoming
car that is identical to yours and also moving at 40 mi/h?

Elastic Collisions

Now consider two particles that undergo an elastic head-on collision (Fig. 9.10).
In this case, both momentum and kinetic energy are conserved; therefore, we have

(9.15)

(9.16)

Because all velocities in Figure 9.10 are either to the left or the right, they can be
represented by the corresponding speeds along with algebraic signs indicating di-
rection. We shall indicate v as positive if a particle moves to the right and negative

1
2m1v1i 

2 � 1
2m2v2i 

2 � 1
2m1v1f 

2 � 1
2m2v2f 

2

m1v1i � m2v2i � m1v1f � m2v2f 

Quick Quiz 9.7

 vf �
m1v1i � m2v2i

m1 � m2

m1v1i � m2v2i � (m1 � m2)vf Before collision

(a)

m1 m2
v1i v2i

After collision

(b)

vf
m1 + m2

6.6

QuickLab
Hold a Ping-Pong ball or tennis ball
on top of a basketball. Drop them
both at the same time so that the bas-
ketball hits the floor, bounces up, and
hits the smaller falling ball. What
happens and why?
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if it moves to the left. As has been seen in earlier chapters, it is common practice
to call these values “speed” even though this term technically refers to the magni-
tude of the velocity vector, which does not have an algebraic sign.

In a typical problem involving elastic collisions, there are two unknown quanti-
ties, and Equations 9.15 and 9.16 can be solved simultaneously to find these. An al-
ternative approach, however—one that involves a little mathematical manipula-
tion of Equation 9.16—often simplifies this process. To see how, let us cancel the
factor in Equation 9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to get

(9.18)

To obtain our final result, we divide Equation 9.17 by Equation 9.18 and get

(9.19)

This equation, in combination with Equation 9.15, can be used to solve problems
dealing with elastic collisions. According to Equation 9.19, the relative speed of
the two particles before the collision equals the negative of their relative
speed after the collision, 

Suppose that the masses and initial velocities of both particles are known.
Equations 9.15 and 9.19 can be solved for the final speeds in terms of the initial
speeds because there are two equations and two unknowns:

(9.20)

(9.21)

It is important to remember that the appropriate signs for v1i and v2i must be in-
cluded in Equations 9.20 and 9.21. For example, if particle 2 is moving to the left
initially, then v2i is negative.

Let us consider some special cases: If m1 � m2 , then  and 
That is, the particles exchange speeds if they have equal masses. This is approxi-
mately what one observes in head-on billiard ball collisions—the cue ball stops,
and the struck ball moves away from the collision with the same speed that the cue
ball had.

If particle 2 is initially at rest, then and Equations 9.20 and 9.21 be-
come

(9.22)

(9.23)

If m1 is much greater than m2 and , we see from Equations 9.22 and
9.23 that and That is, when a very heavy particle collides head-
on with a very light one that is initially at rest, the heavy particle continues its mo-

v2f � 2v1i .v1f � v1i

v2i � 0

v2f � � 2m1

m1 � m2
�v1i

v1f � � m1 � m2

m1 � m2
�v1i

v2i � 0

v2f � v1i .v1f � v2i

v2f � � 2m1

m1 � m2
�v1i � � m2 � m1

m1 � m2
�v2i

v1f � � m1 � m2

m1 � m2
�v1i � � 2m2

m1 � m2
�v2i

�(v1f � v2f ).
v1i � v2i

v1i � v2i � �(v1f � v2f)

v1i � v1f � v2f � v2i 

m1(v1i � v1f) � m2(v2f � v2i)

m1(v1i � v1f)(v1i � v1f) � m2(v2f � v2i)(v2f � v2i)

m1(v1i 

2 � v1f 

2) � m2(v2f 

2 � v2i 

2)

1
2

Elastic collision: particle 2 initially
at rest

Elastic collision: relationships
between final and initial velocities

Figure 9.10 Schematic represen-
tation of an elastic head-on colli-
sion between two particles: (a) be-
fore collision and (b) after
collision.

m1 m2
v1i

Before collision

v2i

v1f v2f

After collision

(a)

(b)
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tion unaltered after the collision, and the light particle rebounds with a speed
equal to about twice the initial speed of the heavy particle. An example of such a
collision would be that of a moving heavy atom, such as uranium, with a light
atom, such as hydrogen.

If m2 is much greater than m1 and particle 2 is initially at rest, then 
and That is, when a very light particle collides head-on with a very
heavy particle that is initially at rest, the light particle has its velocity reversed and
the heavy one remains approximately at rest.

v2f � v2i � 0.
v1f � �v1i

The Ballistic PendulumEXAMPLE 9.6
Exercise In a ballistic pendulum experiment, suppose that
h � 5.00 cm, m1 � 5.00 g, and m2 � 1.00 kg. Find (a) the
initial speed of the bullet and (b) the loss in mechanical en-
ergy due to the collision.

Answer 199 m/s; 98.5 J.

The ballistic pendulum (Fig. 9.11) is a system used to mea-
sure the speed of a fast-moving projectile, such as a bullet.
The bullet is fired into a large block of wood suspended from
some light wires. The bullet embeds in the block, and the en-
tire system swings through a height h. The collision is per-
fectly inelastic, and because momentum is conserved, Equa-
tion 9.14 gives the speed of the system right after the
collision, when we assume the impulse approximation. If we
call the bullet particle 1 and the block particle 2, the total ki-
netic energy right after the collision is

(1)

With Equation 9.14 becomes

(2)

Substituting this value of vf into (1) gives

Note that this kinetic energy immediately after the collision is
less than the initial kinetic energy of the bullet. In all the en-
ergy changes that take place after the collision, however, the
total amount of mechanical energy remains constant; thus,
we can say that after the collision, the kinetic energy of the
block and bullet at the bottom is transformed to potential en-
ergy at the height h:

Solving for v1i , we obtain

This expression tells us that it is possible to obtain the initial
speed of the bullet by measuring h and the two masses.

Because the collision is perfectly inelastic, some mechani-
cal energy is converted to internal energy and it would be in-
correct to equate the initial kinetic energy of the incoming 
bullet to the final gravitational potential energy of the
bullet–block combination.

v1i � � m1 � m2

m1
�√2gh

m1 

2v1i 

2

2(m1 � m2)
� (m1 � m2)gh

Kf �
m1 

2v1i 

2

2(m1 � m2)

vf �
m1v1i

m1 � m2

v2i � 0,

Kf � 1
2(m1 � m2)vf 

2

m1
v1i vf

m1 + m2

m2 h

(a)

Figure 9.11 (a) Diagram of a ballistic pendulum. Note that v1i is
the velocity of the bullet just before the collision and vf � v1f � v2f
is the velocity of the bullet � block system just after the perfectly in-
elastic collision. (b) Multiflash photograph of a ballistic pendulum
used in the laboratory.

(b)
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A Two-Body Collision with a SpringEXAMPLE 9.7
Solution To determine the distance that the spring is
compressed, shown as x in Figure 9.12b, we can use the con-
cept of conservation of mechanical energy because no fric-
tion or other nonconservative forces are acting on the system.
Thus, we have

Substituting the given values and the result to part (a) into
this expression gives

It is important to note that we needed to use the principles of
both conservation of momentum and conservation of me-
chanical energy to solve the two parts of this problem.

Exercise Find the velocity of block 1 and the compression
in the spring at the instant that block 2 is at rest.

Answer 0.719 m/s to the right; 0.251 m.

0.173 mx �

1
2m1v1i 

2 � 1
2m2v2i 

2 � 1
2m1v1f 

2 � 1
2m2v2f 

2 � 1
2kx2

A block of mass m1 � 1.60 kg initially moving to the right with
a speed of 4.00 m/s on a frictionless horizontal track collides
with a spring attached to a second block of mass m2 � 2.10 kg
initially moving to the left with a speed of 2.50 m/s, as shown
in Figure 9.12a. The spring constant is 600 N/m. (a) At the in-
stant block 1 is moving to the right with a speed of 3.00 m/s, 
as in Figure 9.12b, determine the velocity of block 2.

Solution First, note that the initial velocity of block 2 is
� 2.50 m/s because its direction is to the left. Because mo-
mentum is conserved for the system of two blocks, we have

The negative value for v2f means that block 2 is still moving to
the left at the instant we are considering.

(b) Determine the distance the spring is compressed at
that instant.

�1.74 m/s  v2f �

 � (1.60 kg)(3.00 m/s) � (2.10 kg)v2f

(1.60 kg)(4.00 m/s) � (2.10 kg)(�2.50 m/s) 

 m1v1i � m2v2i � m1v1f � m2v2f 

Slowing Down Neutrons by CollisionsEXAMPLE 9.8
Solution Let us assume that the moderator nucleus of
mass mm is at rest initially and that a neutron of mass mn and
initial speed vni collides with it head-on. 

Because these are elastic collisions, the first thing we do is
recognize that both momentum and kinetic energy are con-
stant. Therefore, Equations 9.22 and 9.23 can be applied to
the head-on collision of a neutron with a moderator nucleus.
We can represent this process by a drawing such as Figure
9.10.

The initial kinetic energy of the neutron is

In a nuclear reactor, neutrons are produced when a 
atom splits in a process called fission. These neutrons are
moving at about 107 m/s and must be slowed down to about
103 m/s before they take part in another fission event. They
are slowed down by being passed through a solid or liquid
material called a moderator. The slowing-down process involves
elastic collisions. Let us show that a neutron can lose most of
its kinetic energy if it collides elastically with a moderator
containing light nuclei, such as deuterium (in “heavy water,”
D2O) or carbon (in graphite).

 92
235U

x

k

v1f = (3.00i) m/s v2f

m1
m2m1

m2

k

v1i = (4.00i) m/s v2i = (–2.50i) m/s

(a)

(b)

Figure 9.12
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An ingenious device that illustrates conservation of momentum and kinetic energy is shown
in Figure 9.13a. It consists of five identical hard balls supported by strings of equal lengths.
When ball 1 is pulled out and released, after the almost-elastic collision between it and ball
2, ball 5 moves out, as shown in Figure 9.13b. If balls 1 and 2 are pulled out and released,
balls 4 and 5 swing out, and so forth. Is it ever possible that, when ball 1 is released, balls 4
and 5 will swing out on the opposite side and travel with half the speed of ball 1, as in Fig-
ure 9.13c?

Quick Quiz 9.8

Figure 9.13 An executive stress reliever.

Hence, the fraction fm of the initial kinetic energy transferred
to the moderator nucleus is

(2)

Because the total kinetic energy of the system is conserved,
(2) can also be obtained from (1) with the condition that

so that 
Suppose that heavy water is used for the moderator. For

collisions of the neutrons with deuterium nuclei in D2O
and That is, 89% of the

neutron’s kinetic energy is transferred to the deuterium nu-
cleus. In practice, the moderator efficiency is reduced be-
cause head-on collisions are very unlikely.

How do the results differ when graphite (12C, as found in
pencil lead) is used as the moderator?

fm � 8/9.fn � 1/9(mm � 2mn),

fm � 1 � fn .fn � fm � 1,

fm �
Kmf

Kni
�

4mnmm

(mn � mm)2

Kmf � 1
2 mmvmf 

2 �
2mn 

2mm

(mn � mm)2  vni 

2

After the collision, the neutron has kinetic energy 
and we can substitute into this the value for vnf given by 
Equation 9.22:

Therefore, the fraction fn of the initial kinetic energy pos-
sessed by the neutron after the collision is

(1)

From this result, we see that the final kinetic energy of the
neutron is small when mm is close to mn and zero when mn �
mm .

We can use Equation 9.23, which gives the final speed of
the particle that was initially at rest, to calculate the kinetic
energy of the moderator nucleus after the collision:

fn �
Knf

Kni
� � mn � mm

mn � mm
�

2

Knf � 1
2 mnvnf 

2 �
mn

2
 � mn � mm

mn � mm
�

2
vni 

2

1
2 mnvnf 

2,

Kni � 1
2 mnvni 

2

This can happen.

(b)

vv

4 5

2 3 4 5 1 2 3 4

1 5

2 3 4 5 1 2 3

1

v/2v
Can this happen?

(c)

(a)
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TWO-DIMENSIONAL COLLISIONS
In Sections 9.1 and 9.3, we showed that the momentum of a system of two particles
is constant when the system is isolated. For any collision of two particles, this result
implies that the momentum in each of the directions x, y, and z is constant. How-
ever, an important subset of collisions takes place in a plane. The game of billiards
is a familiar example involving multiple collisions of objects moving on a two-
dimensional surface. For such two-dimensional collisions, we obtain two compo-
nent equations for conservation of momentum:

Let us consider a two-dimensional problem in which particle 1 of mass m1 col-
lides with particle 2 of mass m2 , where particle 2 is initially at rest, as shown in Fig-
ure 9.14. After the collision, particle 1 moves at an angle 
 with respect to the hori-
zontal and particle 2 moves at an angle � with respect to the horizontal. This is
called a glancing collision. Applying the law of conservation of momentum in com-
ponent form, and noting that the initial y component of the momentum of the
two-particle system is zero, we obtain

(9.24)

(9.25)

where the minus sign in Equation 9.25 comes from the fact that after the collision,
particle 2 has a y component of velocity that is downward. We now have two inde-
pendent equations. As long as no more than two of the seven quantities in Equa-
tions 9.24 and 9.25 are unknown, we can solve the problem.

If the collision is elastic, we can also use Equation 9.16 (conservation of kinetic
energy), with to give

(9.26)

Knowing the initial speed of particle 1 and both masses, we are left with four un-
knowns . Because we have only three equations, one of the four re-
maining quantities must be given if we are to determine the motion after the colli-
sion from conservation principles alone.

If the collision is inelastic, kinetic energy is not conserved and Equation 9.26
does not apply.

(v1f , v2f , 
, �)

1
2 m1v1i 

2 � 1
2 m1v1f 

2 � 1
2 m2v2f 

2

v2i � 0,

 0 � m1v1f sin 
 � m2v2f sin �

m1v1i � m1v1f cos 
 � m2v2f cos �

m1v1iy � m2v2iy � m1v1fy � m2v2fy

m1v1ix � m2v2ix � m1v1fx � m2v2 fx

9.5

(a) Before the collision

v1i

(b) After the collision

θ

φ
v2f cos

v1f cos

v1f sin

v1f

v2f
–v2f sin

φ

φ

θ

θ

Figure 9.14 An elastic glancing collision between two particles.
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Problem-Solving Hints
Collisions
The following procedure is recommended when dealing with problems involv-
ing collisions between two objects:

• Set up a coordinate system and define your velocities with respect to that sys-
tem. It is usually convenient to have the x axis coincide with one of the ini-
tial velocities.

• In your sketch of the coordinate system, draw and label all velocity vectors
and include all the given information.

• Write expressions for the x and y components of the momentum of each ob-
ject before and after the collision. Remember to include the appropriate
signs for the components of the velocity vectors.

• Write expressions for the total momentum in the x direction before and af-
ter the collision and equate the two. Repeat this procedure for the total mo-
mentum in the y direction. These steps follow from the fact that, because
the momentum of the system is conserved in any collision, the total momen-
tum along any direction must also be constant. Remember, it is the momen-
tum of the system that is constant, not the momenta of the individual objects.

• If the collision is inelastic, kinetic energy is not conserved, and additional in-
formation is probably required. If the collision is perfectly inelastic, the final
velocities of the two objects are equal. Solve the momentum equations for
the unknown quantities.

• If the collision is elastic, kinetic energy is conserved, and you can equate the
total kinetic energy before the collision to the total kinetic energy after the
collision to get an additional relationship between the velocities.

Collision at an IntersectionEXAMPLE 9.9

Similarly, the total initial momentum of the system in the
y direction is that of the van, and the magnitude of this mo-
mentum is (2 500 kg)(20.0 m/s). Applying conservation of

A 1 500-kg car traveling east with a speed of 25.0 m/s collides
at an intersection with a 2 500-kg van traveling north at a
speed of 20.0 m/s, as shown in Figure 9.15. Find the direc-
tion and magnitude of the velocity of the wreckage after the
collision, assuming that the vehicles undergo a perfectly in-
elastic collision (that is, they stick together).

Solution Let us choose east to be along the positive x di-
rection and north to be along the positive y direction. Before
the collision, the only object having momentum in the x di-
rection is the car. Thus, the magnitude of the total initial mo-
mentum of the system (car plus van) in the x direction is

Let us assume that the wreckage moves at an angle 
 and
speed vf after the collision. The magnitude of the total mo-
mentum in the x direction after the collision is

Because the total momentum in the x direction is constant,
we can equate these two equations to obtain

(1) 3.75 � 104 kg�m/s � (4 000 kg)vf cos 


�pxf � (4 000 kg)vf cos 


�pxi � (1 500 kg)(25.0 m/s) � 3.75 � 104 kg�m/s

θ
(25.0i) m/s

y

x

vf

(20.0j) m/s

Figure 9.15 An eastbound car colliding with a northbound van.
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Proton – Proton CollisionEXAMPLE 9.10
Solving these three equations with three unknowns simulta-
neously gives

Note that 
 � � � 90°. This result is not accidental. When-
ever two equal masses collide elastically in a glancing
collision and one of them is initially at rest, their final
velocities are always at right angles to each other. The
next example illustrates this point in more detail.

53.0°  � �

2.11 � 105 m/sv2f �

2.80 � 105 m/sv1f �

Proton 1 collides elastically with proton 2 that is initially at
rest. Proton 1 has an initial speed of 3.50 � 105 m/s and
makes a glancing collision with proton 2, as was shown in Fig-
ure 9.14. After the collision, proton 1 moves at an angle of
37.0° to the horizontal axis, and proton 2 deflects at an angle
� to the same axis. Find the final speeds of the two protons
and the angle �.

Solution Because both particles are protons, we know that
m1 � m2 . We also know that 
 � 37.0° and 

m/s. Equations 9.24, 9.25, and 9.26 become

 v1f 

2 � v2f 

2 � (3.50 � 105 m/s)2

 v1f  sin 37.0° � v2f  sin � � 0 

v1f  cos 37.0° � v2f  cos � � 3.50 � 105 m/s 

105
v1i � 3.50 �

When this angle is substituted into (2), the value of vf is

It might be instructive for you to draw the momentum vectors
of each vehicle before the collision and the two vehicles to-
gether after the collision.

15.6 m/svf �
5.00 � 104 kg�m/s
(4 000 kg)sin 53.1°

�

53.1°  
 �
momentum to the y direction, we have

(2)

If we divide (2) by (1), we get

sin 
 

cos 
 
 �  tan 
 �

5.00 � 104

3.75 � 104 � 1.33 

5.00 � 104 kg�m/s � (4 000 kg)vf sin 


 (2 500 kg)(20.0 m/s) � (4 000 kg)vf sin 


 �pyi � �pyf 

Billiard Ball CollisionEXAMPLE 9.11
In a game of billiards, a player wishes to sink a target ball 2 in
the corner pocket, as shown in Figure 9.16. If the angle to the
corner pocket is 35°, at what angle 
 is the cue ball 1 de-
flected? Assume that friction and rotational motion are unim-
portant and that the collision is elastic.

Solution Because the target ball is initially at rest, conser-
vation of energy (Eq. 9.16) gives

But m1 � m2 , so that

(1)

Applying conservation of momentum to the two-dimensional
collision gives

(2)

Note that because m1 � m2 , the masses also cancel in (2). If
we square both sides of (2) and use the definition of the dot

v1i � v1f � v2f

v1i 

2 � v1f 

2 � v2f 

2

1
2 m1v1i 

2 � 1
2 m1v1f 

2 � 1
2 m2v2f 

2

Cue ball

v2f

v1f

v1i

θ

y

x
35°

Figure 9.16
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THE CENTER OF MASS
In this section we describe the overall motion of a mechanical system in terms of a
special point called the center of mass of the system. The mechanical system can
be either a system of particles, such as a collection of atoms in a container, or an
extended object, such as a gymnast leaping through the air. We shall see that the
center of mass of the system moves as if all the mass of the system were concen-
trated at that point. Furthermore, if the resultant external force on the system is
�Fext and the total mass of the system is M, the center of mass moves with an accel-
eration given by a � �Fext /M. That is, the system moves as if the resultant exter-
nal force were applied to a single particle of mass M located at the center of mass.
This behavior is independent of other motion, such as rotation or vibration of the
system. This result was implicitly assumed in earlier chapters because many exam-
ples referred to the motion of extended objects that were treated as particles.

Consider a mechanical system consisting of a pair of particles that have differ-
ent masses and are connected by a light, rigid rod (Fig. 9.17). One can describe the
position of the center of mass of a system as being the average position of the system’s
mass. The center of mass of the system is located somewhere on the line joining the

9.6

This result shows that whenever two equal masses undergo a
glancing elastic collision and one of them is initially at rest,
they move at right angles to each other after the collision.
The same physics describes two very different situations, pro-
tons in Example 9.10 and billiard balls in this example.

55°
 � 35° � 90°  or  
 �

 0 � cos(
 � 35°) product of two vectors from Section 7.2, we get

Because the angle between v1f and v2f is 
 � 35°,
cos(
 � 35°), and so

(3)

Subtracting (1) from (3) gives

 0 � 2v1f v2f cos(
 � 35°) 

v1i 

2 � v1f 

2 � v2f 

2 � 2v1f v2f cos(
 � 35°)

v1f � v2f � v1f v2f

v1i 

2 � (v1f � v2f) � (v1f � v2f) � v1f 

2 � v2f 

2 � 2v1f � v2f

Figure 9.17 Two particles of un-
equal mass are connected by a
light, rigid rod. (a) The system ro-
tates clockwise when a force is ap-
plied between the less massive par-
ticle and the center of mass. 
(b) The system rotates counter-
clockwise when a force is applied
between the more massive particle
and the center of mass. (c) The sys-
tem moves in the direction of the
force without rotating when a force
is applied at the center of mass.

CM

(a)

(b)

(c)

CM

CM

This multiflash photograph shows that as the acrobat executes a somersault, his center of mass
follows a parabolic path, the same path that a particle would follow.

6.7
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particles and is closer to the particle having the larger mass. If a single force is ap-
plied at some point on the rod somewhere between the center of mass and the less
massive particle, the system rotates clockwise (see Fig. 9.17a). If the force is applied
at a point on the rod somewhere between the center of mass and the more massive
particle, the system rotates counterclockwise (see Fig. 9.17b). If the force is applied
at the center of mass, the system moves in the direction of F without rotating (see
Fig. 9.17c). Thus, the center of mass can be easily located.

The center of mass of the pair of particles described in Figure 9.18 is located
on the x axis and lies somewhere between the particles. Its x coordinate is

(9.27)

For example, if and we find that That is, the
center of mass lies closer to the more massive particle. If the two masses are equal,
the center of mass lies midway between the particles.

We can extend this concept to a system of many particles in three dimensions.
The x coordinate of the center of mass of n particles is defined to be

(9.28)

where xi is the x coordinate of the ith particle. For convenience, we express the to-
tal mass as where the sum runs over all n particles. The y and z coordi-
nates of the center of mass are similarly defined by the equations

(9.29)

The center of mass can also be located by its position vector, rCM . The carte-
sian coordinates of this vector are xCM , yCM , and zC M , defined in Equations 9.28
and 9.29. Therefore,

(9.30)

where ri is the position vector of the ith particle, defined by

Although locating the center of mass for an extended object is somewhat
more cumbersome than locating the center of mass of a system of particles, the ba-
sic ideas we have discussed still apply. We can think of an extended object as a sys-
tem containing a large number of particles (Fig. 9.19). The particle separation is
very small, and so the object can be considered to have a continuous mass distribu-
tion. By dividing the object into elements of mass 	mi , with coordinates xi , yi , zi ,
we see that the x coordinate of the center of mass is approximately

with similar expressions for yCM and zCM . If we let the number of elements n ap-
proach infinity, then xCM is given precisely. In this limit, we replace the sum by an

xCM �
�
i
xi 	mi

M

ri � xi i � yi j � zik

rCM �
�
i
miri

M
 

  �
�
i
mixi i � �

i
miyi j � �

i
mizik

M

rCM � xCMi � yCM j � zCMk 

yCM �
�
i
 miyi

M
  and  zCM �

�
i
 mizi

M

M � �
i
mi ,

xCM �
m1x1 � m2x2 � m3x3 � ��� � mnxn

m1 � m2 � m3 � ��� � mn
�

�
i
mixi

�
i
mi

xCM � 2
3d.m2 � 2m1 ,x2 � d,x1 � 0,

xCM �
m1x1 � m2x2

m1 � m2

Vector position of the center of
mass for a system of particles

Figure 9.18 The center of mass
of two particles of unequal mass on
the x axis is located at xCM , a point
between the particles, closer to the
one having the larger mass.

Figure 9.19 An extended object
can be considered a distribution of
small elements of mass 	mi . The
center of mass is located at the vec-
tor position rCM , which has coordi-
nates xCM , yCM , and zCM .

y

m1

x1

x 2

CM

m 2

x

x CM

y

x

z

ri

∆mi

rCM

CM
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integral and 	mi by the differential element dm:

(9.31)

Likewise, for yCM and zCM we obtain

(9.32)

We can express the vector position of the center of mass of an extended object
in the form

(9.33)

which is equivalent to the three expressions given by Equations 9.31 and 9.32.
The center of mass of any symmetric object lies on an axis of symmetry

and on any plane of symmetry.4 For example, the center of mass of a rod lies in
the rod, midway between its ends. The center of mass of a sphere or a cube lies at
its geometric center.

One can determine the center of mass of an irregularly shaped object by sus-
pending the object first from one point and then from another. In Figure 9.20, a
wrench is hung from point A, and a vertical line AB (which can be established with
a plumb bob) is drawn when the wrench has stopped swinging. The wrench is then
hung from point C, and a second vertical line CD is drawn. The center of mass is
halfway through the thickness of the wrench, under the intersection of these two
lines. In general, if the wrench is hung freely from any point, the vertical line
through this point must pass through the center of mass.

Because an extended object is a continuous distribution of mass, each small
mass element is acted upon by the force of gravity. The net effect of all these
forces is equivalent to the effect of a single force, Mg, acting through a special
point, called the center of gravity. If g is constant over the mass distribution,
then the center of gravity coincides with the center of mass. If an extended object
is pivoted at its center of gravity, it balances in any orientation.

If a baseball bat is cut at the location of its center of mass as shown in Figure 9.21, do the
two pieces have the same mass?

Quick Quiz 9.9

rCM �
1
M

 � r dm

yCM �
1
M

 �y dm  and  zCM �
1
M

 �z dm

xCM � lim
	mi:0

 
�
i
xi 	mi

M
�

1
M

 �x dm

4This statement is valid only for objects that have a uniform mass per unit volume.

A

B

C

A
B

C

D

Center of
mass

Figure 9.20 An experimental
technique for determining the cen-
ter of mass of a wrench. The
wrench is hung freely first from
point A and then from point C.
The intersection of the two lines
AB and CD locates the center of
mass.

Figure 9.21 A baseball bat cut at the location of its center of mass.

QuickLab
Cut a triangle from a piece of card-
board and draw a set of adjacent
strips inside it, parallel to one of the
sides. Put a dot at the approximate lo-
cation of the center of mass of each
strip and then draw a straight line
through the dots and into the angle
opposite your starting side. The cen-
ter of mass for the triangle must lie
on this bisector of the angle. Repeat
these steps for the other two sides.
The three angle bisectors you have
drawn will intersect at the center of
mass of the triangle. If you poke a
hole anywhere in the triangle and
hang the cardboard from a string at-
tached at that hole, the center of
mass will be vertically aligned with the
hole.
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The Center of Mass of Three ParticlesEXAMPLE 9.12
A system consists of three particles located as shown in Figure
9.22a. Find the center of mass of the system.

Solution We set up the problem by labeling the masses of
the particles as shown in the figure, with 
and Using the basic defining equations for the
coordinates of the center of mass and noting that 
we obtain

The position vector to the center of mass measured from the
origin is therefore

We can verify this result graphically by adding together
and dividing the vector sum by M, the

total mass. This is shown in Figure 9.22b.
m1r1 � m2r2 � m3r3

0.75i m � 1.0 j mrCM � xCMi � yCM j �

 �
4.0 kg�m

4.0 kg
� 1.0 m 

 �
(1.0 kg)(0) � (1.0 kg)(0) � (2.0 kg)(2.0 m)

4.0 kg
 

yCM �
�
i
 miyi

M
�

m1y1 � m2y2 � m3y3

m1 � m2 � m3
  

 �
3.0 kg�m

4.0 kg
� 0.75 m 

  �
(1.0 kg)(1.0 m) � (1.0 kg)(2.0 m) � (2.0 kg)(0 m)

1.0 kg � 1.0 kg � 2.0 kg

xCM �
�
i
 mixi

M
�

m1x1 � m2x2 � m3x3

m1 � m2 � m3
  

zCM � 0,
m3 � 2.0 kg.

m1 � m2 � 1.0 kg

The Center of Mass of a RodEXAMPLE 9.13
Because this reduces to

One can also use symmetry arguments to obtain the same re-
sult.

(b) Suppose a rod is nonuniform such that its mass per unit
length varies linearly with x according to the expression � �
�x, where � is a constant. Find the x coordinate of the center
of mass as a fraction of L.

Solution In this case, we replace dm by �dx where � is not
constant. Therefore, xCM is

L
2

xCM �
L2

2M
 � M

L � �

� � M/L,(a) Show that the center of mass of a rod of mass M and
length L lies midway between its ends, assuming the rod has a
uniform mass per unit length.

Solution The rod is shown aligned along the x axis in Fig-
ure 9.23, so that Furthermore, if we call the
mass per unit length � (this quantity is called the linear mass
density), then � � M/L for the uniform rod we assume here.
If we divide the rod into elements of length dx, then the mass
of each element is dm � � dx. For an arbitrary element lo-
cated a distance x from the origin, Equation 9.31 gives

xCM �
1
M

 � x dm �
1
M

 �L

0
 x� dx �

�

M
 
x2

2 �L

0
�

�L2

2M

yCM � zCM � 0.

Figure 9.22 (a) Two 1-kg masses and a single 2-kg mass are lo-
cated as shown. The vector indicates the location of the system’s cen-
ter of mass. (b) The vector sum of m iri .

2

0 21

1

3

y(m)

x(m)3

m1 m2

m3

(a)

rCMm3r3

MrCM

m1r1 m2r2

(b)

rCM
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MOTION OF A SYSTEM OF PARTICLES
We can begin to understand the physical significance and utility of the center of
mass concept by taking the time derivative of the position vector given by Equation
9.30. From Section 4.1 we know that the time derivative of a position vector is by

9.7

The Center of Mass of a Right TriangleEXAMPLE 9.14
With this substitution, xCM becomes

By a similar calculation, we get for the y coordinate of the
center of mass

These values fit our original estimates.

1
3

 byCM �

2
3

 a�

xCM �
2
ab

 �a

0
 x � b

a
 x�dx �

2
a2  �a

0
 x2 dx �

2
a2 � x3

3 �
a

0

An object of mass M is in the shape of a right triangle whose
dimensions are shown in Figure 9.24. Locate the coordinates
of the center of mass, assuming the object has a uniform mass
per unit area.

Solution By inspection we can estimate that the x coordi-
nate of the center of mass must be past the center of the
base, that is, greater than a/2, because the largest part of the
triangle lies beyond that point. A similar argument indicates
that its y coordinate must be less than b/2. To evaluate the x
coordinate, we divide the triangle into narrow strips of width
dx and height y as in Figure 9.24. The mass dm of each strip is

Therefore, the x coordinate of the center of mass is

To evaluate this integral, we must express y in terms of x.
From similar triangles in Figure 9.24, we see that

y
x

�
b
a
  or  y �

b
a

 x

xCM �
1
M

 �x dm �
1
M

 �a

0
 x � 2M

ab �y dx �
2
ab

 �a

0
 xy dx

 �
M

1/2ab
(y dx) � � 2M

ab �y dx

dm �
total mass of object
total area of object

� area of strip

We can eliminate � by noting that the total mass of the rod is
related to � through the relationship

Substituting this into the expression for xCM gives

2
3

LxCM �
�L3

3�L2/2
�

M � �dm � �L

0
 � dx � �L

0
 �x dx �

�L2

2

 �
�

M
 �L

0
 x2 dx �

�L3

3M
 

xCM �
1
M

 � x dm �
1
M

 �L

0
 x� dx �

1
M

 �L

0
 x�x dx

L

x

dm = λdx
y

dx

O
x

λ

Figure 9.24

Figure 9.23 The center of mass of a uniform rod of length L is lo-
cated at xCM � L/2.

a

x
xO

y

c b
y

dx

dm

6.8
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definition a velocity. Assuming M remains constant for a system of particles, that is,
no particles enter or leave the system, we get the following expression for the ve-
locity of the center of mass of the system:

(9.34)

where vi is the velocity of the ith particle. Rearranging Equation 9.34 gives

(9.35)

Therefore, we conclude that the total linear momentum of the system equals
the total mass multiplied by the velocity of the center of mass. In other words, the
total linear momentum of the system is equal to that of a single particle of mass M
moving with a velocity vCM .

If we now differentiate Equation 9.34 with respect to time, we get the acceler-
ation of the center of mass of the system:

(9.36)

Rearranging this expression and using Newton’s second law, we obtain

(9.37)

where Fi is the net force on particle i.
The forces on any particle in the system may include both external forces

(from outside the system) and internal forces (from within the system). However,
by Newton’s third law, the internal force exerted by particle 1 on particle 2, for ex-
ample, is equal in magnitude and opposite in direction to the internal force ex-
erted by particle 2 on particle 1. Thus, when we sum over all internal forces in
Equation 9.37, they cancel in pairs and the net force on the system is caused only
by external forces. Thus, we can write Equation 9.37 in the form

(9.38)

That is, the resultant external force on a system of particles equals the total mass
of the system multiplied by the acceleration of the center of mass. If we compare
this with Newton’s second law for a single particle, we see that

�Fext � MaCM �
dptot

dt

MaCM � �
i

miai � �
i

Fi

aCM �
dvCM

dt
�

1
M

 �
i

mi 
dvi

dt
�

1
M

 �
i

 miai

MvCM � �
i

mivi � �
i

pi � ptot

vCM �
drCM

dt
�

1
M

 �
i

mi 
dri

dt
�

�
i
mivi

M

The center of mass of a system of particles of combined mass M moves like an
equivalent particle of mass M would move under the influence of the resultant
external force on the system.

Newton’s second law for a system
of particles

Acceleration of the center of mass

Total momentum of a system of
particles

Velocity of the center of mass

Finally, we see that if the resultant external force is zero, then from Equation
9.38 it follows that

dptot

dt
� MaCM � 0
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so that

(9.39)

That is, the total linear momentum of a system of particles is conserved if no net
external force is acting on the system. It follows that for an isolated system of parti-
cles, both the total momentum and the velocity of the center of mass are constant
in time, as shown in Figure 9.25. This is a generalization to a many-particle system
of the law of conservation of momentum discussed in Section 9.1 for a two-particle
system.

Suppose an isolated system consisting of two or more members is at rest. The
center of mass of such a system remains at rest unless acted upon by an external
force. For example, consider a system made up of a swimmer standing on a raft,
with the system initially at rest. When the swimmer dives horizontally off the raft,
the center of mass of the system remains at rest (if we neglect friction between raft
and water). Furthermore, the linear momentum of the diver is equal in magnitude
to that of the raft but opposite in direction.

As another example, suppose an unstable atom initially at rest suddenly breaks
up into two fragments of masses MA and MB , with velocities vA and vB , respectively.
Because the total momentum of the system before the breakup is zero, the total
momentum of the system after the breakup must also be zero. Therefore,

If the velocity of one of the fragments is known, the recoil ve-
locity of the other fragment can be calculated.
MAvA � MBvB � 0.

ptot � MvCM � constant  (when �Fext � 0)

The Sliding BearEXAMPLE 9.15
noting your location. Take off your spiked shoes and pull on
the rope hand over hand. Both you and the bear will slide
over the ice until you meet. From the tape, observe how far
you have slid, xp , and how far the bear has slid, xb . The point
where you meet the bear is the constant location of the cen-
ter of mass of the system (bear plus you), and so you can de-
termine the mass of the bear from (Unfortu-
nately, you cannot get back to your spiked shoes and so are in
big trouble if the bear wakes up!)

mbxb � mpxp .

Suppose you tranquilize a polar bear on a smooth glacier as
part of a research effort. How might you estimate the bear’s
mass using a measuring tape, a rope, and knowledge of your
own mass?

Solution Tie one end of the rope around the bear, and
then lay out the tape measure on the ice with one end at the
bear’s original position, as shown in Figure 9.26. Grab hold
of the free end of the rope and position yourself as shown,

Figure 9.25 Multiflash photograph showing an overhead view of a wrench moving on a hori-
zontal surface. The center of mass of the wrench moves in a straight line as the wrench rotates
about this point, shown by the white dots.
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Figure 9.26 The center of mass of an isolated system remains at rest unless acted on by an external
force. How can you determine the mass of the polar bear?

xp xb

CM

Exploding ProjectileCONCEPTUAL EXAMPLE 9.16
A projectile fired into the air suddenly explodes into several
fragments (Fig. 9.27). What can be said about the motion of

Motion
of center
of mass

the center of mass of the system made up of all the fragments
after the explosion?

Solution Neglecting air resistance, the only external force
on the projectile is the gravitational force. Thus, if the projec-
tile did not explode, it would continue to move along the
parabolic path indicated by the broken line in Figure 9.27.
Because the forces caused by the explosion are internal, they
do not affect the motion of the center of mass. Thus, after
the explosion the center of mass of the system (the frag-
ments) follows the same parabolic path the projectile would
have followed if there had been no explosion.

Figure 9.27 When a projectile explodes into several fragments,
the center of mass of the system made up of all the fragments follows
the same parabolic path the projectile would have taken had there
been no explosion.

The Exploding RocketEXAMPLE 9.17
Solution Let us call the total mass of the rocket M; hence,
the mass of each fragment is M/3. Because the forces of the
explosion are internal to the system and cannot affect its total
momentum, the total momentum pi of the rocket just before
the explosion must equal the total momentum pf of the frag-
ments right after the explosion.

A rocket is fired vertically upward. At the instant it reaches an
altitude of 1 000 m and a speed of 300 m/s, it explodes into
three equal fragments. One fragment continues to move up-
ward with a speed of 450 m/s following the explosion. The
second fragment has a speed of 240 m/s and is moving east
right after the explosion. What is the velocity of the third
fragment right after the explosion?
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Optional Section

ROCKET PROPULSION
When ordinary vehicles, such as automobiles and locomotives, are propelled, the
driving force for the motion is friction. In the case of the automobile, the driving
force is the force exerted by the road on the car. A locomotive “pushes” against the
tracks; hence, the driving force is the force exerted by the tracks on the locomo-
tive. However, a rocket moving in space has no road or tracks to push against.
Therefore, the source of the propulsion of a rocket must be something other than
friction. Figure 9.28 is a dramatic photograph of a spacecraft at liftoff. The opera-
tion of a rocket depends upon the law of conservation of linear momentum
as applied to a system of particles, where the system is the rocket plus its
ejected fuel.

Rocket propulsion can be understood by first considering the mechanical sys-
tem consisting of a machine gun mounted on a cart on wheels. As the gun is fired,

9.8

What does the sum of the momentum vectors for all the frag-
ments look like?

Exercise Find the position of the center of mass of the sys-
tem of fragments relative to the ground 3.00 s after the explo-
sion. Assume the rocket engine is nonoperative after the ex-
plosion.

Answer The x coordinate does not change; yCM � 1.86 km.

(�240i � 450j) m/svf �
Before the explosion:

After the explosion:

where vf is the unknown velocity of the third fragment.
Equating these two expressions (because pi � pf) gives

M
3

 vf � M(80 i) m/s � M(150 j) m/s � M(300 j) m/s

pf �
M
3

 (240 i) m/s �
M
3

 (450 j) m/s �
M
3

 vf

pi � Mvi � M(300 j) m/s

Figure 9.28 Liftoff of the space shuttle
Columbia. Enormous thrust is generated
by the shuttle’s liquid-fuel engines, aided
by the two solid-fuel boosters. Many physi-
cal principles from mechanics, thermody-
namics, and electricity and magnetism are
involved in such a launch.
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each bullet receives a momentum mv in some direction, where v is measured with
respect to a stationary Earth frame. The momentum of the system made up of cart,
gun, and bullets must be conserved. Hence, for each bullet fired, the gun and cart
must receive a compensating momentum in the opposite direction. That is, the re-
action force exerted by the bullet on the gun accelerates the cart and gun, and the
cart moves in the direction opposite that of the bullets. If n is the number of bul-
lets fired each second, then the average force exerted on the gun is Fav � nmv.

In a similar manner, as a rocket moves in free space, its linear momentum
changes when some of its mass is released in the form of ejected gases. Because
the gases are given momentum when they are ejected out of the engine, the
rocket receives a compensating momentum in the opposite direction. There-
fore, the rocket is accelerated as a result of the “push,” or thrust, from the exhaust
gases. In free space, the center of mass of the system (rocket plus expelled gases)
moves uniformly, independent of the propulsion process.5

Suppose that at some time t, the magnitude of the momentum of a rocket plus
its fuel is (M � 	m)v, where v is the speed of the rocket relative to the Earth (Fig.
9.29a). Over a short time interval 	t, the rocket ejects fuel of mass 	m, and so at
the end of this interval the rocket’s speed is where 	v is the change in
speed of the rocket (Fig. 9.29b). If the fuel is ejected with a speed ve relative to the
rocket (the subscript “e” stands for exhaust, and ve is usually called the exhaust
speed), the velocity of the fuel relative to a stationary frame of reference is 
Thus, if we equate the total initial momentum of the system to the total final mo-
mentum, we obtain

where M represents the mass of the rocket and its remaining fuel after an amount
of fuel having mass 	m has been ejected. Simplifying this expression gives

We also could have arrived at this result by considering the system in the cen-
ter-of-mass frame of reference, which is a frame having the same velocity as the
center of mass of the system. In this frame, the total momentum of the system is
zero; therefore, if the rocket gains a momentum M 	v by ejecting some fuel, the
exhausted fuel obtains a momentum ve 	m in the opposite direction, so that M 	v �
ve If we now take the limit as goes to zero, we get and

Futhermore, the increase in the exhaust mass dm corresponds to an
equal decrease in the rocket mass, so that Note that dM is given a neg-
ative sign because it represents a decrease in mass. Using this fact, we obtain

(9.40)

Integrating this equation and taking the initial mass of the rocket plus fuel to be
Mi and the final mass of the rocket plus its remaining fuel to be Mf , we obtain

(9.41)vf � vi � ve ln� Mi

Mf
�

�vf

vi

 dv � �ve �Mf

Mi

 
dM
M

M dv � ve dm � �ve dM

dm � �dM.
	m : dm.

	v : dv	t	m � 0.

M 	v � ve 	m

(M � 	m)v � M(v � 	v) � 	m(v � ve)

v � ve .

v � 	v,

Expression for rocket propulsion

5It is interesting to note that the rocket and machine gun represent cases of the reverse of a perfectly
inelastic collision: Momentum is conserved, but the kinetic energy of the system increases (at the ex-
pense of chemical potential energy in the fuel).

The force from a nitrogen-pro-
pelled, hand-controlled device al-
lows an astronaut to move about
freely in space without restrictive
tethers.

Figure 9.29 Rocket propulsion.
(a) The initial mass of the rocket
plus all its fuel is M � 	m at a time
t, and its speed is v. (b) At a time t
� 	t, the rocket’s mass has been re-
duced to M and an amount of fuel
	m has been ejected. The rocket’s
speed increases by an amount 	v.

(a)

(b)

M + ∆m

pi = (M + ∆m)v

M
∆m

v

v + ∆v
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This is the basic expression of rocket propulsion. First, it tells us that the increase in
rocket speed is proportional to the exhaust speed of the ejected gases, ve . Therefore,
the exhaust speed should be very high. Second, the increase in rocket speed is pro-
portional to the natural logarithm of the ratio Mi/Mf . Therefore, this ratio should
be as large as possible, which means that the mass of the rocket without its fuel
should be as small as possible and the rocket should carry as much fuel as possible.

The thrust on the rocket is the force exerted on it by the ejected exhaust
gases. We can obtain an expression for the thrust from Equation 9.40:

(9.42)

This expression shows us that the thrust increases as the exhaust speed increases
and as the rate of change of mass (called the burn rate) increases.

Thrust � M 
dv
dt

� �ve 
dM
dt �

Firefighters attack a burning house with a hose line.

A Rocket in SpaceEXAMPLE 9.18

(b) What is the thrust on the rocket if it burns fuel at the rate
of 50 kg/s?

Solution

2.5 � 105 N�

Thrust � �ve 
dM
dt � � (5.0 � 103 m/s)(50 kg/s)

6.5 � 103 m/s  �

 � 3.0 � 103 m/s � (5.0 � 103 m/s)ln� Mi

0.5 Mi
�A rocket moving in free space has a speed of 3.0 � 103 m/s

relative to the Earth. Its engines are turned on, and fuel is
ejected in a direction opposite the rocket’s motion at a speed
of 5.0 � 103 m/s relative to the rocket. (a) What is the speed
of the rocket relative to the Earth once the rocket’s mass is re-
duced to one-half its mass before ignition?

Solution We can guess that the speed we are looking for
must be greater than the original speed because the rocket is
accelerating. Applying Equation 9.41, we obtain

vf � vi � ve ln� Mi

Mf
� 

Fighting a FireEXAMPLE 9.19
their hands, the movement of the hose due to the thrust it re-
ceives from the rapidly exiting water could injure the fire-
fighters.

Two firefighters must apply a total force of 600 N to steady a
hose that is discharging water at 3 600 L/min. Estimate the
speed of the water as it exits the nozzle.

Solution The water is exiting at 3 600 L/min, which is 
60 L/s. Knowing that 1 L of water has a mass of 1 kg, we can
say that about 60 kg of water leaves the nozzle every second.
As the water leaves the hose, it exerts on the hose a thrust
that must be counteracted by the 600-N force exerted on the
hose by the firefighters. So, applying Equation 9.42 gives

Firefighting is dangerous work. If the nozzle should slip from

10 m/s  ve �

 600 N � � ve(60 kg/s) �

Thrust � �ve 
dM
dt � 



280 C H A P T E R  9 Linear Momentum and Collisions

SUMMARY

The linear momentum p of a particle of mass m moving with a velocity v is

(9.1)

The law of conservation of linear momentum indicates that the total mo-
mentum of an isolated system is conserved. If two particles form an isolated sys-
tem, their total momentum is conserved regardless of the nature of the force be-
tween them. Therefore, the total momentum of the system at all times equals its
initial total momentum, or

(9.5)

The impulse imparted to a particle by a force F is equal to the change in the
momentum of the particle:

(9.9)

This is known as the impulse–momentum theorem.
Impulsive forces are often very strong compared with other forces on the sys-

tem and usually act for a very short time, as in the case of collisions.
When two particles collide, the total momentum of the system before the colli-

sion always equals the total momentum after the collision, regardless of the nature
of the collision. An inelastic collision is one for which the total kinetic energy is
not conserved. A perfectly inelastic collision is one in which the colliding bodies
stick together after the collision. An elastic collision is one in which kinetic en-
ergy is constant.

In a two- or three-dimensional collision, the components of momentum in
each of the three directions (x, y, and z) are conserved independently.

The position vector of the center of mass of a system of particles is defined as

(9.30)

where is the total mass of the system and ri is the position vector of the
ith particle.

The position vector of the center of mass of a rigid body can be obtained from
the integral expression

(9.33)

The velocity of the center of mass for a system of particles is

(9.34)

The total momentum of a system of particles equals the total mass multiplied
by the velocity of the center of mass.

Newton’s second law applied to a system of particles is

(9.38)

where aCM is the acceleration of the center of mass and the sum is over all external
forces. The center of mass moves like an imaginary particle of mass M under the

�Fext � MaCM �
dptot

dt

vCM �
�
i
mi vi

M

rCM �
1
M

 �r dm

M � �
i
mi

rCM �
�
i
miri

M

I � �tf

ti
 F dt � 	p

p1i � p2i � p1f � p2f

p � mv
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influence of the resultant external force on the system. It follows from Equation
9.38 that the total momentum of the system is conserved if there are no external
forces acting on it.

QUESTIONS

17. Early in this century, Robert Goddard proposed sending a
rocket to the Moon. Critics took the position that in a vac-
uum, such as exists between the Earth and the Moon, the
gases emitted by the rocket would have nothing to push
against to propel the rocket. According to Scientific Ameri-
can ( January 1975), Goddard placed a gun in a vacuum
and fired a blank cartridge from it. (A blank cartridge
fires only the wadding and hot gases of the burning gun-
powder.) What happened when the gun was fired?

18. A pole-vaulter falls from a height of 6.0 m onto a foam
rubber pad. Can you calculate his speed just before he
reaches the pad? Can you estimate the force exerted on
him due to the collision? Explain.

19. Explain how you would use a balloon to demonstrate the
mechanism responsible for rocket propulsion.

20. Does the center of mass of a rocket in free space acceler-
ate? Explain. Can the speed of a rocket exceed the ex-
haust speed of the fuel? Explain.

21. A ball is dropped from a tall building. Identify the system
for which linear momentum is conserved.

22. A bomb, initially at rest, explodes into several pieces. 
(a) Is linear momentum conserved? (b) Is kinetic energy
conserved? Explain.

23. NASA often uses the gravity of a planet to “slingshot” a
probe on its way to a more distant planet. This is actually
a collision where the two objects do not touch. How can
the probe have its speed increased in this manner?

24. The Moon revolves around the Earth. Is the Moon’s lin-
ear momentum conserved? Is its kinetic energy con-
served? Assume that the Moon’s orbit is circular.

25. A raw egg dropped to the floor breaks apart upon impact.
However, a raw egg dropped onto a thick foam rubber
cushion from a height of about 1 m rebounds without
breaking. Why is this possible? (If you try this experi-
ment, be sure to catch the egg after the first bounce.)

26. On the subject of the following positions, state your own
view and argue to support it: (a) The best theory of mo-
tion is that force causes acceleration. (b) The true mea-
sure of a force’s effectiveness is the work it does, and the
best theory of motion is that work on an object changes
its energy. (c) The true measure of a force’s effect is im-
pulse, and the best theory of motion is that impulse 
injected into an object changes its momentum.

1. If the kinetic energy of a particle is zero, what is its linear
momentum? 

2. If the speed of a particle is doubled, by what factor is its
momentum changed? By what factor is its kinetic energy
changed?

3. If two particles have equal kinetic energies, are their mo-
menta necessarily equal? Explain.

4. If two particles have equal momenta, are their kinetic en-
ergies necessarily equal? Explain.

5. An isolated system is initially at rest. Is it possible for parts
of the system to be in motion at some later time? If so, ex-
plain how this might occur.

6. If two objects collide and one is initially at rest, is it possi-
ble for both to be at rest after the collision? Is it possible
for one to be at rest after the collision? Explain.

7. Explain how linear momentum is conserved when a ball
bounces from a floor.

8. Is it possible to have a collision in which all of the kinetic
energy is lost? If so, cite an example.

9. In a perfectly elastic collision between two particles, does
the kinetic energy of each particle change as a result of
the collision?

10. When a ball rolls down an incline, its linear momentum
increases. Does this imply that momentum is not con-
served? Explain.

11. Consider a perfectly inelastic collision between a car and
a large truck. Which vehicle loses more kinetic energy as
a result of the collision?

12. Can the center of mass of a body lie outside the body? If
so, give examples.

13. Three balls are thrown into the air simultaneously. What
is the acceleration of their center of mass while they are
in motion?

14. A meter stick is balanced in a horizontal position with the
index fingers of the right and left hands. If the two fin-
gers are slowly brought together, the stick remains bal-
anced and the two fingers always meet at the 50-cm mark
regardless of their original positions (try it!). Explain.

15. A sharpshooter fires a rifle while standing with the butt of
the gun against his shoulder. If the forward momentum
of a bullet is the same as the backward momentum of the
gun, why is it not as dangerous to be hit by the gun as by
the bullet?

16. A piece of mud is thrown against a brick wall and sticks to
the wall. What happens to the momentum of the mud? Is
momentum conserved? Explain.
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PROBLEMS

7. (a) A particle of mass m moves with momentum p. Show
that the kinetic energy of the particle is given by K �
p2/2m. (b) Express the magnitude of the particle’s mo-
mentum in terms of its kinetic energy and mass.

Section 9.2 Impulse and Momentum
8. A car is stopped for a traffic signal. When the light turns

green, the car accelerates, increasing its speed from
zero to 5.20 m/s in 0.832 s. What linear impulse and av-
erage force does a 70.0-kg passenger in the car experi-
ence?

9. An estimated force–time curve for a baseball struck by
a bat is shown in Figure P9.9. From this curve, deter-
mine (a) the impulse delivered to the ball, (b) the aver-
age force exerted on the ball, and (c) the peak force ex-
erted on the ball.

Section 9.1 Linear Momentum and Its Conservation
1. A 3.00-kg particle has a velocity of (3.00i � 4.00j) m/s.

(a) Find its x and y components of momentum. 
(b) Find the magnitude and direction of its momentum.

2. A 0.100-kg ball is thrown straight up into the air with an
initial speed of 15.0 m/s. Find the momentum of the
ball (a) at its maximum height and (b) halfway up to its
maximum height.

3. A 40.0-kg child standing on a frozen pond throws a
0.500-kg stone to the east with a speed of 5.00 m/s. Ne-
glecting friction between child and ice, find the recoil
velocity of the child.

4. A pitcher claims he can throw a baseball with as much
momentum as a 3.00-g bullet moving with a speed of 
1 500 m/s. A baseball has a mass of 0.145 kg. What must
be its speed if the pitcher’s claim is valid?

5. How fast can you set the Earth moving? In particular,
when you jump straight up as high as you can, you give
the Earth a maximum recoil speed of what order of
magnitude? Model the Earth as a perfectly solid object.
In your solution, state the physical quantities you take as
data and the values you measure or estimate for them.

6. Two blocks of masses M and 3M are placed on a hori-
zontal, frictionless surface. A light spring is attached to
one of them, and the blocks are pushed together with
the spring between them (Fig. P9.6). A cord initially
holding the blocks together is burned; after this, the
block of mass 3M moves to the right with a speed of
2.00 m/s. (a) What is the speed of the block of mass M ?
(b) Find the original elastic energy in the spring if M �
0.350 kg.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

10. A tennis player receives a shot with the ball (0.060 0 kg)
traveling horizontally at 50.0 m/s and returns the shot
with the ball traveling horizontally at 40.0 m/s in the
opposite direction. (a) What is the impulse delivered to
the ball by the racket? (b) What work does the racket
do on the ball?

11. A 3.00-kg steel ball strikes a wall with a speed of 
10.0 m/s at an angle of 60.0° with the surface. It
bounces off with the same speed and angle (Fig. P9.11).
If the ball is in contact with the wall for 0.200 s, what is
the average force exerted on the ball by the wall?

12. In a slow-pitch softball game, a 0.200-kg softball crossed
the plate at 15.0 m/s at an angle of 45.0° below the hor-
izontal. The ball was hit at 40.0 m/s, 30.0° above the
horizontal. (a) Determine the impulse delivered to the
ball. (b) If the force on the ball increased linearly for
4.00 ms, held constant for 20.0 ms, and then decreased
to zero linearly in another 4.00 ms, what was the maxi-
mum force on the ball?

Before

(a)

After

(b)

M

v 2.00 m/s

M 3M

3M

Figure P9.9

Figure P9.6

20 000

15 000

10 000
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F(N)
F  =  18 000 N
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19. A 45.0-kg girl is standing on a plank that has a mass of
150 kg. The plank, originally at rest, is free to slide on a
frozen lake, which is a flat, frictionless supporting sur-
face. The girl begins to walk along the plank at a con-
stant speed of 1.50 m/s relative to the plank. (a) What
is her speed relative to the ice surface? (b) What is the
speed of the plank relative to the ice surface?

20. Gayle runs at a speed of 4.00 m/s and dives on a sled,
which is initially at rest on the top of a frictionless snow-
covered hill. After she has descended a vertical distance
of 5.00 m, her brother, who is initially at rest, hops on
her back and together they continue down the hill.
What is their speed at the bottom of the hill if the total
vertical drop is 15.0 m? Gayle’s mass is 50.0 kg, the sled
has a mass of 5.00 kg and her brother has a mass of 
30.0 kg.

21. A 1 200-kg car traveling initially with a speed of 
25.0 m/s in an easterly direction crashes into the rear
end of a 9 000-kg truck moving in the same direction at
20.0 m/s (Fig. P9.21). The velocity of the car right after
the collision is 18.0 m/s to the east. (a) What is the ve-
locity of the truck right after the collision? (b) How
much mechanical energy is lost in the collision? Ac-
count for this loss in energy.

22. A railroad car of mass 2.50 � 104 kg is moving with a
speed of 4.00 m/s. It collides and couples with three
other coupled railroad cars, each of the same mass as
the single car and moving in the same direction with an
initial speed of 2.00 m/s. (a) What is the speed of the
four cars after the collision? (b) How much energy is
lost in the collision?

inside the block. The speed of the bullet-plus-wood
combination immediately after the collision is measured
as 0.600 m/s. What was the original speed of the bullet?

18. As shown in Figure P9.18, a bullet of mass m and speed
v passes completely through a pendulum bob of mass
M. The bullet emerges with a speed of v/2. The pendu-
lum bob is suspended by a stiff rod of length � and neg-
ligible mass. What is the minimum value of v such that
the pendulum bob will barely swing through a complete
vertical circle?

14. A professional diver performs a dive from a platform 
10 m above the water surface. Estimate the order of
magnitude of the average impact force she experiences
in her collision with the water. State the quantities you
take as data and their values.

Section 9.3 Collisions
Section 9.4 Elastic and Inelastic Collisions 
in One Dimension

15. High-speed stroboscopic photographs show that the
head of a golf club of mass 200 g is traveling at 55.0 m/s
just before it strikes a 46.0-g golf ball at rest on a tee. Af-
ter the collision, the club head travels (in the same di-
rection) at 40.0 m/s. Find the speed of the golf ball just
after impact.

16. A 75.0-kg ice skater, moving at 10.0 m/s, crashes into a
stationary skater of equal mass. After the collision, the
two skaters move as a unit at 5.00 m/s. Suppose the av-
erage force a skater can experience without breaking a
bone is 4 500 N. If the impact time is 0.100 s, does a
bone break?

17. A 10.0-g bullet is fired into a stationary block of wood
(m � 5.00 kg). The relative motion of the bullet stops

13. A garden hose is held in the manner shown in Figure
P9.13. The hose is initially full of motionless water.
What additional force is necessary to hold the nozzle
stationary after the water is turned on if the discharge
rate is 0.600 kg/s with a speed of 25.0 m/s?

Figure P9.18

Figure P9.13

Figure P9.11

60.0˚

x

y

60.0˚

M

�

m

v v/2
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23. Four railroad cars, each of mass 2.50 � 104 kg, are cou-
pled together and coasting along horizontal tracks at a
speed of vi toward the south. A very strong but foolish
movie actor, riding on the second car, uncouples the
front car and gives it a big push, increasing its speed to
4.00 m/s southward. The remaining three cars continue
moving toward the south, now at 2.00 m/s. (a) Find the
initial speed of the cars. (b) How much work did the ac-
tor do? (c) State the relationship between the process
described here and the process in Problem 22.

24. A 7.00-kg bowling ball collides head-on with a 2.00-kg
bowling pin. The pin flies forward with a speed of 
3.00 m/s. If the ball continues forward with a speed of
1.80 m/s, what was the initial speed of the ball? Ignore
rotation of the ball.

25. A neutron in a reactor makes an elastic head-on colli-
sion with the nucleus of a carbon atom initially at rest.
(a) What fraction of the neutron’s kinetic energy is
transferred to the carbon nucleus? (b) If the initial ki-
netic energy of the neutron is 1.60 � 10�13 J, find its fi-
nal kinetic energy and the kinetic energy of the carbon
nucleus after the collision. (The mass of the carbon nu-
cleus is about 12.0 times greater than the mass of the
neutron.)

26. Consider a frictionless track ABC as shown in Figure
P9.26. A block of mass m1 � 5.00 kg is released from A.
It makes a head-on elastic collision at B with a block of
mass m 2 � 10.0 kg that is initially at rest. Calculate the
maximum height to which m 1 rises after the collision.

0.650, what was the speed of the bullet immediately be-
fore impact?

28. A 7.00-g bullet, when fired from a gun into a 1.00-kg
block of wood held in a vise, would penetrate the block
to a depth of 8.00 cm. This block of wood is placed on a
frictionless horizontal surface, and a 7.00-g bullet is
fired from the gun into the block. To what depth will
the bullet penetrate the block in this case?

Section 9.5 Two-Dimensional Collisions
29. A 90.0-kg fullback running east with a speed of 5.00 m/s

is tackled by a 95.0-kg opponent running north with a
speed of 3.00 m/s. If the collision is perfectly inelastic,
(a) calculate the speed and direction of the players just
after the tackle and (b) determine the energy lost as a
result of the collision. Account for the missing energy.

30. The mass of the blue puck in Figure P9.30 is 20.0%
greater than the mass of the green one. Before collid-
ing, the pucks approach each other with equal and op-
posite momenta, and the green puck has an initial
speed of 10.0 m/s. Find the speeds of the pucks after
the collision if half the kinetic energy is lost during the
collision.

WEB

31. Two automobiles of equal mass approach an intersec-
tion. One vehicle is traveling with velocity 13.0 m/s to-
ward the east and the other is traveling north with a
speed of v2i . Neither driver sees the other. The vehicles
collide in the intersection and stick together, leaving
parallel skid marks at an angle of 55.0° north of east.
The speed limit for both roads is 35 mi/h, and the dri-
ver of the northward-moving vehicle claims he was
within the speed limit when the collision occurred. Is
he telling the truth?

27. A 12.0-g bullet is fired into a 100-g wooden block ini-
tially at rest on a horizontal surface. After impact, the
block slides 7.50 m before coming to rest. If the coeffi-
cient of friction between the block and the surface is

Figure P9.30

Figure P9.26

Figure P9.21
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32. A proton, moving with a velocity of vii, collides elasti-
cally with another proton that is initially at rest. If the
two protons have equal speeds after the collision, find
(a) the speed of each proton after the collision in terms
of vi and (b) the direction of the velocity vectors after
the collision.

33. A billiard ball moving at 5.00 m/s strikes a stationary
ball of the same mass. After the collision, the first ball
moves at 4.33 m/s and at an angle of 30.0° with respect
to the original line of motion. Assuming an elastic colli-
sion (and ignoring friction and rotational motion), find
the struck ball’s velocity.

34. A 0.300-kg puck, initially at rest on a horizontal, fric-
tionless surface, is struck by a 0.200-kg puck moving ini-
tially along the x axis with a speed of 2.00 m/s. After the
collision, the 0.200-kg puck has a speed of 1.00 m/s at
an angle of 
 � 53.0° to the positive x axis (see Fig.
9.14). (a) Determine the velocity of the 0.300-kg puck
after the collision. (b) Find the fraction of kinetic en-
ergy lost in the collision.

35. A 3.00-kg mass with an initial velocity of 5.00i m/s col-
lides with and sticks to a 2.00-kg mass with an initial ve-
locity of � 3.00j m/s. Find the final velocity of the com-
posite mass.

36. Two shuffleboard disks of equal mass, one orange and
the other yellow, are involved in an elastic, glancing col-
lision. The yellow disk is initially at rest and is struck by
the orange disk moving with a speed of 5.00 m/s. After
the collision, the orange disk moves along a direction
that makes an angle of 37.0° with its initial direction of
motion, and the velocity of the yellow disk is perpendic-
ular to that of the orange disk (after the collision). De-
termine the final speed of each disk.

37. Two shuffleboard disks of equal mass, one orange and
the other yellow, are involved in an elastic, glancing col-
lision. The yellow disk is initially at rest and is struck by
the orange disk moving with a speed vi . After the colli-
sion, the orange disk moves along a direction that
makes an angle 
 with its initial direction of motion,
and the velocity of the yellow disk is perpendicular to
that of the orange disk (after the collision). Determine
the final speed of each disk.

38. During the battle of Gettysburg, the gunfire was so in-
tense that several bullets collided in midair and fused
together. Assume a 5.00-g Union musket ball was mov-
ing to the right at a speed of 250 m/s, 20.0° above the
horizontal, and that a 3.00-g Confederate ball was mov-
ing to the left at a speed of 280 m/s, 15.0° above the
horizontal. Immediately after they fuse together, what is
their velocity?

39. An unstable nucleus of mass 17.0 � 10�27 kg initially at
rest disintegrates into three particles. One of the parti-
cles, of mass 5.00 � 10�27 kg, moves along the y axis
with a velocity of 6.00 � 106 m/s. Another particle, of
mass 8.40 � 10�27 kg, moves along the x axis with a
speed of 4.00 � 106 m/s. Find (a) the velocity of the

third particle and (b) the total kinetic energy increase
in the process.

Section 9.6 The Center of Mass
40. Four objects are situated along the y axis as follows: A

2.00-kg object is at � 3.00 m, a 3.00-kg object is at
� 2.50 m, a 2.50-kg object is at the origin, and a 4.00-kg
object is at � 0.500 m. Where is the center of mass of
these objects?

41. A uniform piece of sheet steel is shaped as shown in Fig-
ure P9.41. Compute the x and y coordinates of the cen-
ter of mass of the piece.

WEB

42. The mass of the Earth is 5.98 � 1024 kg, and the mass of
the Moon is 7.36 � 1022 kg. The distance of separation,
measured between their centers, is 3.84 � 108 m. Lo-
cate the center of mass of the Earth–Moon system as
measured from the center of the Earth.

43. A water molecule consists of an oxygen atom with two
hydrogen atoms bound to it (Fig. P9.43). The angle be-
tween the two bonds is 106°. If the bonds are 0.100 nm
long, where is the center of mass of the molecule?

Figure P9.43

Figure P9.41
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44. A 0.400-kg mass m1 has position r1 � 12.0j cm. A 0.800-
kg mass m2 has position r2 � � 12.0i cm. Another
0.800-kg mass m3 has position r3 � (12.0i � 12.0j) cm.
Make a drawing of the masses. Start from the origin
and, to the scale 1 cm � 1 kg� cm, construct the vector
m1r1 , then the vector m1r1 � m2r2 , then the vector m1r1
� m2r2 � m3r3 , and at last rCM � (m1r1 � m2r2 �
m3r3)/(m1 � m2 � m3). Observe that the head of the
vector rCM indicates the position of the center of mass.

45. A rod of length 30.0 cm has linear density (mass-per-
length) given by

where x is the distance from one end, measured in me-
ters. (a) What is the mass of the rod? (b) How far from
the x � 0 end is its center of mass?

Section 9.7 Motion of a System of Particles
46. Consider a system of two particles in the xy plane: 

m1 � 2.00 kg is at r1 � (1.00i � 2.00j) m and has ve-
locity (3.00i � 0.500j) m/s; m2 � 3.00 kg is at r2 �
(� 4.00i � 3.00j) m and has velocity (3.00i � 2.00j) m/s.
(a) Plot these particles on a grid or graph paper. Draw
their position vectors and show their velocities. (b) Find
the position of the center of mass of the system and mark
it on the grid. (c) Determine the velocity of the center of
mass and also show it on the diagram. (d) What is the to-
tal linear momentum of the system?

47. Romeo (77.0 kg) entertains Juliet (55.0 kg) by playing
his guitar from the rear of their boat at rest in still wa-
ter, 2.70 m away from Juliet who is in the front of the
boat. After the serenade, Juliet carefully moves to the
rear of the boat (away from shore) to plant a kiss on
Romeo’s cheek. How far does the 80.0-kg boat move to-
ward the shore it is facing?

48. Two masses, 0.600 kg and 0.300 kg, begin uniform mo-
tion at the same speed, 0.800 m/s, from the origin at 
t � 0 and travel in the directions shown in Figure P9.48.
(a) Find the velocity of the center of mass in unit–
vector notation. (b) Find the magnitude and direction

� � 50.0 g/m � 20.0x g/m2

of the velocity of the center of mass. (c) Write the posi-
tion vector of the center of mass as a function of time.

49. A 2.00-kg particle has a velocity of (2.00i � 3.00j) m/s,
and a 3.00-kg particle has a velocity of (1.00i � 6.00j)
m/s. Find (a) the velocity of the center of mass and 
(b) the total momentum of the system.

50. A ball of mass 0.200 kg has a velocity of 1.50i m/s; a ball
of mass 0.300 kg has a velocity of � 0.400i m/s. They
meet in a head-on elastic collision. (a) Find their veloci-
ties after the collision. (b) Find the velocity of their cen-
ter of mass before and after the collision.

(Optional)
Section 9.8 Rocket Propulsion

51. The first stage of a Saturn V space vehicle consumes
fuel and oxidizer at the rate of 1.50 � 104 kg/s, with an
exhaust speed of 2.60 � 103 m/s. (a) Calculate the
thrust produced by these engines. (b) Find the initial
acceleration of the vehicle on the launch pad if its ini-
tial mass is 3.00 � 106 kg. [Hint: You must include the
force of gravity to solve part (b).]

52. A large rocket with an exhaust speed of ve � 3 000 m/s
develops a thrust of 24.0 million newtons. (a) How
much mass is being blasted out of the rocket exhaust
per second? (b) What is the maximum speed the rocket
can attain if it starts from rest in a force-free environ-
ment with ve � 3.00 km/s and if 90.0% of its initial mass
is fuel and oxidizer?

53. A rocket for use in deep space is to have the capability
of boosting a total load (payload plus rocket frame and
engine) of 3.00 metric tons to a speed of 10 000 m/s.
(a) It has an engine and fuel designed to produce an
exhaust speed of 2 000 m/s. How much fuel plus oxi-
dizer is required? (b) If a different fuel and engine de-
sign could give an exhaust speed of 5 000 m/s, what
amount of fuel and oxidizer would be required for the
same task?

54. A rocket car has a mass of 2 000 kg unfueled and a mass
of 5 000 kg when completely fueled. The exhaust veloc-
ity is 2 500 m/s. (a) Calculate the amount of fuel used
to accelerate the completely fueled car from rest to 
225 m/s (about 500 mi/h). (b) If the burn rate is con-
stant at 30.0 kg/s, calculate the time it takes the car to
reach this speed. Neglect friction and air resistance.

ADDITIONAL PROBLEMS

55. Review Problem. A 60.0-kg person running at an ini-
tial speed of 4.00 m/s jumps onto a 120-kg cart initially
at rest (Fig. P9.55). The person slides on the cart’s top
surface and finally comes to rest relative to the cart. The
coefficient of kinetic friction between the person and
the cart is 0.400. Friction between the cart and ground
can be neglected. (a) Find the final velocity of the per-
son and cart relative to the ground. (b) Find the fric-
tional force acting on the person while he is slidingFigure P9.48

0.600 kg 0.300 kg

45.0° 45.0°

y

x

WEB
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across the top surface of the cart. (c) How long does
the frictional force act on the person? (d) Find the
change in momentum of the person and the change in
momentum of the cart. (e) Determine the displace-
ment of the person relative to the ground while he is
sliding on the cart. (f) Determine the displacement of
the cart relative to the ground while the person is slid-
ing. (g) Find the change in kinetic energy of the per-
son. (h) Find the change in kinetic energy of the cart.
(i) Explain why the answers to parts (g) and (h) differ.
(What kind of collision is this, and what accounts for
the loss of mechanical energy?)

58. A bullet of mass m is fired into a block of mass M that is
initially at rest at the edge of a frictionless table of
height h (see Fig. P9.57). The bullet remains in the
block, and after impact the block lands a distance d
from the bottom of the table. Determine the initial
speed of the bullet.

59. An 80.0-kg astronaut is working on the engines of his
ship, which is drifting through space with a constant ve-
locity. The astronaut, wishing to get a better view of the
Universe, pushes against the ship and much later finds
himself 30.0 m behind the ship and at rest with respect
to it. Without a thruster, the only way to return to the
ship is to throw his 0.500-kg wrench directly away from
the ship. If he throws the wrench with a speed of 
20.0 m/s relative to the ship, how long does it take the
astronaut to reach the ship?

60. A small block of mass m1 � 0.500 kg is released from
rest at the top of a curve-shaped frictionless wedge of
mass m2 � 3.00 kg, which sits on a frictionless horizon-
tal surface, as shown in Figure P9.60a. When the block
leaves the wedge, its velocity is measured to be 4.00 m/s
to the right, as in Figure P9.60b. (a) What is the velocity
of the wedge after the block reaches the horizontal sur-
face? (b) What is the height h of the wedge?

56. A golf ball (m � 46.0 g) is struck a blow that makes an
angle of 45.0° with the horizontal. The ball lands 200 m
away on a flat fairway. If the golf club and ball are in
contact for 7.00 ms, what is the average force of impact?
(Neglect air resistance.)

57. An 8.00-g bullet is fired into a 2.50-kg block that is ini-
tially at rest at the edge of a frictionless table of height
1.00 m (Fig. P9.57). The bullet remains in the block,
and after impact the block lands 2.00 m from the bot-
tom of the table. Determine the initial speed of the
bullet. Figure P9.60

Figure P9.57 Problems 57 and 58.

Figure P9.55

60.0 kg 4.00 m/s

120 kg

1.00 m

8.00 g

2.50 kg

2.00 m

m1

(a)

h

(b)

v2
4.00 m/s

m2m2
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61. Tarzan, whose mass is 80.0 kg, swings from a 3.00-m vine
that is horizontal when he starts. At the bottom of his
arc, he picks up 60.0-kg Jane in a perfectly inelastic col-
lision. What is the height of the highest tree limb they
can reach on their upward swing?

62. A jet aircraft is traveling at 500 mi/h (223 m/s) in hori-
zontal flight. The engine takes in air at a rate of 
80.0 kg/s and burns fuel at a rate of 3.00 kg/s. If the ex-
haust gases are ejected at 600 m/s relative to the air-
craft, find the thrust of the jet engine and the delivered
horsepower.

63. A 75.0-kg firefighter slides down a pole while a constant
frictional force of 300 N retards her motion. A horizon-
tal 20.0-kg platform is supported by a spring at the bot-
tom of the pole to cushion the fall. The firefighter starts
from rest 4.00 m above the platform, and the spring
constant is 4 000 N/m. Find (a) the firefighter’s speed
just before she collides with the platform and (b) the
maximum distance the spring is compressed. (Assume
the frictional force acts during the entire motion.)

64. A cannon is rigidly attached to a carriage, which can
move along horizontal rails but is connected to a post
by a large spring, initially unstretched and with force
constant , as shown in Figure
P9.64. The cannon fires a 200-kg projectile at a velocity
of 125 m/s directed 45.0° above the horizontal. (a) If
the mass of the cannon and its carriage is 5 000 kg, find
the recoil speed of the cannon. (b) Determine the max-
imum extension of the spring. (c) Find the maximum
force the spring exerts on the carriage. (d) Consider
the system consisting of the cannon, carriage, and shell.
Is the momentum of this system conserved during the
firing? Why or why not?

k � 2.00 � 104 N/m

66. Two gliders are set in motion on an air track. A spring
of force constant k is attached to the near side of one
glider. The first glider of mass m1 has a velocity of v1 ,
and the second glider of mass m2 has a velocity of v2 , as
shown in Figure P9.66 (v1 � v2). When m1 collides with
the spring attached to m2 and compresses the spring to
its maximum compression xm , the velocity of the gliders
is v. In terms of v1 , v2 , m1 , m2 , and k, find (a) the veloc-
ity v at maximum compression, (b) the maximum com-
pression xm , and (c) the velocities of each glider after
m1 has lost contact with the spring.

Figure P9.66

Figure P9.65

Figure P9.64

67. Sand from a stationary hopper falls onto a moving con-
veyor belt at the rate of 5.00 kg/s, as shown in Figure
P9.67. The conveyor belt is supported by frictionless
rollers and moves at a constant speed of 0.750 m/s un-
der the action of a constant horizontal external force
Fext supplied by the motor that drives the belt. Find 
(a) the sand’s rate of change of momentum in the hori-
zontal direction, (b) the force of friction exerted by the
belt on the sand, (c) the external force Fext, (d) the
work done by Fext in 1 s, and (e) the kinetic energy ac-
quired by the falling sand each second due to the
change in its horizontal motion. (f) Why are the an-
swers to parts (d) and (e) different?

65. A chain of length L and total mass M is released from
rest with its lower end just touching the top of a table,
as shown in Figure P9.65a. Find the force exerted by the
table on the chain after the chain has fallen through a
distance x, as shown in Figure P9.65b. (Assume each
link comes to rest the instant it reaches the table.)

45.0°

L – x

x

L

(a) (b)

v 1

v 2

m 1

m 2
k
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tween the boat and the water, (a) describe the subse-
quent motion of the system (child plus boat). (b) Where
is the child relative to the pier when he reaches the far end
of the boat? (c) Will he catch the turtle? (Assume he can
reach out 1.00 m from the end of the boat.)

70. A student performs a ballistic pendulum experiment,
using an apparatus similar to that shown in Figure
9.11b. She obtains the following average data: h �
8.68 cm, m1 � 68.8 g, and m2 � 263 g. The symbols re-
fer to the quantities in Figure 9.11a. (a) Determine the
initial speed v1i of the projectile. (b) In the second part
of her experiment she is to obtain v1i by firing the same
projectile horizontally (with the pendulum removed
from the path) and measuring its horizontal displace-
ment x and vertical displacement y (Fig. P9.70). Show
that the initial speed of the projectile is related to x and
y through the relationship

What numerical value does she obtain for v1i on the ba-
sis of her measured values of x � 257 cm and y �
85.3 cm? What factors might account for the difference
in this value compared with that obtained in part (a)?

v1i �
x

√2y/g

68. A rocket has total mass Mi � 360 kg, including 330 kg
of fuel and oxidizer. In interstellar space it starts from
rest, turns on its engine at time t � 0, and puts out ex-
haust with a relative speed of ve � 1 500 m/s at the con-
stant rate k � 2.50 kg/s. Although the fuel will last for
an actual burn time of 330 kg/(2.5 kg/s) � 132 s, de-
fine a “projected depletion time” as Tp � Mi/k �
360 kg/(2.5 kg/s) � 144 s. (This would be the burn
time if the rocket could use its payload, fuel tanks, and
even the walls of the combustion chamber as fuel.) 
(a) Show that during the burn the velocity of the rocket
is given as a function of time by

(b) Make a graph of the velocity of the rocket as a func-
tion of time for times running from 0 to 132 s. (c) Show
that the acceleration of the rocket is

(d) Graph the acceleration as a function of time. 
(e) Show that the displacement of the rocket from its
initial position at t  � 0 is

(f) Graph the displacement during the burn.
69. A 40.0-kg child stands at one end of a 70.0-kg boat that

is 4.00 m in length (Fig. P9.69). The boat is initially
3.00 m from the pier. The child notices a turtle on a
rock near the far end of the boat and proceeds to walk
to that end to catch the turtle. Neglecting friction be-

x(t) � ve(Tp � t)ln(1 � t/Tp) � ve t

a(t) � ve/(Tp � t)

v(t) � �ve ln(1 � t/Tp)

Figure P9.70

Figure P9.69

Figure P9.67

0.750 m/s

Fext

4.00 m
3.00 m

y

v1i

x

71. A 5.00-g bullet moving with an initial speed of 400 m/s
is fired into and passes through a 1.00-kg block, as
shown in Figure P9.71. The block, initially at rest on a
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ANSWERS TO QUICK QUIZZES

ball is hardest to catch when it has the same speed as the
baseball.

9.3 (c) and (e). Object 2 has a greater acceleration because
of its smaller mass. Therefore, it takes less time to travel
the distance d. Thus, even though the force applied to
objects 1 and 2 is the same, the change in momentum is
less for object 2 because 	t is smaller. Therefore, be-
cause the initial momenta were the same (both zero), 
p 1 � p 2 . The work W � Fd done on both objects is the
same because both F and d are the same in the two
cases. Therefore, K1 � K2 .

9.4 Because the passenger is brought from the car’s initial
speed to a full stop, the change in momentum (the im-
pulse) is the same regardless of whether the passenger is
stopped by dashboard, seatbelt, or airbag. However, the
dashboard stops the passenger very quickly in a front-
end collision. The seatbelt takes somewhat more time.
Used along with the seatbelt, the airbag can extend the
passenger’s stopping time further, notably for his head,
which would otherwise snap forward. Therefore, the

9.1 (d). Two identical objects (m1 � m2) traveling in the
same direction at the same speed (v1 � v2) have the
same kinetic energies and the same momenta. However,
this is not true if the two objects are moving at the same
speed but in different directions. In the latter case, K1 �
K2 , but the differing velocity directions indicate that

because momentum is a vector quantity.
It also is possible for particular combinations of

masses and velocities to satisfy K1 � K2 but not p 1 � p 2 .
For example, a 1-kg object moving at 2 m/s has the
same kinetic energy as a 4-kg object moving at 1 m/s,
but the two clearly do not have the same momenta.

9.2 (b), (c), (a). The slower the ball, the easier it is to catch.
If the momentum of the medicine ball is the same as the
momentum of the baseball, the speed of the medicine
ball must be 1/10 the speed of the baseball because the
medicine ball has 10 times the mass. If the kinetic ener-
gies are the same, the speed of the medicine ball must
be the speed of the baseball because of the
squared speed term in the formula for K. The medicine

1/√10

p1 � p 2

Figure P9.71

72. Two masses m and 3m are moving toward each other
along the x axis with the same initial speeds vi . Mass m is
traveling to the left, while mass 3m is traveling to the
right. They undergo a head-on elastic collision and
each rebounds along the same line as it approached.
Find the final speeds of the masses.

73. Two masses m and 3m are moving toward each other
along the x axis with the same initial speeds vi . Mass m is
traveling to the left, while mass 3m is traveling to the
right. They undergo an elastic glancing collision such

frictionless, horizontal surface, is connected to a spring
of force constant 900 N/m. If the block moves 5.00 cm
to the right after impact, find (a) the speed at which the
bullet emerges from the block and (b) the energy lost
in the collision.

v5.00 cm

400 m/s

that mass m is moving downward after the collision at
right angles from its initial direction. (a) Find the final
speeds of the two masses. (b) What is the angle 
 at
which the mass 3m is scattered?

74. Review Problem. There are (one can say) three co-
equal theories of motion: Newton’s second law, stating
that the total force on an object causes its acceleration;
the work–kinetic energy theorem, stating that the total
work on an object causes its change in kinetic energy;
and the impulse–momentum theorem, stating that the
total impulse on an object causes its change in momen-
tum. In this problem, you compare predictions of the
three theories in one particular case. A 3.00-kg object
has a velocity of 7.00j m/s. Then, a total force 12.0i N
acts on the object for 5.00 s. (a) Calculate the object’s fi-
nal velocity, using the impulse–momentum theorem.
(b) Calculate its acceleration from a � (vf � vi)/t. 
(c) Calculate its acceleration from a � �F/m. (d) Find
the object’s vector displacement from 
(e) Find the work done on the object from W � F � r.
(f) Find the final kinetic energy from 
(g) Find the final kinetic energy from 

75. A rocket has a total mass of Mi � 360 kg, including 
330 kg of fuel and oxidizer. In interstellar space it starts
from rest. Its engine is turned on at time t � 0, and it
puts out exhaust with a relative speed of ve � 1 500 m/s
at the constant rate 2.50 kg/s. The burn lasts until the
fuel runs out at time 330 kg/(2.5 kg/s) � 132 s. Set up
and carry out a computer analysis of the motion accord-
ing to Euler’s method. Find (a) the final velocity of the
rocket and (b) the distance it travels during the burn.

1
2 mvi 

2 � W.

1
2 mvf 

2 � 1
2 mvf � vf .

r � vit � 1
2a t2.
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dashboard applies the greatest force, the seatbelt an in-
termediate force, and the airbag the least force. Airbags
are designed to work in conjunction with seatbelts.
Make sure you wear your seatbelt at all times while in a
moving vehicle.

9.5 If we define the ball as our system, momentum is not
conserved. The ball’s speed—and hence its momen-
tum—continually increase. This is consistent with the
fact that the gravitational force is external to this cho-
sen system. However, if we define our system as the ball
and the Earth, momentum is conserved, for the Earth
also has momentum because the ball exerts a gravita-
tional force on it. As the ball falls, the Earth moves up
to meet it (although the Earth’s speed is on the order
of 1025 times less than that of the ball!). This upward
movement changes the Earth’s momentum. The
change in the Earth’s momentum is numerically equal
to the change in the ball’s momentum but is in the op-
posite direction. Therefore, the total momentum of the
Earth–ball system is conserved. Because the Earth’s
mass is so great, its upward motion is negligibly small.

9.6 (c). The greatest impulse (greatest change in momen-
tum) is imparted to the Frisbee when the skater reverses
its momentum vector by catching it and throwing it
back. Since this is when the skater imparts the greatest
impulse to the Frisbee, then this also is when the Frisbee
imparts the greatest impulse to her.

9.7 Both are equally bad. Imagine watching the collision
from a safer location alongside the road. As the “crush
zones” of the two cars are compressed, you will see that

the actual point of contact is stationary. You would see
the same thing if your car were to collide with a solid
wall.

9.8 No, such movement can never occur if we assume the
collisions are elastic. The momentum of the system be-
fore the collision is mv, where m is the mass of ball 1 and
v is its speed just before the collision. After the collision,
we would have two balls, each of mass m and moving
with a speed of v/2. Thus, the total momentum of the
system after the collision would be m(v/2) � m(v/2) �
mv. Thus, momentum is conserved. However, the kinetic
energy just before the collision is and that 

after the collision is 
Thus, kinetic energy is not conserved. Both momentum
and kinetic energy are conserved only when one ball
moves out when one ball is released, two balls move out
when two are released, and so on.

9.9 No they will not! The piece with the handle will have less
mass than the piece made up of the end of the bat. To
see why this is so, take the origin of coordinates as the
center of mass before the bat was cut. Replace each cut
piece by a small sphere located at the center of mass for
each piece. The sphere representing the handle piece is
farther from the origin, but the product of lesser mass
and greater distance balances the product of greater
mass and lesser distance for the end piece:

K f � 1
2 m(v/2)2 � 1

2 m(v/2)2 � 1
4mv2.

K i � 1
2 mv2,
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player? (George Semple)
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10.1 Angular Displacement, Velocity, and Acceleration 293

hen an extended object, such as a wheel, rotates about its axis, the motion
cannot be analyzed by treating the object as a particle because at any given

time different parts of the object have different linear velocities and linear
accelerations. For this reason, it is convenient to consider an extended object as a
large number of particles, each of which has its own linear velocity and linear
acceleration.

In dealing with a rotating object, analysis is greatly simplified by assuming that
the object is rigid. A rigid object is one that is nondeformable—that is, it is an
object in which the separations between all pairs of particles remain constant. All
real bodies are deformable to some extent; however, our rigid-object model is use-
ful in many situations in which deformation is negligible.

In this chapter, we treat the rotation of a rigid object about a fixed axis, which
is commonly referred to as pure rotational motion.

ANGULAR DISPLACEMENT, VELOCITY,
AND ACCELERATION

Figure 10.1 illustrates a planar (flat), rigid object of arbitrary shape confined to
the xy plane and rotating about a fixed axis through O. The axis is perpendicular
to the plane of the figure, and O is the origin of an xy coordinate system. Let us
look at the motion of only one of the millions of “particles” making up this object.
A particle at P is at a fixed distance r from the origin and rotates about it in a circle
of radius r. (In fact, every particle on the object undergoes circular motion about
O.) It is convenient to represent the position of P with its polar coordinates (r, �),
where r is the distance from the origin to P and � is measured counterclockwise from
some preferred direction—in this case, the positive x axis. In this representation,
the only coordinate that changes in time is the angle �; r remains constant. (In
cartesian coordinates, both x and y vary in time.) As the particle moves along the
circle from the positive x axis (� � 0) to P, it moves through an arc of length s,
which is related to the angular position � through the relationship

(10.1a)

(10.1b)

It is important to note the units of � in Equation 10.1b. Because � is the ratio
of an arc length and the radius of the circle, it is a pure number. However, we com-
monly give � the artificial unit radian (rad), where

� �
s
r

s � r�

10.1

one radian is the angle subtended by an arc length equal to the radius of the
arc.

W

Because the circumference of a circle is 2�r, it follows from Equation 10.1b that
360° corresponds to an angle of 2�r/r rad � 2� rad (one revolution). Hence, 
1 rad � 360°/2� � 57.3°. To convert an angle in degrees to an angle in radians,
we use the fact that 2� rad � 360°:

For example, 60° equals �/3 rad, and 45° equals �/4 rad.

� (rad) �
�

180°
 � (deg)

Radian

Rigid object

Figure 10.1 A rigid object rotat-
ing about a fixed axis through O
perpendicular to the plane of the
figure. (In other words, the axis of
rotation is the z axis.) A particle at
P rotates in a circle of radius r cen-
tered at O.

y

x

P
r

O

θ
s
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As the particle in question on our rigid object travels from position P to position
Q in a time �t as shown in Figure 10.2, the radius vector sweeps out an angle �� � �f
� �i . This quantity �� is defined as the angular displacement of the particle:

(10.2)

We define the average angular speed (omega) as the ratio of this angular dis-
placement to the time interval �t:

(10.3)

In analogy to linear speed, the instantaneous angular speed � is defined as
the limit of the ratio ��/�t as �t approaches zero:

(10.4)

Angular speed has units of radians per second (rad/s), or rather second�1

(s�1) because radians are not dimensional. We take � to be positive when � is in-
creasing (counterclockwise motion) and negative when � is decreasing (clockwise
motion).

If the instantaneous angular speed of an object changes from �i to �f in the
time interval �t, the object has an angular acceleration. The average angular ac-
celeration (alpha) of a rotating object is defined as the ratio of the change in
the angular speed to the time interval �t :

(10.5)� �
�f � �i

tf � ti
�

��

�t

�

� � lim
�t:0

 
��

�t
�

d�

dt

� �
�f � �i

tf � ti
�

��

�t

�

�� � �f � �i

Average angular acceleration

Instantaneous angular speed

Average angular speed

In a short track event, such as a 200-m or
400-m sprint, the runners begin from stag-
gered positions on the track. Why don’t
they all begin from the same line?

x

y

Q ,t f

P, ti
r

θf

θi

O

θ

θ

Figure 10.2 A particle on a rotat-
ing rigid object moves from P to Q
along the arc of a circle. In the
time interval the ra-
dius vector sweeps out an angle
�� � �f � �i .

�t � tf � ti ,
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In analogy to linear acceleration, the instantaneous angular acceleration is
defined as the limit of the ratio ��/�t as �t approaches zero:

(10.6)

Angular acceleration has units of radians per second squared (rad/s2), or just sec-
ond�2 (s�2). Note that � is positive when the rate of counterclockwise rotation is
increasing or when the rate of clockwise rotation is decreasing.

When rotating about a fixed axis, every particle on a rigid object rotates
through the same angle and has the same angular speed and the same an-
gular acceleration. That is, the quantities �, �, and � characterize the rotational
motion of the entire rigid object. Using these quantities, we can greatly simplify
the analysis of rigid-body rotation.

Angular position (�), angular speed (�), and angular acceleration (�) are
analogous to linear position (x), linear speed (v), and linear acceleration (a). The
variables �, �, and � differ dimensionally from the variables x, v, and a only by a
factor having the unit of length.

We have not specified any direction for � and �. Strictly speaking, these
variables are the magnitudes of the angular velocity and the angular accelera-
tion vectors � and �, respectively, and they should always be positive. Because
we are considering rotation about a fixed axis, however, we can indicate the di-
rections of the vectors by assigning a positive or negative sign to � and �, as dis-
cussed earlier with regard to Equations 10.4 and 10.6. For rotation about a fixed
axis, the only direction that uniquely specifies the rotational motion is the di-
rection along the axis of rotation. Therefore, the directions of � and � are
along this axis. If an object rotates in the xy plane as in Figure 10.1, the direc-
tion of � is out of the plane of the diagram when the rotation is counterclock-
wise and into the plane of the diagram when the rotation is clockwise. To illus-
trate this convention, it is convenient to use the right-hand rule demonstrated in
Figure 10.3. When the four fingers of the right hand are wrapped in the direc-
tion of rotation, the extended right thumb points in the direction of �. The di-
rection of � follows from its definition d�/dt. It is the same as the direction of
� if the angular speed is increasing in time, and it is antiparallel to � if the an-
gular speed is decreasing in time.

� � lim
�t:0

 
��

�t
�

d�

dt
Instantaneous angular
acceleration

ω

ω

Figure 10.3 The right-hand rule for deter-
mining the direction of the angular velocity
vector.
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Describe a situation in which � � 0 and � and � are antiparallel.

ROTATIONAL KINEMATICS: ROTATIONAL MOTION
WITH CONSTANT ANGULAR ACCELERATION

In our study of linear motion, we found that the simplest form of accelerated mo-
tion to analyze is motion under constant linear acceleration. Likewise, for rota-
tional motion about a fixed axis, the simplest accelerated motion to analyze is mo-
tion under constant angular acceleration. Therefore, we next develop kinematic
relationships for this type of motion. If we write Equation 10.6 in the form d� �
� dt, and let ti � 0 and tf � t, we can integrate this expression directly:

(for constant �) (10.7)

Substituting Equation 10.7 into Equation 10.4 and integrating once more we
obtain

(for constant �) (10.8)

If we eliminate t from Equations 10.7 and 10.8, we obtain

(for constant �) (10.9)

Notice that these kinematic expressions for rotational motion under constant an-
gular acceleration are of the same form as those for linear motion under constant
linear acceleration with the substitutions x : �, v : �, and a : �. Table 10.1
compares the kinematic equations for rotational and linear motion.

�f 

2 � �i 

2 	 2�(�f � �i)

�f � �i 	 �it 	 1
2�t2

�f � �i 	 �t

10.2

Quick Quiz 10.1

Rotating WheelEXAMPLE 10.1
Solution Because the angular acceleration and the angu-
lar speed are both positive, we can be sure our answer must
be greater than 2.00 rad/s.

We could also obtain this result using Equation 10.9 and the
results of part (a). Try it! You also may want to see if you can
formulate the linear motion analog to this problem.

Exercise Find the angle through which the wheel rotates
between t � 2.00 s and t � 3.00 s.

Answer 10.8 rad.

9.00 rad/s�

�f � �i 	 �t � 2.00 rad/s 	 (3.50 rad/s2)(2.00 s)

A wheel rotates with a constant angular acceleration of 
3.50 rad/s2. If the angular speed of the wheel is 2.00 rad/s at
ti � 0, (a) through what angle does the wheel rotate in 2.00 s?

Solution We can use Figure 10.2 to represent the wheel,
and so we do not need a new drawing. This is a straightfor-
ward application of an equation from Table 10.1:

(b) What is the angular speed at t � 2.00 s?

1.75 rev    �
630°

360°/rev
�

630°   � 11.0 rad � (11.0 rad)(57.3°/rad) �

	 1
2 (3.50 rad/s2)(2.00 s)2

�f � �i � �it 	 1
2�t2 � (2.00 rad/s)(2.00 s)

Rotational kinematic equations

7.2
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ANGULAR AND LINEAR QUANTITIES
In this section we derive some useful relationships between the angular speed and
acceleration of a rotating rigid object and the linear speed and acceleration of an
arbitrary point in the object. To do so, we must keep in mind that when a rigid ob-
ject rotates about a fixed axis, as in Figure 10.4, every particle of the object moves
in a circle whose center is the axis of rotation.

We can relate the angular speed of the rotating object to the tangential speed
of a point P on the object. Because point P moves in a circle, the linear velocity
vector v is always tangent to the circular path and hence is called tangential velocity.
The magnitude of the tangential velocity of the point P is by definition the tangen-
tial speed v � ds/dt, where s is the distance traveled by this point measured along
the circular path. Recalling that s � r� (Eq. 10.1a) and noting that r is constant,
we obtain

Because d�/dt � � (see Eq. 10.4), we can say

(10.10)

That is, the tangential speed of a point on a rotating rigid object equals the per-
pendicular distance of that point from the axis of rotation multiplied by the angu-
lar speed. Therefore, although every point on the rigid object has the same angu-
lar speed, not every point has the same linear speed because r is not the same for
all points on the object. Equation 10.10 shows that the linear speed of a point on
the rotating object increases as one moves outward from the center of rotation, as
we would intuitively expect. The outer end of a swinging baseball bat moves much
faster than the handle.

We can relate the angular acceleration of the rotating rigid object to the tan-
gential acceleration of the point P by taking the time derivative of v:

(10.11)

That is, the tangential component of the linear acceleration of a point on a rotat-
ing rigid object equals the point’s distance from the axis of rotation multiplied by
the angular acceleration.

at � r�

at �
dv
dt

� r  
d�

dt

v � r�

v �
ds
dt

� r  
d�

dt

10.3

Relationship between linear and
angular speed

TABLE 10.1 Kinematic Equations for Rotational and Linear Motion
Under Constant Acceleration

Rotational Motion About a Fixed Axis Linear Motion

�f � �i 	 �t vf � vi 	 at
�f � �i 	 �it 	 �t2 xf � xi 	 vit 	 at2

�f
2 � �i

2 	 2�(�f � �i) vf
2 � vi

2 	 2a(xf � xi)

1
2

1
2

Relationship between linear and
angular acceleration

y

x

v

P

r

θ

O

Figure 10.4 As a rigid object ro-
tates about the fixed axis through
O, the point P has a linear velocity
v that is always tangent to the circu-
lar path of radius r.

QuickLab
Spin a tennis ball or basketball and
watch it gradually slow down and
stop. Estimate � and at as accurately
as you can.
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In Section 4.4 we found that a point rotating in a circular path undergoes a
centripetal, or radial, acceleration ar of magnitude v2/r directed toward the center
of rotation (Fig. 10.5). Because v � r� for a point P on a rotating object, we can
express the radial acceleration of that point as

(10.12)

The total linear acceleration vector of the point is a � at 	 ar . (at describes
the change in how fast the point is moving, and ar represents the change in its di-
rection of travel.) Because a is a vector having a radial and a tangential compo-
nent, the magnitude of a for the point P on the rotating rigid object is

(10.13)

When a wheel of radius R rotates about a fixed axis, do all points on the wheel have (a) the
same angular speed and (b) the same linear speed? If the angular speed is constant and
equal to �, describe the linear speeds and linear accelerations of the points located at 
(c) r � 0, (d) r � R/2, and (e) r � R, all measured from the center of the wheel.

Quick Quiz 10.2

a � √at 2 	 ar 

2 � √r 2�2 	 r 2�4 � r √�2 	 �4

ar �
v2

r
� r�2

CD PlayerEXAMPLE 10.2

�  5.4 
 102 rev/min

  � (56.5 rad/s)� 1
2�  rev/rad�(60 s/min)

On a compact disc, audio information is stored in a series of
pits and flat areas on the surface of the disc. The information
is stored digitally, and the alternations between pits and flat
areas on the surface represent binary ones and zeroes to be
read by the compact disc player and converted back to sound
waves. The pits and flat areas are detected by a system consist-
ing of a laser and lenses. The length of a certain number of
ones and zeroes is the same everywhere on the disc, whether
the information is near the center of the disc or near its
outer edge. In order that this length of ones and zeroes al-
ways passes by the laser– lens system in the same time period,
the linear speed of the disc surface at the location of the lens
must be constant. This requires, according to Equation 10.10,
that the angular speed vary as the laser– lens system moves ra-
dially along the disc. In a typical compact disc player, the disc
spins counterclockwise (Fig. 10.6), and the constant speed of
the surface at the point of the laser– lens system is 1.3 m/s.
(a) Find the angular speed of the disc in revolutions per
minute when information is being read from the innermost
first track (r � 23 mm) and the outermost final track (r �
58 mm).

Solution Using Equation 10.10, we can find the angular
speed; this will give us the required linear speed at the posi-
tion of the inner track,

�i �
v
ri

�
1.3 m/s

2.3 
 10�2 m
� 56.5 rad/s  

x

y

O

ar

at

P
a

Figure 10.5 As a rigid object ro-
tates about a fixed axis through O,
the point P experiences a tangen-
tial component of linear accelera-
tion at and a radial component of
linear acceleration ar . The total lin-
ear acceleration of this point is a �
at 	 ar .

23 mm

58 mm

Figure 10.6 A compact disc.
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For the outer track,

The player adjusts the angular speed � of the disc within this
range so that information moves past the objective lens at a
constant rate. These angular velocity values are positive be-
cause the direction of rotation is counterclockwise.

(b) The maximum playing time of a standard music CD
is 74 minutes and 33 seconds. How many revolutions does the
disc make during that time?

Solution We know that the angular speed is always de-
creasing, and we assume that it is decreasing steadily, with �
constant. The time interval t is (74 min)(60 s/min) 	
33 s � 4 473 s. We are looking for the angular position �f ,
where we set the initial angular position �i � 0. We can use
Equation 10.3, replacing the average angular speed with its
mathematical equivalent (�i 	 � f )/2:

2.8 
 104 rev  �

    (1 min/60 s)(4 473 s)  

  � 0 	 1
2 (540 rev/min 	 210 rev/min)

�f � �i 	 1
2 (�i 	 �f)t  

�

�  2.1 
 102 rev/min

�f �
v
rf

�
1.3 m/s

5.8 
 10�2 m
� 22.4 rad/s

(c) What total length of track moves past the objective
lens during this time?

Solution Because we know the (constant) linear velocity
and the time interval, this is a straightforward calculation:

More than 3.6 miles of track spins past the objective lens!

(d) What is the angular acceleration of the CD over the 
4 473-s time interval? Assume that � is constant.

Solution We have several choices for approaching this
problem. Let us use the most direct approach by utilizing
Equation 10.5, which is based on the definition of the term
we are seeking. We should obtain a negative number for the
angular acceleration because the disc spins more and more
slowly in the positive direction as time goes on. Our answer
should also be fairly small because it takes such a long time—
more than an hour—for the change in angular speed to be
accomplished:

The disc experiences a very gradual decrease in its rotation
rate, as expected.

�7.6 
 10�3 rad/s2�

� �
�f � �i

t
�

22.4 rad/s � 56.5 rad/s
4 473 s

5.8 
 103 mx f � vit � (1.3 m/s)(4 473 s) �

ROTATIONAL ENERGY
Let us now look at the kinetic energy of a rotating rigid object, considering the ob-
ject as a collection of particles and assuming it rotates about a fixed z axis with an
angular speed � (Fig. 10.7). Each particle has kinetic energy determined by its
mass and linear speed. If the mass of the ith particle is mi and its linear speed is vi ,
its kinetic energy is

To proceed further, we must recall that although every particle in the rigid object
has the same angular speed �, the individual linear speeds depend on the distance
ri from the axis of rotation according to the expression vi � ri� (see Eq. 10.10).
The total kinetic energy of the rotating rigid object is the sum of the kinetic ener-
gies of the individual particles:

We can write this expression in the form

(10.14)

where we have factored �2 from the sum because it is common to every particle.

KR � 1
2��

i
miri 2��2

K R � �
i

K i � �
i

1
2mivi 

2 � 1
2 �

i
miri 

2�2

Ki � 1
2mivi 

2

10.4

7.3

web
If you want to learn more about the physics
of CD players, visit the Special Interest
Group on CD Applications and Technology
at www.sigcat.org

y

x

vi

mi

ri

θ
O

Figure 10.7 A rigid object rotat-
ing about a z axis with angular
speed �. The kinetic energy of 
the particle of mass mi is 
The total kinetic energy of the ob-
ject is called its rotational 
kinetic energy.

1
2m iv i  

2.
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We simplify this expression by defining the quantity in parentheses as the moment
of inertia I:

(10.15)

From the definition of moment of inertia, we see that it has dimensions of ML2

(kg� m2 in SI units).1 With this notation, Equation 10.14 becomes

(10.16)

Although we commonly refer to the quantity I�2 as rotational kinetic energy,
it is not a new form of energy. It is ordinary kinetic energy because it is derived
from a sum over individual kinetic energies of the particles contained in the rigid
object. However, the mathematical form of the kinetic energy given by Equation
10.16 is a convenient one when we are dealing with rotational motion, provided
we know how to calculate I. 

It is important that you recognize the analogy between kinetic energy associ-
ated with linear motion and rotational kinetic energy The quantities I
and � in rotational motion are analogous to m and v in linear motion, respectively.
(In fact, I takes the place of m every time we compare a linear-motion equation
with its rotational counterpart.) The moment of inertia is a measure of the resis-
tance of an object to changes in its rotational motion, just as mass is a measure of
the tendency of an object to resist changes in its linear motion. Note, however,
that mass is an intrinsic property of an object, whereas I depends on the physical
arrangement of that mass. Can you think of a situation in which an object’s mo-
ment of inertia changes even though its mass does not?

1
2 I�2.1

2mv2

1
2

KR � 1
2I�2

I � �
i

miri 2

1 Civil engineers use moment of inertia to characterize the elastic properties (rigidity) of such struc-
tures as loaded beams. Hence, it is often useful even in a nonrotational context.

Rotational kinetic energy

Moment of inertia

The Oxygen MoleculeEXAMPLE 10.3

This is a very small number, consistent with the minuscule
masses and distances involved.

(b) If the angular speed of the molecule about the z axis is
4.60 
 1012 rad/s, what is its rotational kinetic energy?

Solution We apply the result we just calculated for the mo-
ment of inertia in the formula for KR :

2.06 
 10�21 J �

  � 1
2(1.95 
 10�46 kg�m2)(4.60 
 1012 rad/s)2

KR � 1
2 I�2  

1.95 
 10�46 kg�m2 �
Consider an oxygen molecule (O2) rotating in the xy plane
about the z axis. The axis passes through the center of the
molecule, perpendicular to its length. The mass of each oxy-
gen atom is 2.66 
 10�26 kg, and at room temperature the
average separation between the two atoms is d � 1.21 

10�10 m (the atoms are treated as point masses). (a) Calcu-
late the moment of inertia of the molecule about the z axis.

Solution This is a straightforward application of the def-
inition of I. Because each atom is a distance d/2 from the z
axis, the moment of inertia about the axis is

  � 1
2(2.66 
 10�26 kg)(1.21 
 10�10 m)2

I � �
i

mi ri 

2 � m � d
2 �

2
	 m � d

2 �
2

� 1
2md 2
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CALCULATION OF MOMENTS OF INERTIA
We can evaluate the moment of inertia of an extended rigid object by imagining
the object divided into many small volume elements, each of which has mass �m. 
We use the definition and take the limit of this sum as �m : 0. In 

this limit, the sum becomes an integral over the whole object:

(10.17)

It is usually easier to calculate moments of inertia in terms of the volume of
the elements rather than their mass, and we can easily make that change by using
Equation 1.1,  � m/V, where  is the density of the object and V is its volume. We
want this expression in its differential form  � dm/dV because the volumes we
are dealing with are very small. Solving for dm �  dV and substituting the result

I � lim
�mi :0

 �
i

ri 

2 �mi � �r 2 dm

I � �
i

r i 

2 �mi

10.5

Four Rotating MassesEXAMPLE 10.4
Therefore, the rotational kinetic energy about the y axis is

The fact that the two spheres of mass m do not enter into this
result makes sense because they have no motion about the
axis of rotation; hence, they have no rotational kinetic en-
ergy. By similar logic, we expect the moment of inertia about
the x axis to be Ix � 2mb2 with a rotational kinetic energy
about that axis of KR � mb2�2.

(b) Suppose the system rotates in the xy plane about an
axis through O (the z axis). Calculate the moment of inertia
and rotational kinetic energy about this axis.

Solution Because ri in Equation 10.15 is the perpendicular
distance to the axis of rotation, we obtain

Comparing the results for parts (a) and (b), we conclude
that the moment of inertia and therefore the rotational ki-
netic energy associated with a given angular speed depend on
the axis of rotation. In part (b), we expect the result to in-
clude all four spheres and distances because all four spheres
are rotating in the xy plane. Furthermore, the fact that the ro-
tational kinetic energy in part (a) is smaller than that in part
(b) indicates that it would take less effort (work) to set the
system into rotation about the y axis than about the z axis.

(Ma2 	 mb2)�2  KR � 1
2Iz�

2 � 1
2(2Ma2 	 2mb2)� 2 �

2Ma2 	 2mb 2I z � �
i
mi ri 

2 � Ma2 	 Ma2 	 mb2 	 mb2 �

Ma2�2KR � 1
2Iy�

2 � 1
2(2Ma2)�2 �

Four tiny spheres are fastened to the corners of a frame of
negligible mass lying in the xy plane (Fig. 10.8). We shall as-
sume that the spheres’ radii are small compared with the di-
mensions of the frame. (a) If the system rotates about the y
axis with an angular speed �, find the moment of inertia and
the rotational kinetic energy about this axis.

Solution First, note that the two spheres of mass m, which
lie on the y axis, do not contribute to Iy (that is, ri � 0 for
these spheres about this axis). Applying Equation 10.15, we
obtain

2Ma2Iy � �
i

mi ri
2 � Ma2 	 Ma2 �

O

a a

b

b

m

m

M
x

y

M

Figure 10.8 The four spheres are at a fixed separation as shown.
The moment of inertia of the system depends on the axis about
which it is evaluated.

7.5
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into Equation 10.17 gives

If the object is homogeneous, then  is constant and the integral can be evaluated
for a known geometry. If  is not constant, then its variation with position must be
known to complete the integration.

The density given by  � m/V sometimes is referred to as volume density for the
obvious reason that it relates to volume. Often we use other ways of expressing
density. For instance, when dealing with a sheet of uniform thickness t, we can de-
fine a surface density � � t, which signifies mass per unit area. Finally, when mass is
distributed along a uniform rod of cross-sectional area A, we sometimes use linear
density � � M/L � A, which is the mass per unit length.

I � �r 2 dV

Uniform HoopEXAMPLE 10.5
Find the moment of inertia of a uniform hoop of mass M and
radius R about an axis perpendicular to the plane of the
hoop and passing through its center (Fig. 10.9).

Solution All mass elements dm are the same distance r �
R from the axis, and so, applying Equation 10.17, we obtain
for the moment of inertia about the z axis through O:

Note that this moment of inertia is the same as that of a sin-
gle particle of mass M located a distance R from the axis of
rotation.

MR 2I z � � r 2 dm � R 2 � dm �

y

x

R
O

dm

Figure 10.9 The mass elements dm of a uniform hoop are all the
same distance from O.

Uniform Rigid RodEXAMPLE 10.6
Substituting this expression for dm into Equation 10.17, with
r � x, we obtain

1
12ML2   �

M
L

 � x3

3 �
L/2

�L/2
�

Iy � � r 2 dm � �L/2

�L/2
 x2 

M
L

 dx �
M
L

 �L/2

�L/2
 x2 dx

Calculate the moment of inertia of a uniform rigid rod of
length L and mass M (Fig. 10.10) about an axis perpendicu-
lar to the rod (the y axis) and passing through its center of
mass.

Solution The shaded length element dx has a mass dm
equal to the mass per unit length � multiplied by dx :

dm � � dx �
M
L

dx

(a) Based on what you have learned from Example 10.5, what do you expect to find for the
moment of inertia of two particles, each of mass M/2, located anywhere on a circle of ra-
dius R around the axis of rotation? (b) How about the moment of inertia of four particles,
each of mass M/4, again located a distance R from the rotation axis?

Quick Quiz 10.3
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Table 10.2 gives the moments of inertia for a number of bodies about specific
axes. The moments of inertia of rigid bodies with simple geometry (high symme-
try) are relatively easy to calculate provided the rotation axis coincides with an axis
of symmetry. The calculation of moments of inertia about an arbitrary axis can be
cumbersome, however, even for a highly symmetric object. Fortunately, use of an
important theorem, called the parallel-axis theorem, often simplifies the calcula-
tion. Suppose the moment of inertia about an axis through the center of mass of
an object is ICM . The parallel-axis theorem states that the moment of inertia about
any axis parallel to and a distance D away from this axis is

(10.18)I � ICM 	 MD2

Uniform Solid CylinderEXAMPLE 10.7
cylindrical shells, each of which has radius r, thickness dr, and
length L, as shown in Figure 10.11. The volume dV of each
shell is its cross-sectional area multiplied by its length: dV �
dA� L � (2�r dr)L. If the mass per unit volume is , then the
mass of this differential volume element is dm � dV �
2�rL dr. Substituting this expression for dm into Equation
10.17, we obtain

Because the total volume of the cylinder is �R 2L, we see that
 � M/V � M/�R 2L. Substituting this value for  into the
above result gives

(1)

Note that this result does not depend on L, the length of the
cylinder. In other words, it applies equally well to a long cylin-
der and a flat disc. Also note that this is exactly half the value
we would expect were all the mass concentrated at the outer
edge of the cylinder or disc. (See Example 10.5.)

1
2MR 2Iz �

I z � � r 2 dm � 2�L �R

0
 r 3 dr � 1

2�LR4

A uniform solid cylinder has a radius R, mass M, and length
L. Calculate its moment of inertia about its central axis (the z
axis in Fig. 10.11).

Solution It is convenient to divide the cylinder into many

L

x

O
x

dx

y′ y

Figure 10.10 A uniform rigid rod of length L. The moment of in-
ertia about the y axis is less than that about the y� axis. The latter axis
is examined in Example 10.8.

L

dr

z

r

R

Figure 10.11 Calculating I about the z axis for a uniform solid
cylinder.

Parallel-axis theorem
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Proof of the Parallel-Axis Theorem (Optional). Suppose that an object rotates
in the xy plane about the z axis, as shown in Figure 10.12, and that the coordinates
of the center of mass are xCM , yCM . Let the mass element dm have coordinates x, y.
Because this element is a distance from the z axis, the moment of in-
ertia about the z axis is

However, we can relate the coordinates x, y of the mass element dm to the coordi-
nates of this same element located in a coordinate system having the object’s cen-
ter of mass as its origin. If the coordinates of the center of mass are xCM , yCM in
the original coordinate system centered on O, then from Figure 10.12a we see that
the relationships between the unprimed and primed coordinates are x � x� 	 xCM

I � � r 2 dm � � (x2 	 y2) dm

r � √x2 	 y2

Hoop or
cylindrical shell
I CM = MR2 R

Solid cylinder
or disk

R
I CM = 1

2
MR2

Long thin rod
with rotation axis
through center

I CM = 1
12

ML2 L

R

Solid sphere

I CM = 2
5

MR 2

Hollow cylinder

R2

Long thin
rod with
rotation axis
through end

L

Thin spherical
shell

I CM = 2
3

MR 

2

R1I CM = 1
2

M(R1
2 + R2

2)

R

Rectangular plate

I CM = 1
12

M(a2 + b2)

b

a

I = 1
3

ML2

TABLE 10.2 Moments of Inertia of Homogeneous Rigid Bodies 
with Different Geometries
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and y � y� 	 yCM . Therefore,

The first integral is, by definition, the moment of inertia about an axis that is par-
allel to the z axis and passes through the center of mass. The second two integrals
are zero because, by definition of the center of mass, The
last integral is simply MD2 because and Therefore,
we conclude that

I � ICM 	 MD2

D2 � xCM 

2 	 yCM 

2.� dm � M
� x� dm � � y� dm � 0.

  � � [(x�)2 	 (y�)2] dm 	 2xCM � x� dm 	 2yCM � y� dm 	 (xCM 

2 	 yCM 

 

2) � dm

I � � [(x� 	 xCM)2 	 (y� 	 yCM)2] dm  

Applying the Parallel-Axis TheoremEXAMPLE 10.8

So, it is four times more difficult to change the rotation of a
rod spinning about its end than it is to change the motion of
one spinning about its center.

Exercise Calculate the moment of inertia of the rod about
a perpendicular axis through the point x � L/4.

Answer I � 7
48 ML2.

1
3 ML2I � ICM 	 MD2 � 1

12 ML2 	 M � L
2 �

2
�

Consider once again the uniform rigid rod of mass M and
length L shown in Figure 10.10. Find the moment of inertia
of the rod about an axis perpendicular to the rod through
one end (the y�axis in Fig. 10.10).

Solution Intuitively, we expect the moment of inertia to
be greater than because it should be more diffi-
cult to change the rotational motion of a rod spinning about
an axis at one end than one that is spinning about its center.
Because the distance between the center-of-mass axis and the
y� axis is D � L/2, the parallel-axis theorem gives

ICM � 1
12ML2

(a)

y

x, y
dm

y′

yCM

O

D

r

y

xCM

x

xCM, yCM

x′

x

CM

(b)

Axis
through
CM

x

y

z

Rotation
axis

O CM

Figure 10.12 (a) The parallel-axis theorem: If the moment of inertia about an axis perpendic-
ular to the figure through the center of mass is ICM , then the moment of inertia about the z axis
is Iz � ICM 	 MD 2. (b) Perspective drawing showing the z axis (the axis of rotation) and the par-
allel axis through the CM.
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TORQUE
Why are a door’s doorknob and hinges placed near opposite edges of the door?
This question actually has an answer based on common sense ideas. The harder
we push against the door and the farther we are from the hinges, the more likely
we are to open or close the door. When a force is exerted on a rigid object pivoted
about an axis, the object tends to rotate about that axis. The tendency of a force to
rotate an object about some axis is measured by a vector quantity called torque �
(tau).

Consider the wrench pivoted on the axis through O in Figure 10.13. The ap-
plied force F acts at an angle � to the horizontal. We define the magnitude of the
torque associated with the force F by the expression

(10.19)

where r is the distance between the pivot point and the point of application of F
and d is the perpendicular distance from the pivot point to the line of action of F.
(The line of action of a force is an imaginary line extending out both ends of the
vector representing the force. The dashed line extending from the tail of F in Fig-
ure 10.13 is part of the line of action of F.) From the right triangle in Figure 10.13
that has the wrench as its hypotenuse, we see that d � r sin �. This quantity d is
called the moment arm (or lever arm) of F.

It is very important that you recognize that torque is defined only when a reference
axis is specified. Torque is the product of a force and the moment arm of that force,
and moment arm is defined only in terms of an axis of rotation.

In Figure 10.13, the only component of F that tends to cause rotation is F sin �,
the component perpendicular to r. The horizontal component F cos �, because it
passes through O, has no tendency to produce rotation. From the definition of
torque, we see that the rotating tendency increases as F increases and as d in-
creases. This explains the observation that it is easier to close a door if we push at
the doorknob rather than at a point close to the hinge. We also want to apply our
push as close to perpendicular to the door as we can. Pushing sideways on the
doorknob will not cause the door to rotate.

If two or more forces are acting on a rigid object, as shown in Figure 10.14,
each tends to produce rotation about the pivot at O. In this example, F2 tends to

� � r F sin � � Fd

10.6

Moment arm

Definition of torque

7.6

r

F sin φ
F

F cos φ

d

O
Line of
action

φ

φ

φ

φ O

d2

d1

F2

F1

Figure 10.13 The force F has a
greater rotating tendency about O
as F increases and as the moment
arm d increases. It is the compo-
nent F sin � that tends to rotate the
wrench about O.

Figure 10.14 The force F1 tends
to rotate the object counterclock-
wise about O, and F2 tends to ro-
tate it clockwise.
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rotate the object clockwise, and F1 tends to rotate it counterclockwise. We use the
convention that the sign of the torque resulting from a force is positive if the turn-
ing tendency of the force is counterclockwise and is negative if the turning ten-
dency is clockwise. For example, in Figure 10.14, the torque resulting from F1 ,
which has a moment arm d1 , is positive and equal to 	 F1d1 ; the torque from F2 is
negative and equal to � F2d2 . Hence, the net torque about O is

Torque should not be confused with force. Forces can cause a change in lin-
ear motion, as described by Newton’s second law. Forces can also cause a change
in rotational motion, but the effectiveness of the forces in causing this change de-
pends on both the forces and the moment arms of the forces, in the combination
that we call torque. Torque has units of force times length—newton � meters in SI
units—and should be reported in these units. Do not confuse torque and work,
which have the same units but are very different concepts.

�� � �1 	 �2 � F1d1 � F2d2

The Net Torque on a CylinderEXAMPLE 10.9
Solution The torque due to F1 is � R1F1 (the sign is nega-
tive because the torque tends to produce clockwise rotation).
The torque due to F2 is 	 R2F2 (the sign is positive because
the torque tends to produce counterclockwise rotation).
Therefore, the net torque about the rotation axis is

We can make a quick check by noting that if the two forces
are of equal magnitude, the net torque is negative because 
R1 � R2 . Starting from rest with both forces acting on it, the
cylinder would rotate clockwise because F1 would be more ef-
fective at turning it than would F2 .

(b) Suppose F1 � 5.0 N, R1 � 1.0 m, F2 � 15.0 N, and 
R2 � 0.50 m. What is the net torque about the rotation axis,
and which way does the cylinder rotate from rest?

Because the net torque is positive, if the cylinder starts from
rest, it will commence rotating counterclockwise with increas-
ing angular velocity. (If the cylinder’s initial rotation is clock-
wise, it will slow to a stop and then rotate counterclockwise
with increasing angular speed.)

2.5 N�m�� � �(5.0 N)(1.0 m) 	 (15.0 N)(0.50 m) �

�R 1F1 	 R 2F2�� � �1 	 �2 �

A one-piece cylinder is shaped as shown in Figure 10.15, with
a core section protruding from the larger drum. The cylinder
is free to rotate around the central axis shown in the drawing.
A rope wrapped around the drum, which has radius R1 , ex-
erts a force F1 to the right on the cylinder. A rope wrapped
around the core, which has radius R2 , exerts a force F2 down-
ward on the cylinder. (a) What is the net torque acting on the
cylinder about the rotation axis (which is the z axis in Figure
10.15)?

7.6

RELATIONSHIP BETWEEN TORQUE AND
ANGULAR ACCELERATION

In this section we show that the angular acceleration of a rigid object rotating
about a fixed axis is proportional to the net torque acting about that axis. Before
discussing the more complex case of rigid-body rotation, however, it is instructive

10.7

z

x

y

R 1

R 2

O

F1

F2

Figure 10.15 A solid cylinder pivoted about the z axis through O.
The moment arm of F1 is R1 , and the moment arm of F2 is R2 .
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first to discuss the case of a particle rotating about some fixed point under the in-
fluence of an external force.

Consider a particle of mass m rotating in a circle of radius r under the influ-
ence of a tangential force Ft and a radial force Fr , as shown in Figure 10.16. (As we
learned in Chapter 6, the radial force must be present to keep the particle moving
in its circular path.) The tangential force provides a tangential acceleration at , and

The torque about the center of the circle due to Ft is

Because the tangential acceleration is related to the angular acceleration through
the relationship at � r� (see Eq. 10.11), the torque can be expressed as

Recall from Equation 10.15 that mr 2 is the moment of inertia of the rotating parti-
cle about the z axis passing through the origin, so that

(10.20)

That is, the torque acting on the particle is proportional to its angular accel-
eration, and the proportionality constant is the moment of inertia. It is important
to note that is the rotational analog of Newton’s second law of motion, 
F � ma.

Now let us extend this discussion to a rigid object of arbitrary shape rotating
about a fixed axis, as shown in Figure 10.17. The object can be regarded as an infi-
nite number of mass elements dm of infinitesimal size. If we impose a cartesian co-
ordinate system on the object, then each mass element rotates in a circle about the
origin, and each has a tangential acceleration at produced by an external tangen-
tial force dFt . For any given element, we know from Newton’s second law that

The torque d� associated with the force dFt acts about the origin and is given by

Because at � r�, the expression for d� becomes

It is important to recognize that although each mass element of the rigid ob-
ject may have a different linear acceleration at , they all have the same angular ac-
celeration �. With this in mind, we can integrate the above expression to obtain
the net torque about O due to the external forces:

where � can be taken outside the integral because it is common to all mass ele-
ments. From Equation 10.17, we know that is the moment of inertia of the
object about the rotation axis through O, and so the expression for �� becomes

(10.21)

Note that this is the same relationship we found for a particle rotating in a circle
(see Eq. 10.20). So, again we see that the net torque about the rotation axis is pro-

�� � I�

� r 2 dm

�� � � (r 2 dm)� � � � r 2 dm

d� � (r dm)r� � (r 2 dm)�

d� � r dFt � (r dm)at

dFt � (dm)at

� � I�

� � I�

� � (mr�)r � (mr 2)�

� � Ft r � (mat)r

Ft � mat

Torque is proportional to angular
acceleration

Relationship between torque and
angular acceleration

y

x

d Ft

O

r

dm

Figure 10.17 A rigid object ro-
tating about an axis through O.
Each mass element dm rotates
about O with the same angular ac-
celeration �, and the net torque on
the object is proportional to �.

Figure 10.16 A particle rotating
in a circle under the influence of a
tangential force Ft . A force Fr in
the radial direction also must be
present to maintain the circular
motion.
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Although each point on a rigid object rotating about a fixed axis may not expe-
rience the same force, linear acceleration, or linear speed, each point experi-
ences the same angular acceleration and angular speed at any instant. There-
fore, at any instant the rotating rigid object as a whole is characterized by
specific values for angular acceleration, net torque, and angular speed.

compute the torque on the rod, we can assume that the gravi-
tational force acts at the center of mass of the rod, as shown
in Figure 10.18. The torque due to this force about an axis
through the pivot is

With �� � I�, and I � for this axis of rotation (see
Table 10.2), we obtain

All points on the rod have this angular acceleration.
To find the linear acceleration of the right end of the rod,

we use the relationship (Eq. 10.11), with r � L:

This result—that at � g for the free end of the rod—is
rather interesting. It means that if we place a coin at the tip
of the rod, hold the rod in the horizontal position, and then
release the rod, the tip of the rod falls faster than the coin
does!

Other points on the rod have a linear acceleration that 
is less than For example, the middle of the rod has 
an acceleration of 3

4  g.

3
2  g.

3
2 gat � L� �

at � r�

3g
2L

� �
�

I
�

�g  (L/2)

1�3 �L2
�

1
3   ML2

� � �g � L
2 �

A uniform rod of length L and mass M is attached at one end
to a frictionless pivot and is free to rotate about the pivot in
the vertical plane, as shown in Figure 10.18. The rod is re-
leased from rest in the horizontal position. What is the initial
angular acceleration of the rod and the initial linear accelera-
tion of its right end?

Solution We cannot use our kinematic equations to find �
or a because the torque exerted on the rod varies with its po-
sition, and so neither acceleration is constant. We have
enough information to find the torque, however, which we
can then use in the torque–angular acceleration relationship
(Eq. 10.21) to find � and then a.

The only force contributing to torque about an axis
through the pivot is the gravitational force Mg exerted on
the rod. (The force exerted by the pivot on the rod has zero
torque about the pivot because its moment arm is zero.) To

Every point has the same � and �

QuickLab
Tip over a child’s tall tower of blocks.
Try this several times. Does the tower
“break” at the same place each time?
What affects where the tower comes
apart as it tips? If the tower were
made of toy bricks that snap together,
what would happen? (Refer to Con-
ceptual Example 10.11.)

portional to the angular acceleration of the object, with the proportionality factor
being I, a quantity that depends upon the axis of rotation and upon the size and
shape of the object. In view of the complex nature of the system, it is interesting to
note that the relationship �� � I� is strikingly simple and in complete agreement
with experimental observations. The simplicity of the result lies in the manner in
which the motion is described.

Finally, note that the result �� � I� also applies when the forces acting on the
mass elements have radial components as well as tangential components. This is
because the line of action of all radial components must pass through the axis of
rotation, and hence all radial components produce zero torque about that axis.

Pivot

L/2

Mg

Figure 10.18 The uniform rod is pivoted at the left end.

Rotating RodEXAMPLE 10.10
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Angular Acceleration of a WheelEXAMPLE 10.12
A wheel of radius R, mass M, and moment of inertia I is
mounted on a frictionless, horizontal axle, as shown in Figure
10.20. A light cord wrapped around the wheel supports an
object of mass m. Calculate the angular acceleration of the
wheel, the linear acceleration of the object, and the tension
in the cord.

Solution The torque acting on the wheel about its axis
of rotation is � � TR, where T is the force exerted by the
cord on the rim of the wheel. (The gravitational force ex-
erted by the Earth on the wheel and the normal force ex-
erted by the axle on the wheel both pass through the axis
of rotation and thus produce no torque.) Because �� � I�,
we obtain

(1)

Now let us apply Newton’s second law to the motion of the
object, taking the downward direction to be positive:

(2)

Equations (1) and (2) have three unknowns, �, a,  and T. Be-
cause the object and wheel are connected by a string that
does not slip, the linear acceleration of the suspended object
is equal to the linear acceleration of a point on the rim of the

a �
mg � T

m
  

  �Fy � mg � T � ma

� �
TR
I

  

  �� � I� � TR

Falling Smokestacks and Tumbling BlocksCONCEPTUAL EXAMPLE 10.11 
When a tall smokestack falls over, it often breaks somewhere
along its length before it hits the ground, as shown in Figure
10.19. The same thing happens with a tall tower of children’s
toy blocks. Why does this happen?

Solution As the smokestack rotates around its base, each
higher portion of the smokestack falls with an increasing
tangential acceleration. (The tangential acceleration of a
given point on the smokestack is proportional to the dis-
tance of that portion from the base.) As the acceleration in-
creases, higher portions of the smokestack experience an
acceleration greater than that which could result from 
gravity alone; this is similar to the situation described in 
Example 10.10. This can happen only if these portions are
being pulled downward by a force in addition to the gravi-
tational force. The force that causes this to occur is the
shear force from lower portions of the smokestack. Eventu-
ally the shear force that provides this acceleration is greater
than the smokestack can withstand, and the smokestack
breaks.

M

O

R

T

m g

m

T

Figure 10.19 A falling smokestack.

Figure 10.20 The tension in the cord produces a torque about
the axle passing through O.
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Atwood’s Machine RevisitedEXAMPLE 10.13
Substituting Equation (6) into Equation (5), we have

Because � � a/R, this expression can be simplified to

(7)

This value of a can then be substituted into Equations (1)

(m1 � m2)g

m1 	 m2 	 2 
I

R 2

a �

  (m1 � m2)g � (m1 	 m2)a � 2I 
a

R 2   

[(m1 � m2)g � (m1 	 m2)a]R � 2I�

Two blocks having masses m1 and m2 are connected to each
other by a light cord that passes over two identical, friction-
less pulleys, each having a moment of inertia I and radius R,
as shown in Figure 10.21a. Find the acceleration of each
block and the tensions T1 , T2 , and T3 in the cord. (Assume
no slipping between cord and pulleys.)

Solution We shall define the downward direction as posi-
tive for m1 and upward as the positive direction for m2 . This
allows us to represent the acceleration of both masses by a
single variable a and also enables us to relate a positive a to a
positive (counterclockwise) angular acceleration �. Let us
write Newton’s second law of motion for each block, using
the free-body diagrams for the two blocks as shown in Figure
10.21b:

(1)

(2)

Next, we must include the effect of the pulleys on the mo-
tion. Free-body diagrams for the pulleys are shown in Figure
10.21c. The net torque about the axle for the pulley on the
left is (T1 � T2)R, while the net torque for the pulley on the
right is (T2 � T3)R. Using the relation �� � I� for each pul-
ley and noting that each pulley has the same angular acceler-
ation �, we obtain

(3)

(4)

We now have four equations with four unknowns: a, T1 ,
T2 , and T3 . These can be solved simultaneously. Adding
Equations (3) and (4) gives

(5)

Adding Equations (1) and (2) gives

(6) T1 � T3 � (m1 � m2)g � (m1 	 m2)a

  T3 � T1 	 m1g � m2g � (m1 	 m2)a

(T1 � T3)R � 2I�

(T2 � T3)R � I�

(T1 � T2)R � I�

T3 � m2g � m2a

m1g � T1 � m1a

wheel. Therefore, the angular acceleration of the wheel and
this linear acceleration are related by a � R�. Using this fact
together with Equations (1) and (2), we obtain

(3)

(4)

Substituting Equation (4) into Equation (2), and solving for
a and �, we find that

mg

1 	
mR 2

I

  T �

a � R� �
TR2

I
�

mg � �

m

Exercise The wheel in Figure 10.20 is a solid disk of M �
2.00 kg, R � 30.0 cm, and I � 0.090 0 kg� m2. The suspended
object has a mass of m � 0.500 kg. Find the tension in the
cord and the angular acceleration of the wheel.

Answer 3.27 N; 10.9 rad/s2.

g
R 	 I/mR

� �
a
R

�

g
1 	 I/mR 2a �

T2 T2

T1 T3

T2

T1 T3

m1g

(a)

m2g

(b)

n1

T1 mpg

n2

T3
mpg

(c)

m1

m1

m2

m2

+

+

Figure 10.21 (a) Another look at Atwood’s machine. 
(b) Free-body diagrams for the blocks. (c) Free-body diagrams for
the pulleys, where mpg represents the force of gravity acting on each
pulley.



312 C H A P T E R  1 0 Rotation of a Rigid Object About a Fixed Axis

WORK, POWER, AND ENERGY
IN ROTATIONAL MOTION

In this section, we consider the relationship between the torque acting on a rigid
object and its resulting rotational motion in order to generate expressions for the
power and a rotational analog to the work–kinetic energy theorem. Consider the
rigid object pivoted at O in Figure 10.22. Suppose a single external force F is ap-
plied at P, where F lies in the plane of the page. The work done by F as the object
rotates through an infinitesimal distance ds � r d� in a time dt is

where F sin � is the tangential component of F, or, in other words, the component
of the force along the displacement. Note that the radial component of F does no work
because it is perpendicular to the displacement.

Because the magnitude of the torque due to F about O is defined as rF sin �
by Equation 10.19, we can write the work done for the infinitesimal rotation as

(10.22)

The rate at which work is being done by F as the object rotates about the fixed axis is

Because dW/dt is the instantaneous power � (see Section 7.5) delivered by the
force, and because d�/dt � �, this expression reduces to

(10.23)

This expression is analogous to in the case of linear motion, and the ex-
pression dW � � d� is analogous to dW � Fx dx.

Work and Energy in Rotational Motion

In studying linear motion, we found the energy concept—and, in particular, the
work–kinetic energy theorem—extremely useful in describing the motion of a
system. The energy concept can be equally useful in describing rotational motion.
From what we learned of linear motion, we expect that when a symmetric object
rotates about a fixed axis, the work done by external forces equals the change in
the rotational energy.

To show that this is in fact the case, let us begin with �� � I�. Using the chain
rule from the calculus, we can express the resultant torque as

�� � I� � I 
d�

dt
� I 

d�

d�
 
d�

dt
� I 

d�

d�
 �

� � Fv

� �
dW
dt

� ��

dW
dt

� � 
d�

dt

dW � � d�

dW � F�ds � (F sin �)r d�

10.8

Power delivered to a rigid object

Figure 10.22 A rigid object ro-
tates about an axis through O un-
der the action of an external force
F applied at P.

and (2) to give T1 and T3 . Finally, T2 can be found from
Equation (3) or Equation (4). Note that if m1 � m 2 , the ac-
celeration is positive; this means that the left block acceler-
ates downward, the right block accelerates upward, and both

pulleys accelerate counterclockwise. If m1 � m 2 , then all the
values are negative and the motions are reversed. If m1 � m 2 ,
then no acceleration occurs at all. You should compare these
results with those found in Example 5.9 on page 129.

O

P

r
d

ds

φ

F

θ
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Rearranging this expression and noting that �� d� � dW, we obtain

Integrating this expression, we get for the total work done by the net external
force acting on a rotating system

(10.24)

where the angular speed changes from �i to �f as the angular position changes
from �i to �f . That is,

�W � ��f

�i

 �� d� � ��f

�i

 I� d� � 1
2I�f 

2 � 1
2I�i 

2

�� d� � dW � I� d�

the net work done by external forces in rotating a symmetric rigid object about
a fixed axis equals the change in the object’s rotational energy.

Work–kinetic energy theorem for
rotational motion

Table 10.3 lists the various equations we have discussed pertaining to rota-
tional motion, together with the analogous expressions for linear motion. The last
two equations in Table 10.3, involving angular momentum L, are discussed in
Chapter 11 and are included here only for the sake of completeness.

For a hoop lying in the xy plane, which of the following requires that more work be done by
an external agent to accelerate the hoop from rest to an angular speed �: (a) rotation
about the z axis through the center of the hoop, or (b) rotation about an axis parallel to z
passing through a point P on the hoop rim?

Quick Quiz 10.4

	 	

TABLE 10.3 Useful Equations in Rotational and Linear Motion

Rotational Motion
About a Fixed Axis Linear Motion

Angular speed � � d�/dt Linear speed v � dx/dt
Angular acceleration � � d�/dt Linear acceleration a � dv/dt
Resultant torque � � I� Resultant force F � ma

If �f � �i 	 �t If vf � vi 	 at
� � constant �f � �i � �it 	 �t2 a � constant xf � xi � vit 	 at2

�f
2 � �i

2 	 2�(�f � �i) vf
2 � vi

2 	 2a(xf � xi)

Work Work 

Rotational kinetic energy Kinetic energy 
Power Power 
Angular momentum L � I� Linear momentum p � mv
Resultant torque � � dL/dt Resultant force F � dp/dt��

� � Fv� � ��
K � 1

2mv2KR � 1
2I�2

W � �xf

xi 
 Fx dxW � ��f

�i

 � d�

1
2

1
2

��
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Connected CylindersEXAMPLE 10.15
inertia I about its axis of rotation. The string does not slip
on the pulley, and the system is released from rest. Find the
linear speeds of the cylinders after cylinder 2 descends
through a distance h, and the angular speed of the pulley at
this time.

Solution We are now able to account for the effect of a
massive pulley. Because the string does not slip, the pulley ro-
tates. We neglect friction in the axle about which the pulley
rotates for the following reason: Because the axle’s radius is
small relative to that of the pulley, the frictional torque is
much smaller than the torque applied by the two cylinders,
provided that their masses are quite different. Mechanical en-
ergy is constant; hence, the increase in the system’s kinetic en-
ergy (the system being the two cylinders, the pulley, and the
Earth) equals the decrease in its potential energy. Because 
Ki � 0 (the system is initially at rest), we have

where vf is the same for both blocks. Because vf � R�f , this
expression becomes

�K � 1
2�m1 	 m2 	

I
R 2 �vf 

2

�K � K f � K i � (1
2m1vf 

2 	 1
2m2vf 

2 	 1
2I�f 

2) � 0

Consider two cylinders having masses m1 and m2 , where m1 �
m2 , connected by a string passing over a pulley, as shown in
Figure 10.24. The pulley has a radius R and moment of 

Rotating Rod RevisitedEXAMPLE 10.14
energy is entirely rotational energy, where I is the mo-
ment of inertia about the pivot. Because (see Table
10.2) and because mechanical energy is constant, we have 
Ei � Ef or

(b) Determine the linear speed of the center of mass and
the linear speed of the lowest point on the rod when it is in
the vertical position.

Solution These two values can be determined from the re-
lationship between linear and angular speeds. We know �
from part (a), and so the linear speed of the center of mass is

Because r for the lowest point on the rod is twice what it is for
the center of mass, the lowest point has a linear speed equal
to

√3gL2vCM �

1
2 √3gLvCM � r� �

L
2

 � �

√ 3g
L

  � �

1
2  MgL � 1

2  I�2 � 1
2  (1

3  ML2)�2

I � 1
3  ML2

1
2  I�2,A uniform rod of length L and mass M is free to rotate on a

frictionless pin passing through one end (Fig 10.23). The rod
is released from rest in the horizontal position. (a) What is its
angular speed when it reaches its lowest position?

Solution The question can be answered by considering
the mechanical energy of the system. When the rod is hori-
zontal, it has no rotational energy. The potential energy rela-
tive to the lowest position of the center of mass of the rod
(O�) is MgL/2. When the rod reaches its lowest position, the

O ′

O

L/2

Ei = U = MgL/2

Ef  = KR = –1
2

Iω2ω

h

h

m2

m1

R

Figure 10.23 A uniform rigid rod pivoted at O rotates in a vertical
plane under the action of gravity.

Figure 10.24
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SUMMARY

If a particle rotates in a circle of radius r through an angle � (measured in radi-
ans), the arc length it moves through is s � r�.

The angular displacement of a particle rotating in a circle or of a rigid ob-
ject rotating about a fixed axis is

(10.2)

The instantaneous angular speed of a particle rotating in a circle or of a
rigid object rotating about a fixed axis is

(10.4)

The instantaneous angular acceleration of a rotating object is

(10.6)

When a rigid object rotates about a fixed axis, every part of the object has the
same angular speed and the same angular acceleration.

If a particle or object rotates about a fixed axis under constant angular accel-
eration, one can apply equations of kinematics that are analogous to those for lin-
ear motion under constant linear acceleration:

(10.7)

(10.8)

(10.9)

A useful technique in solving problems dealing with rotation is to visualize a linear
version of the same problem.

When a rigid object rotates about a fixed axis, the angular position, angular
speed, and angular acceleration are related to the linear position, linear speed,
and linear acceleration through the relationships

(10.1a)

(10.10)

(10.11)at � r�

  v � r�

  s � r u

�f 

2 � �i 

2 	 2�(�f � �i)

  �f � �i 	 �it 	 1
2�t2  

  �f � �i 	 �t  

� �
d�

dt

� �
d�

dt

�� � �f � �i

From Figure 10.24, we see that the system loses potential en-
ergy as cylinder 2 descends and gains potential energy as
cylinder 1 rises. That is, and Ap-
plying the principle of conservation of energy in the form

gives

vf � �
2(m2 � m1)gh

�m1 	 m2 	
I

R 2 � �
1/2

1
2�m1 	 m2 	

I
R 2 �vf 

2 	 m1gh � m2gh � 0

�K 	 �U1 	 �U 2 � 0

�U1 � m1gh.�U 2 � �m2gh

Because the angular speed of the pulley at this in-
stant is

Exercise Repeat the calculation of vf , using �� � I� ap-
plied to the pulley and Newton’s second law applied to the
two cylinders. Use the procedures presented in Examples
10.12 and 10.13.

1
R

 �
2(m2 � m1)gh

�m1 	 m2 	
I

R 2 � �
1/2

�f �
vf

R
�

vf � R�f ,
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You must be able to easily alternate between the linear and rotational variables
that describe a given situation.

The moment of inertia of a system of particles is

(10.15)

If a rigid object rotates about a fixed axis with angular speed �, its rotational
energy can be written

(10.16)

where I is the moment of inertia about the axis of rotation.
The moment of inertia of a rigid object is

(10.17)

where r is the distance from the mass element dm to the axis of rotation. 
The magnitude of the torque associated with a force F acting on an object is

(10.19)

where d is the moment arm of the force, which is the perpendicular distance from
some origin to the line of action of the force. Torque is a measure of the tendency
of the force to change the rotation of the object about some axis. 

If a rigid object free to rotate about a fixed axis has a net external torque act-
ing on it, the object undergoes an angular acceleration �, where

(10.21)

The rate at which work is done by an external force in rotating a rigid object
about a fixed axis, or the power delivered, is

(10.23)

The net work done by external forces in rotating a rigid object about a fixed
axis equals the change in the rotational kinetic energy of the object:

(10.24)�W � 1
2I�f 

2 � 1
2I�i 

2

� � ��

�� � I�

� � Fd

I � �r 2 dm

KR � 1
2I�2

I  � �
i

miri 

2

QUESTIONS

the moment of inertia have the smallest value? the largest
value?

6. Suppose the rod in Figure 10.10 has a nonuniform mass
distribution. In general, would the moment of inertia
about the y axis still equal ML2/12? If not, could the mo-
ment of inertia be calculated without knowledge of the
manner in which the mass is distributed?

7. Suppose that only two external forces act on a rigid body,
and the two forces are equal in magnitude but opposite
in direction. Under what condition does the body rotate?

8. Explain how you might use the apparatus described in
Example 10.12 to determine the moment of inertia of the
wheel. (If the wheel does not have a uniform mass den-
sity, the moment of inertia is not necessarily equal to

.)1
2MR 2

1. What is the angular speed of the second hand of a clock?
What is the direction of � as you view a clock hanging
vertically? What is the magnitude of the angular accelera-
tion vector � of the second hand?

2. A wheel rotates counterclockwise in the xy plane. What is
the direction of �? What is the direction of � if the angu-
lar velocity is decreasing in time?

3. Are the kinematic expressions for �, �, and � valid when
the angular displacement is measured in degrees instead
of in radians?

4. A turntable rotates at a constant rate of 45 rev/min. What
is its angular speed in radians per second? What is the
magnitude of its angular acceleration?

5. Suppose a � b and M � m for the system of particles de-
scribed in Figure 10.8. About what axis (x, y, or z) does
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9. Using the results from Example 10.12, how would you cal-
culate the angular speed of the wheel and the linear
speed of the suspended mass at t � 2 s, if the system is re-
leased from rest at t � 0? Is the expression v � R� valid
in this situation?

10. If a small sphere of mass M were placed at the end of the
rod in Figure 10.23, would the result for � be greater
than, less than, or equal to the value obtained in Example
10.14?

11. Explain why changing the axis of rotation of an object
changes its moment of inertia.

12. Is it possible to change the translational kinetic energy of
an object without changing its rotational energy?

13. Two cylinders having the same dimensions are set into ro-
tation about their long axes with the same angular speed.

One is hollow, and the other is filled with water. Which
cylinder will be easier to stop rotating? Explain your 
answer.

14. Must an object be rotating to have a nonzero moment of
inertia?

15. If you see an object rotating, is there necessarily a net
torque acting on it?

16. Can a (momentarily) stationary object have a nonzero an-
gular acceleration?

17. The polar diameter of the Earth is slightly less than the
equatorial diameter. How would the moment of inertia of
the Earth change if some mass from near the equator
were removed and transferred to the polar regions to
make the Earth a perfect sphere?

PROBLEMS

7. The angular position of a swinging door is described by
� � 5.00 	 10.0t 	 2.00t 2 rad. Determine the angular
position, angular speed, and angular acceleration of the
door (a) at t � 0 and (b) at t � 3.00 s.

8. The tub of a washer goes into its spin cycle, starting
from rest and gaining angular speed steadily for 8.00 s,
when it is turning at 5.00 rev/s. At this point the person
doing the laundry opens the lid, and a safety switch
turns off the washer. The tub smoothly slows to rest in
12.0 s. Through how many revolutions does the tub
turn while it is in motion?

9. A rotating wheel requires 3.00 s to complete 37.0 revo-
lutions. Its angular speed at the end of the 3.00-s inter-
val is 98.0 rad/s. What is the constant angular accelera-
tion of the wheel?

10. (a) Find the angular speed of the Earth’s rotation on its
axis. As the Earth turns toward the east, we see the sky
turning toward the west at this same rate.
(b) The rainy Pleiads wester

And seek beyond the sea
The head that I shall dream of

That shall not dream of me.

A. E. Housman (© Robert E. Symons)

Cambridge, England, is at longitude 0°, and Saskatoon,
Saskatchewan, is at longitude 107° west. How much
time elapses after the Pleiades set in Cambridge until
these stars fall below the western horizon in Saskatoon?

Section 10.3 Angular and Linear Quantities
11. Make an order-of-magnitude estimate of the number of

revolutions through which a typical automobile tire

Section 10.2 Rotational Kinematics: Rotational 
Motion with Constant Angular Acceleration

1. A wheel starts from rest and rotates with constant angu-
lar acceleration and reaches an angular speed of 
12.0 rad/s in 3.00 s. Find (a) the magnitude of the an-
gular acceleration of the wheel and (b) the angle (in
radians) through which it rotates in this time.

2. What is the angular speed in radians per second of 
(a) the Earth in its orbit about the Sun and (b) the
Moon in its orbit about the Earth?

3. An airliner arrives at the terminal, and its engines are
shut off. The rotor of one of the engines has an initial
clockwise angular speed of 2 000 rad/s. The engine’s
rotation slows with an angular acceleration of magni-
tude 80.0 rad/s2. (a) Determine the angular speed after
10.0 s. (b) How long does it take for the rotor to come
to rest?

4. (a) The positions of the hour and minute hand on a
clock face coincide at 12 o’clock. Determine all other
times (up to the second) at which the positions of the
hands coincide. (b) If the clock also has a second hand,
determine all times at which the positions of 
all three hands coincide, given that they all coincide 
at 12 o’clock.

5. An electric motor rotating a grinding wheel at 
100 rev/min is switched off. Assuming constant negative
acceleration of magnitude 2.00 rad/s2, (a) how long
does it take the wheel to stop? (b) Through how many
radians does it turn during the time found in part (a)?

6. A centrifuge in a medical laboratory rotates at a rota-
tional speed of 3 600 rev/min. When switched off, it ro-
tates 50.0 times before coming to rest. Find the constant
angular acceleration of the centrifuge.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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turns in 1 yr. State the quantities you measure or esti-
mate and their values.

12. The diameters of the main rotor and tail rotor of a sin-
gle-engine helicopter are 7.60 m and 1.02 m, respec-
tively. The respective rotational speeds are 450 rev/min
and 4 138 rev/min. Calculate the speeds of the tips of
both rotors. Compare these speeds with the speed of
sound, 343 m/s.

sume the discus moves on the arc of a circle 1.00 m in
radius. (a) Calculate the final angular speed of the dis-
cus. (b) Determine the magnitude of the angular accel-
eration of the discus, assuming it to be constant. 
(c) Calculate the acceleration time.

17. A car accelerates uniformly from rest and reaches a
speed of 22.0 m/s in 9.00 s. If the diameter of a tire is
58.0 cm, find (a) the number of revolutions the tire
makes during this motion, assuming that no slipping oc-
curs. (b) What is the final rotational speed of a tire in
revolutions per second?

18. A 6.00-kg block is released from A on the frictionless
track shown in Figure P10.18. Determine the radial and
tangential components of acceleration for the block 
at P.

WEB

Figure P10.12 (Ross Harrrison Koty/Tony Stone Images)

Figure P10.16 (Bruce Ayers/Tony Stone Images)

Figure P10.18

13. A racing car travels on a circular track with a radius of
250 m. If the car moves with a constant linear speed of
45.0 m/s, find (a) its angular speed and (b) the magni-
tude and direction of its acceleration.

14. A car is traveling at 36.0 km/h on a straight road. The
radius of its tires is 25.0 cm. Find the angular speed of
one of the tires, with its axle taken as the axis of rota-
tion.

15. A wheel 2.00 m in diameter lies in a vertical plane 
and rotates with a constant angular acceleration of 
4.00 rad/s2. The wheel starts at rest at t � 0, and the
radius vector of point P on the rim makes an angle of
57.3° with the horizontal at this time. At t � 2.00 s, find
(a) the angular speed of the wheel, (b) the linear speed
and acceleration of the point P, and (c) the angular
position of the point P.

16. A discus thrower accelerates a discus from rest to a
speed of 25.0 m/s by whirling it through 1.25 rev. As-

19. A disc 8.00 cm in radius rotates at a constant rate of 
1 200 rev/min about its central axis. Determine (a) its
angular speed, (b) the linear speed at a point 3.00 cm
from its center, (c) the radial acceleration of a point on
the rim, and (d) the total distance a point on the rim
moves in 2.00 s.

20. A car traveling on a flat (unbanked) circular track accel-
erates uniformly from rest with a tangential acceleration
of 1.70 m/s2. The car makes it one quarter of the way
around the circle before it skids off the track. Deter-
mine the coefficient of static friction between the car
and track from these data.

21. A small object with mass 4.00 kg moves counterclock-
wise with constant speed 4.50 m/s in a circle of radius
3.00 m centered at the origin. (a) It started at the point
with cartesian coordinates (3 m, 0). When its angular
displacement is 9.00 rad, what is its position vector, in
cartesian unit-vector notation? (b) In what quadrant is
the particle located, and what angle does its position
vector make with the positive x axis? (c) What is its ve-
locity vector, in unit–vector notation? (d) In what direc-
tion is it moving? Make a sketch of the position and ve-
locity vectors. (e) What is its acceleration, expressed in
unit–vector notation? (f) What total force acts on the
object? (Express your answer in unit vector notation.)

R  =  2.00 m

P

A

h  =  5.00 m
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WEB

Figure P10.23

Section 10.5 Calculation of Moments of Inertia
28. Three identical thin rods, each of length L and mass m,

are welded perpendicular to each other, as shown in
Figure P10.28. The entire setup is rotated about an axis

27. Two masses M and m are connected by a rigid rod of
length L and of negligible mass, as shown in Figure
P10.27. For an axis perpendicular to the rod, show 
that the system has the minimum moment of inertia
when the axis passes through the center of mass. Show
that this moment of inertia is I � �L2, where � �
mM/(m 	 M).

24. The center of mass of a pitched baseball (3.80-cm ra-
dius) moves at 38.0 m/s. The ball spins about an axis
through its center of mass with an angular speed of 
125 rad/s. Calculate the ratio of the rotational energy
to the translational kinetic energy. Treat the ball as a
uniform sphere.

25. The four particles in Figure P10.25 are connected by
rigid rods of negligible mass. The origin is at the center
of the rectangle. If the system rotates in the xy plane
about the z axis with an angular speed of 6.00 rad/s, cal-
culate (a) the moment of inertia of the system about
the z axis and (b) the rotational energy of the system.

26. The hour hand and the minute hand of Big Ben, the fa-
mous Parliament tower clock in London, are 2.70 m
long and 4.50 m long and have masses of 60.0 kg and
100 kg, respectively. Calculate the total rotational ki-
netic energy of the two hands about the axis of rotation.
(You may model the hands as long thin rods.)

22. A standard cassette tape is placed in a standard cassette
player. Each side plays for 30 min. The two tape wheels
of the cassette fit onto two spindles in the player. Sup-
pose that a motor drives one spindle at a constant angu-
lar speed of 
 1 rad/s and that the other spindle is free
to rotate at any angular speed. Estimate the order of
magnitude of the thickness of the tape.

Section 10.4 Rotational Energy
23. Three small particles are connected by rigid rods of

negligible mass lying along the y axis (Fig. P10.23). If
the system rotates about the x axis with an angular
speed of 2.00 rad/s, find (a) the moment of inertia
about the x axis and the total rotational kinetic energy
evaluated from and (b) the linear speed of each
particle and the total kinetic energy evaluated from 

.�1
2mivi 

2
 

1
2I�2

3.00 kg 2.00 kg

4.00 kg2.00 kg

6.00 m

4.00 m

y(m)

x(m)
O

x
O

y  =  3.00 m4.00 kg

3.00 kg

2.00 kg

y

y  =  –2.00 m

y  =  –4.00 m

Figure P10.25

Figure P10.26 Problems 26 and 74. ( John Lawrence/Tony Stone Images)

Figure P10.27

L

L – xx
M m
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that passes through the end of one rod and is parallel to
another. Determine the moment of inertia of this
arrangement.

29. Figure P10.29 shows a side view of a car tire and its ra-
dial dimensions. The rubber tire has two sidewalls of
uniform thickness 0.635 cm and a tread wall of uniform
thickness 2.50 cm and width 20.0 cm. Suppose its den-
sity is uniform, with the value 1.10 
 103 kg/m3. Find
its moment of inertia about an axis through its center
perpendicular to the plane of the sidewalls.

31. Attention! About face! Compute an order-of-magnitude es-
timate for the moment of inertia of your body as you
stand tall and turn around a vertical axis passing
through the top of your head and the point halfway be-
tween your ankles. In your solution state the quantities
you measure or estimate and their values.

Section 10.6 Torque
32. Find the mass m needed to balance the 1 500-kg truck

on the incline shown in Figure P10.32. Assume all pul-
leys are frictionless and massless.

WEB

34. The fishing pole in Figure P10.34 makes an angle of
20.0° with the horizontal. What is the torque exerted by

33. Find the net torque on the wheel in Figure P10.33
about the axle through O if a � 10.0 cm and b �
25.0 cm.

30. Use the parallel-axis theorem and Table 10.2 to find the
moments of inertia of (a) a solid cylinder about an axis
parallel to the center-of-mass axis and passing through
the edge of the cylinder and (b) a solid sphere about an
axis tangent to its surface.

Figure P10.28

10.0 N

30.0° a

O

b
12.0 N

9.00 N

r

3r

θ = 45°

1500 kg
m

θ

Sidewall

Tread

33.0 cm

30.5 cm

16.5 cm

Axis of
rotation

Figure P10.29

Figure P10.32

Figure P10.33
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the fish about an axis perpendicular to the page and
passing through the fisher’s hand?

35. The tires of a 1 500-kg car are 0.600 m in diameter, and
the coefficients of friction with the road surface are 
�s � 0.800 and �k � 0.600. Assuming that the weight is
evenly distributed on the four wheels, calculate the
maximum torque that can be exerted by the engine on
a driving wheel such that the wheel does not spin. If you
wish, you may suppose that the car is at rest.

36. Suppose that the car in Problem 35 has a disk brake sys-
tem. Each wheel is slowed by the frictional force be-
tween a single brake pad and the disk-shaped rotor. On
this particular car, the brake pad comes into contact
with the rotor at an average distance of 22.0 cm from
the axis. The coefficients of friction between the brake
pad and the disk are �s � 0.600 and �k � 0.500. Calcu-
late the normal force that must be applied to the rotor
such that the car slows as quickly as possible.

Section 10.7 Relationship Between 
Torque and Angular Acceleration

37. A model airplane having a mass of 0.750 kg is tethered
by a wire so that it flies in a circle 30.0 m in radius. The
airplane engine provides a net thrust of 0.800 N per-
pendicular to the tethering wire. (a) Find the torque
the net thrust produces about the center of the circle.
(b) Find the angular acceleration of the airplane when
it is in level flight. (c) Find the linear acceleration of
the airplane tangent to its flight path.

38. The combination of an applied force and a frictional
force produces a constant total torque of 36.0 N� m on a
wheel rotating about a fixed axis. The applied force acts
for 6.00 s; during this time the angular speed of the
wheel increases from 0 to 10.0 rad/s. The applied force
is then removed, and the wheel comes to rest in 60.0 s.
Find (a) the moment of inertia of the wheel, (b) the
magnitude of the frictional torque, and (c) the total
number of revolutions of the wheel.

39. A block of mass m1 � 2.00 kg and a block of mass m2 �
6.00 kg are connected by a massless string over a pulley

in the shape of a disk having radius R � 0.250 m and
mass M � 10.0 kg. These blocks are allowed to move on
a fixed block–wedge of angle � � 30.0°, as shown in
Figure P10.39. The coefficient of kinetic friction for
both blocks is 0.360. Draw free-body diagrams of both
blocks and of the pulley. Determine (a) the acceleration
of the two blocks and (b) the tensions in the string on
both sides of the pulley.

40. A potter’s wheel—a thick stone disk with a radius of
0.500 m and a mass of 100 kg—is freely rotating at 
50.0 rev/min. The potter can stop the wheel in 6.00 s by
pressing a wet rag against the rim and exerting a radi-
ally inward force of 70.0 N. Find the effective coefficient
of kinetic friction between the wheel and the rag.

41. A bicycle wheel has a diameter of 64.0 cm and a mass of
1.80 kg. Assume that the wheel is a hoop with all of its
mass concentrated on the outside radius. The bicycle is
placed on a stationary stand on rollers, and a resistive
force of 120 N is applied tangent to the rim of the tire.
(a) What force must be applied by a chain passing over
a 9.00-cm-diameter sprocket if the wheel is to attain an
acceleration of 4.50 rad/s2? (b) What force is required
if the chain shifts to a 5.60-cm-diameter sprocket?

Section 10.8 Work , Power, and 
Energy in Rotational Motion

42. A cylindrical rod 24.0 cm long with a mass of 1.20 kg
and a radius of 1.50 cm has a ball with a diameter of
8.00 cm and a mass of 2.00 kg attached to one end. The
arrangement is originally vertical and stationary, with
the ball at the top. The apparatus is free to pivot about
the bottom end of the rod. (a) After it falls through 90°,
what is its rotational kinetic energy? (b) What is the an-
gular speed of the rod and ball? (c) What is the linear
speed of the ball? (d) How does this compare with the
speed if the ball had fallen freely through the same dis-
tance of 28 cm?

43. A 15.0-kg mass and a 10.0-kg mass are suspended by a
pulley that has a radius of 10.0 cm and a mass of 3.00 kg
(Fig. P10.43). The cord has a negligible mass and
causes the pulley to rotate without slipping. The pulley

WEB

m1

m2

I, R

θ

100 N

2.00 m

20.0°

20.0°
37.0°

Figure P10.34

Figure P10.39
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rotates without friction. The masses start from rest 
3.00 m apart. Treating the pulley as a uniform disk, de-
termine the speeds of the two masses as they pass each
other.

44. A mass m1 and a mass m2 are suspended by a pulley that
has a radius R and a mass M (see Fig. P10.43). The cord
has a negligible mass and causes the pulley to rotate
without slipping. The pulley rotates without friction.
The masses start from rest a distance d apart. Treating
the pulley as a uniform disk, determine the speeds of
the two masses as they pass each other.

v. Show that the moment of inertia I of the equipment
(including the turntable) is mr 2(2gh/v2 � 1).

48. A bus is designed to draw its power from a rotating
flywheel that is brought up to its maximum rate of rota-
tion (3 000 rev/min) by an electric motor. The flywheel
is a solid cylinder with a mass of 1 000 kg and a diame-
ter of 1.00 m. If the bus requires an average power of 
10.0 kW, how long does the flywheel rotate?

49. (a) A uniform, solid disk of radius R and mass M is free
to rotate on a frictionless pivot through a point on its
rim (Fig. P10.49). If the disk is released from rest in the
position shown by the blue circle, what is the speed of
its center of mass when the disk reaches the position in-
dicated by the dashed circle? (b) What is the speed of
the lowest point on the disk in the dashed position? 
(c) Repeat part (a), using a uniform hoop.

50. A horizontal 800-N merry-go-round is a solid disk of ra-
dius 1.50 m and is started from rest by a constant horizon-
tal force of 50.0 N applied tangentially to the cylinder.
Find the kinetic energy of the solid cylinder after 3.00 s.

ADDITIONAL PROBLEMS

51. Toppling chimneys often break apart in mid-fall (Fig.
P10.51) because the mortar between the bricks cannot

45. A weight of 50.0 N is attached to the free end of a light
string wrapped around a reel with a radius of 0.250 m
and a mass of 3.00 kg. The reel is a solid disk, free to ro-
tate in a vertical plane about the horizontal axis passing
through its center. The weight is released 6.00 m above
the floor. (a) Determine the tension in the string, the
acceleration of the mass, and the speed with which the
weight hits the floor. (b) Find the speed calculated in
part (a), using the principle of conservation of energy.

46. A constant torque of 25.0 N� m is applied to a grind-
stone whose moment of inertia is 0.130 kg� m2. Using
energy principles, find the angular speed after the
grindstone has made 15.0 revolutions. (Neglect fric-
tion.)

47. This problem describes one experimental method of
determining the moment of inertia of an irregularly
shaped object such as the payload for a satellite. Figure
P10.47 shows a mass m suspended by a cord wound
around a spool of radius r, forming part of a turntable
supporting the object. When the mass is released from
rest, it descends through a distance h, acquiring a speed

Pivot R

g

m

M = 3.00 kg
R = 10.0 cm
m1 = 15.0 kg
m2 = 10.0 kg

3.00 m

m1

M
R

m2

Figure P10.43 Problems 43 and 44.

Figure P10.47

Figure P10.49
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withstand much shear stress. As the chimney begins to
fall, shear forces must act on the topmost sections to ac-
celerate them tangentially so that they can keep up with
the rotation of the lower part of the stack. For simplic-
ity, let us model the chimney as a uniform rod of length
� pivoted at the lower end. The rod starts at rest in a
vertical position (with the frictionless pivot at the bot-
tom) and falls over under the influence of gravity. What
fraction of the length of the rod has a tangential accel-
eration greater than g sin �, where � is the angle the
chimney makes with the vertical?

exerts on the wheel. (a) How long does the wheel take
to reach its final rotational speed of 1 200 rev/min? 
(b) Through how many revolutions does it turn while
accelerating?

54. The density of the Earth, at any distance r from its cen-
ter, is approximately

where R is the radius of the Earth. Show that this density
leads to a moment of inertia I � 0.330MR2 about an axis
through the center, where M is the mass of the Earth.

55. A 4.00-m length of light nylon cord is wound around a
uniform cylindrical spool of radius 0.500 m and mass
1.00 kg. The spool is mounted on a frictionless axle and
is initially at rest. The cord is pulled from the spool with
a constant acceleration of magnitude 2.50 m/s2. 
(a) How much work has been done on the spool when
it reaches an angular speed of 8.00 rad/s? (b) Assuming
that there is enough cord on the spool, how long does it
take the spool to reach this angular speed? (c) Is there
enough cord on the spool?

56. A flywheel in the form of a heavy circular disk of diame-
ter 0.600 m and mass 200 kg is mounted on a friction-
less bearing. A motor connected to the flywheel acceler-
ates it from rest to 1 000 rev/min. (a) What is the
moment of inertia of the flywheel? (b) How much work
is done on it during this acceleration? (c) When the an-
gular speed reaches 1 000 rev/min, the motor is disen-
gaged. A friction brake is used to slow the rotational
rate to 500 rev/min. How much energy is dissipated as
internal energy in the friction brake?

57. A shaft is turning at 65.0 rad/s at time zero. Thereafter,
its angular acceleration is given by

where t is the elapsed time. (a) Find its angular speed at
t � 3.00 s. (b) How far does it turn in these 3 s?

58. For any given rotational axis, the radius of gyration K of a
rigid body is defined by the expression K 2 � I/M,
where M is the total mass of the body and I is its mo-
ment of inertia. Thus, the radius of gyration is equal to
the distance between an imaginary point mass M and
the axis of rotation such that I for the point mass about
that axis is the same as that for the rigid body. Find the
radius of gyration of (a) a solid disk of radius R, (b) a
uniform rod of length L, and (c) a solid sphere of ra-
dius R, all three of which are rotating about a central
axis.

59. A long, uniform rod of length L and mass M is pivoted
about a horizontal, frictionless pin passing through one
end. The rod is released from rest in a vertical position,
as shown in Figure P10.59. At the instant the rod is hori-
zontal, find (a) its angular speed, (b) the magnitude of
its angular acceleration, (c) the x and y components of
the acceleration of its center of mass, and (d) the com-
ponents of the reaction force at the pivot.

� � �10 rad/s2 � 5t rad/s3

 � [14.2 � 11.6 r/R] 
 103 kg/m3

52. Review Problem. A mixing beater consists of three
thin rods: Each is 10.0 cm long, diverges from a central
hub, and is separated from the others by 120°. All turn
in the same plane. A ball is attached to the end of each
rod. Each ball has a cross-sectional area of 4.00 cm2 and
is shaped so that it has a drag coefficient of 0.600. Cal-
culate the power input required to spin the beater at 
1 000 rev/min (a) in air and (b) in water.

53. A grinding wheel is in the form of a uniform solid disk
having a radius of 7.00 cm and a mass of 2.00 kg. It
starts from rest and accelerates uniformly under the ac-
tion of the constant torque of 0.600 N� m that the motor

Figure P10.51 A building demolition site in Baltimore,
MD. At the left is a chimney, mostly concealed by the building,
that has broken apart on its way down. Compare with Figure
10.19. ( Jerry Wachter/Photo Researchers, Inc.)
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60. A bicycle is turned upside down while its owner repairs
a flat tire. A friend spins the other wheel, of radius
0.381 m, and observes that drops of water fly off tangen-
tially. She measures the height reached by drops moving
vertically (Fig. P10.60). A drop that breaks loose from
the tire on one turn rises h � 54.0 cm above the tan-
gent point. A drop that breaks loose on the next turn
rises 51.0 cm above the tangent point. The height to
which the drops rise decreases because the angular
speed of the wheel decreases. From this information,
determine the magnitude of the average angular accel-
eration of the wheel.

61. A bicycle is turned upside down while its owner repairs
a flat tire. A friend spins the other wheel of radius R
and observes that drops of water fly off tangentially. She
measures the height reached by drops moving vertically
(see Fig. P10.60). A drop that breaks loose from the tire
on one turn rises a distance h1 above the tangent point.

A drop that breaks loose on the next turn rises a dis-
tance h2 � h1 above the tangent point. The height to
which the drops rise decreases because the angular
speed of the wheel decreases. From this information,
determine the magnitude of the average angular accel-
eration of the wheel.

62. The top shown in Figure P10.62 has a moment of inertia
of 4.00 
 10�4 kg� m2 and is initially at rest. It is free to
rotate about the stationary axis AA�. A string, wrapped
around a peg along the axis of the top, is pulled in such
a manner that a constant tension of 5.57 N is main-
tained. If the string does not slip while it is unwound
from the peg, what is the angular speed of the top after
80.0 cm of string has been pulled off the peg?

63. A cord is wrapped around a pulley of mass m and of ra-
dius r. The free end of the cord is connected to a block
of mass M. The block starts from rest and then slides
down an incline that makes an angle � with the horizon-
tal. The coefficient of kinetic friction between block
and incline is �. (a) Use energy methods to show that
the block’s speed as a function of displacement d down
the incline is

(b) Find the magnitude of the acceleration of the block
in terms of �, m, M, g, and �.

64. (a) What is the rotational energy of the Earth about its
spin axis? The radius of the Earth is 6 370 km, and its
mass is 5.98 
 1024 kg. Treat the Earth as a sphere of
moment of inertia . (b) The rotational energy of
the Earth is decreasing steadily because of tidal friction.
Estimate the change in one day, given that the rota-
tional period increases by about 10 �s each year.

65. The speed of a moving bullet can be determined by al-
lowing the bullet to pass through two rotating paper
disks mounted a distance d apart on the same axle (Fig.
P10.65). From the angular displacement �� of the two

2
5MR 2

v � [4gdM(m 	 2M)�1(sin � � � cos �)]1/2

F

A′

A

h

xPivot

L

y

Figure P10.59

Figure P10.60 Problems 60 and 61.

Figure P10.62
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bullet holes in the disks and the rotational speed of the
disks, we can determine the speed v of the bullet. Find
the bullet speed for the following data: d � 80 cm, 
� � 900 rev/min, and �� � 31.0°.

66. A wheel is formed from a hoop and n equally spaced
spokes extending from the center of the hoop to its
rim. The mass of the hoop is M, and the radius of the
hoop (and hence the length of each spoke) is R. The
mass of each spoke is m. Determine (a) the moment of
inertia of the wheel about an axis through its center
and perpendicular to the plane of the wheel and 
(b) the moment of inertia of the wheel about an axis
through its rim and perpendicular to the plane of the
wheel.

67. A uniform, thin, solid door has a height of 2.20 m, a
width of 0.870 m, and a mass of 23.0 kg. Find its mo-
ment of inertia for rotation on its hinges. Are any of the
data unnecessary?

68. A uniform, hollow, cylindrical spool has inside radius
R/2, outside radius R , and mass M (Fig. P10.68). It is
mounted so that it rotates on a massless horizontal axle.
A mass m is connected to the end of a string wound
around the spool. The mass m falls from rest through a
distance y in time t. Show that the torque due to the
frictional forces between spool and axle is 

69. An electric motor can accelerate a Ferris wheel of
moment of inertia I � 20 000 kg� m2 from rest to 

�f � R[m(g � 2y/t2) � M(5y/4t2)]

10.0 rev/min in 12.0 s. When the motor is turned off,
friction causes the wheel to slow down from 10.0 to 
8.00 rev/min in 10.0 s. Determine (a) the torque gener-
ated by the motor to bring the wheel to 10.0 rev/min
and (b) the power that would be needed to maintain
this rotational speed.

70. The pulley shown in Figure P10.70 has radius R and
moment of inertia I. One end of the mass m is con-
nected to a spring of force constant k, and the other
end is fastened to a cord wrapped around the pulley.
The pulley axle and the incline are frictionless. If the
pulley is wound counterclockwise so that the spring is
stretched a distance d from its unstretched position and
is then released from rest, find (a) the angular speed of
the pulley when the spring is again unstretched and 
(b) a numerical value for the angular speed at this
point if I � 1.00 kg � m2, R � 0.300 m, k � 50.0 N/m, 
m � 0.500 kg, d � 0.200 m, and � � 37.0°.

71. Two blocks, as shown in Figure P10.71, are connected
by a string of negligible mass passing over a pulley of ra-
dius 0.250 m and moment of inertia I. The block on the
frictionless incline is moving upward with a constant ac-
celeration of 2.00 m/s2. (a) Determine T1 and T2 , the
tensions in the two parts of the string. (b) Find the mo-
ment of inertia of the pulley.

72. A common demonstration, illustrated in Figure P10.72,
consists of a ball resting at one end of a uniform board

37.0°

15.0 kg

T1

m1
20.0 kg

T2

2.00 m/s2

m2

m

R

k

θ

M

m
R/2

R/2 y

= 31°
v

d

ω

θ∆

Figure P10.65

Figure P10.68

Figure P10.70

Figure P10.71
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ANSWERS TO QUICK QUIZZES

rotational motion. (b) No, not all points on the wheel
have the same linear speed. (c) 
(d) , (at is zero
at all points because � is constant).(e) .

10.3 (a) I � MR 2. (b) I � MR 2. The moment of inertia of a
system of masses equidistant from an axis of rotation is
always the sum of the masses multiplied by the square of
the distance from the axis.

10.4 (b) Rotation about the axis through point P requires
more work. The moment of inertia of the hoop about
the center axis is ICM � MR 2, whereas, by the parallel-
axis theorem, the moment of inertia about the axis
through point P is IP � ICM 	 MR 2 � MR 2 	 MR 2 �
2MR 2 .

v � R�, a � R�2
a � ar � v2/(R/2) � R�2/2v � R�/2

v � 0, a � 0.
10.1 The fact that � is negative indicates that we are dealing

with an object that is rotating in the clockwise direction.
We also know that when � and � are antiparallel, �
must be decreasing—the object is slowing down. There-
fore, the object is spinning more and more slowly (with
less and less angular speed) in the clockwise, or nega-
tive, direction. This has a linear analogy to a sky diver
opening her parachute. The velocity is negative—down-
ward. When the sky diver opens the parachute, a large
upward force causes an upward acceleration. As a result,
the acceleration and velocity vectors are in opposite di-
rections. Consequently, the parachutist slows down.

10.2 (a) Yes, all points on the wheel have the same angular
speed. This is why we use angular quantities to describe

this limiting angle and the cup is placed at

(c) If a ball is at the end of a 1.00-m stick at this critical
angle, show that the cup must be 18.4 cm from the mov-
ing end.

73. As a result of friction, the angular speed of a wheel
changes with time according to the relationship

where �0 and � are constants. The angular speed
changes from 3.50 rad/s at t � 0 to 2.00 rad/s at 
t � 9.30 s. Use this information to determine � and �0 .
Then, determine (a) the magnitude of the angular ac-
celeration at t � 3.00 s, (b) the number of revolutions
the wheel makes in the first 2.50 s, and (c) the number
of revolutions it makes before coming to rest.

74. The hour hand and the minute hand of Big Ben, the fa-
mous Parliament tower clock in London, are 2.70 m
long and 4.50 m long and have masses of 60.0 kg and
100 kg, respectively (see Fig. P10.26). (a) Determine
the total torque due to the weight of these hands about
the axis of rotation when the time reads (i) 3:00, 
(ii) 5:15, (iii) 6:00, (iv) 8:20, and (v) 9:45. (You may
model the hands as long thin rods.) (b) Determine all
times at which the total torque about the axis of rota-
tion is zero. Determine the times to the nearest second,
solving a transcendental equation numerically.

d�/dt � �0e��t

rc �
2 �

3 cos �

of length �, hinged at the other end, and elevated at an
angle �. A light cup is attached to the board at rc so that
it will catch the ball when the support stick is suddenly

removed. (a) Show that the ball will lag behind the
falling board when � is less than 35.3° ; and that (b) the
ball will fall into the cup when the board is supported at

r c

Cup

�

Hinged end

Support
stick

θ

Figure P10.72





c h a p t e r

Rolling Motion and Angular
Momentum

One of the most popular early bicycles
was the penny – farthing, introduced in
1870. The bicycle was so named because
the size relationship of its two wheels
was about the same as the size relation-
ship of the penny and the farthing, two
English coins. When the rider looks down
at the top of the front wheel, he sees it
moving forward faster than he and the
handlebars are moving. Yet the center of
the wheel does not appear to be moving
at all relative to the handlebars. How can
different parts of the rolling wheel move
at different linear speeds? (© Steve

Lovegrove/Tasmanian Photo Library)
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11.3 Angular Momentum of a Particle

11.4 Angular Momentum of a
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11.5 Conservation of Angular
Momentum
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Gyroscopes and Tops

11.7 (Optional) Angular Momentum
as a Fundamental Quantity
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n the preceding chapter we learned how to treat a rigid body rotating about a
fixed axis; in the present chapter, we move on to the more general case in
which the axis of rotation is not fixed in space. We begin by describing such mo-

tion, which is called rolling motion. The central topic of this chapter is, however, an-
gular momentum, a quantity that plays a key role in rotational dynamics. In anal-
ogy to the conservation of linear momentum, we find that the angular momentum
of a rigid object is always conserved if no external torques act on the object. Like
the law of conservation of linear momentum, the law of conservation of angular
momentum is a fundamental law of physics, equally valid for relativistic and quan-
tum systems.

ROLLING MOTION OF A RIGID OBJECT
In this section we treat the motion of a rigid object rotating about a moving axis.
In general, such motion is very complex. However, we can simplify matters by re-
stricting our discussion to a homogeneous rigid object having a high degree of
symmetry, such as a cylinder, sphere, or hoop. Furthermore, we assume that the
object undergoes rolling motion along a flat surface. We shall see that if an object
such as a cylinder rolls without slipping on the surface (we call this pure rolling mo-
tion), a simple relationship exists between its rotational and translational motions.

Suppose a cylinder is rolling on a straight path. As Figure 11.1 shows, the cen-
ter of mass moves in a straight line, but a point on the rim moves in a more com-
plex path called a cycloid. This means that the axis of rotation remains parallel to
its initial orientation in space. Consider a uniform cylinder of radius R rolling
without slipping on a horizontal surface (Fig. 11.2). As the cylinder rotates
through an angle �, its center of mass moves a linear distance (see Eq.
10.1a). Therefore, the linear speed of the center of mass for pure rolling motion is
given by

(11.1)

where � is the angular velocity of the cylinder. Equation 11.1 holds whenever a
cylinder or sphere rolls without slipping and is the condition for pure rolling

vCM �
ds
dt

� R 
d�

dt
� R�

s � R�

11.1

I

Figure 11.1 One light source at the center of a rolling cylinder and another at one point on
the rim illustrate the different paths these two points take. The center moves in a straight line
(green line), whereas the point on the rim moves in the path called a cycloid (red curve). (Henry
Leap and Jim Lehman)

7.7
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motion. The magnitude of the linear acceleration of the center of mass for pure
rolling motion is

(11.2)

where � is the angular acceleration of the cylinder.
The linear velocities of the center of mass and of various points on and within

the cylinder are illustrated in Figure 11.3. A short time after the moment shown in
the drawing, the rim point labeled P will have rotated from the six o’clock position
to, say, the seven o’clock position, the point Q will have rotated from the ten 
o’clock position to the eleven o’clock position, and so on. Note that the linear ve-
locity of any point is in a direction perpendicular to the line from that point to the
contact point P. At any instant, the part of the rim that is at point P is at rest rela-
tive to the surface because slipping does not occur.

All points on the cylinder have the same angular speed. Therefore, because
the distance from P � to P is twice the distance from P to the center of mass, P � has
a speed To see why this is so, let us model the rolling motion of the
cylinder in Figure 11.4 as a combination of translational (linear) motion and rota-
tional motion. For the pure translational motion shown in Figure 11.4a, imagine
that the cylinder does not rotate, so that each point on it moves to the right with
speed vCM . For the pure rotational motion shown in Figure 11.4b, imagine that a
rotation axis through the center of mass is stationary, so that each point on the
cylinder has the same rotational speed �. The combination of these two motions
represents the rolling motion shown in Figure 11.4c. Note in Figure 11.4c that the
top of the cylinder has linear speed vCM � R� � vCM � vCM � 2vCM , which is
greater than the linear speed of any other point on the cylinder. As noted earlier,
the center of mass moves with linear speed vCM while the contact point between
the surface and cylinder has a linear speed of zero.

We can express the total kinetic energy of the rolling cylinder as

(11.3)

where IP is the moment of inertia about a rotation axis through P. Applying the
parallel-axis theorem, we can substitute into Equation 11.3 to 
obtain

K � 1
2ICM�2 � 1

2MR2�2

IP � ICM � MR2

K � 1
2IP�2

2vCM � 2R�.

aCM �
dvCM

dt
� R 

d�

dt
� R�

R s
θ

s = Rθ

Figure 11.2 In pure rolling motion, as the
cylinder rotates through an angle �, its center
of mass moves a linear distance s � R�.

P

CM

Q

P ′
2vCM

vCM

Figure 11.3 All points on a
rolling object move in a direction
perpendicular to an axis through
the instantaneous point of contact
P. In other words, all points rotate
about P. The center of mass of the
object moves with a velocity vCM ,
and the point P �moves with a veloc-
ity 2vCM .

7.2
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or, because 

(11.4)

The term represents the rotational kinetic energy of the cylinder about its
center of mass, and the term represents the kinetic energy the cylinder
would have if it were just translating through space without rotating. Thus, we can
say that the total kinetic energy of a rolling object is the sum of the rota-
tional kinetic energy about the center of mass and the translational kinetic
energy of the center of mass.

We can use energy methods to treat a class of problems concerning the rolling
motion of a sphere down a rough incline. (The analysis that follows also applies to
the rolling motion of a cylinder or hoop.) We assume that the sphere in Figure
11.5 rolls without slipping and is released from rest at the top of the incline. Note
that accelerated rolling motion is possible only if a frictional force is present be-
tween the sphere and the incline to produce a net torque about the center of mass.
Despite the presence of friction, no loss of mechanical energy occurs because the
contact point is at rest relative to the surface at any instant. On the other hand, if
the sphere were to slip, mechanical energy would be lost as motion progressed.

Using the fact that vCM � R� for pure rolling motion, we can express Equa-
tion 11.4 as

(11.5)K � 1
2� ICM

R2 � M�vCM 

2

K � 1
2ICM� vCM

R �
2

� 1
2MvCM 

2

1
2MvCM 

2

1
2ICM�2

K � 1
2ICM�2 � 1

2MvCM 

2

vCM � R�,

P ′
vCM

CM vCM

vCM
P

P ′

CM v = 0

P

v = Rω

v = Rω

(a) Pure translation (b) Pure rotation

P ′

CM

P
v = 0

v = vCM

v = vCM + Rω = 2vCM

(c) Combination of translation and rotation

ω

ω

ω

Figure 11.4 The motion of a rolling object can be modeled as a combination of pure transla-
tion and pure rotation.

Total kinetic energy of a rolling
body

h
x

vCM

ω

M

R

θ

Figure 11.5 A sphere rolling
down an incline. Mechanical en-
ergy is conserved if no slipping
occurs.
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By the time the sphere reaches the bottom of the incline, work equal to Mgh has
been done on it by the gravitational field, where h is the height of the incline. Be-
cause the sphere starts from rest at the top, its kinetic energy at the bottom, given
by Equation 11.5, must equal this work done. Therefore, the speed of the center of
mass at the bottom can be obtained by equating these two quantities:

(11.6)

Imagine that you slide your textbook across a gymnasium floor with a certain initial speed.
It quickly stops moving because of friction between it and the floor. Yet, if you were to start
a basketball rolling with the same initial speed, it would probably keep rolling from one end
of the gym to the other. Why does a basketball roll so far? Doesn’t friction affect its motion?

Quick Quiz 11.1

   vCM � � 2gh
1 � ICM/MR2 �

1/2

1
2� ICM

R2 � M�vCM 

2 � Mgh

Sphere Rolling Down an InclineEXAMPLE 11.1
x sin �. Hence, after squaring both sides, we can express the
equation above as

Comparing this with the expression from kinematics,
(see Eq. 2.12), we see that the acceleration of

the center of mass is

These results are quite interesting in that both the speed
and the acceleration of the center of mass are independent of
the mass and the radius of the sphere! That is, all homoge-
neous solid spheres experience the same speed and ac-
celeration on a given incline.

If we repeated the calculations for a hollow sphere, a solid
cylinder, or a hoop, we would obtain similar results in which
only the factor in front of g sin � would differ. The constant
factors that appear in the expressions for vCM and a CM depend
only on the moment of inertia about the center of mass for the
specific body. In all cases, the acceleration of the center of
mass is less than g sin �, the value the acceleration would have if
the incline were frictionless and no rolling occurred.

5
7 g sin �aCM �

vCM 

2 � 2aCMx

vCM 

2 � 10
7  gx sin �

For the solid sphere shown in Figure 11.5, calculate the linear
speed of the center of mass at the bottom of the incline and
the magnitude of the linear acceleration of the center of mass.

Solution The sphere starts from the top of the incline
with potential energy and kinetic energy As
we have seen before, if it fell vertically from that height, it
would have a linear speed of at the moment before it hit
the floor. After rolling down the incline, the linear speed of
the center of mass must be less than this value because some
of the initial potential energy is diverted into rotational ki-
netic energy rather than all being converted into transla-
tional kinetic energy. For a uniform solid sphere, 

(see Table 10.2), and therefore Equation 11.6 gives

which is less than 
To calculate the linear acceleration of the center of mass,

we note that the vertical displacement is related to the dis-
placement x along the incline through the relationship h �

!2gh.

� 10
7

 gh�
1/2

vCM � �
2gh

1 �
2/5MR2

MR2 �
1/2

�

2
5MR2

ICM �

!2gh

K � 0.Ug � Mgh

Another Look at the Rolling SphereEXAMPLE 11.2
(1)

where x is measured along the slanted surface of the incline.
Now let us write an expression for the torque acting on

the sphere. A convenient axis to choose is the one that passes

�Fy � n � Mg cos � � 0 

�Fx � Mg sin � � f � MaCMIn this example, let us use dynamic methods to verify the re-
sults of Example 11.1. The free-body diagram for the sphere
is illustrated in Figure 11.6.

Solution Newton’s second law applied to the center of
mass gives
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Which gets to the bottom first: a ball rolling without sliding down incline A or a box sliding
down a frictionless incline B having the same dimensions as incline A?

THE VECTOR PRODUCT AND TORQUE
Consider a force F acting on a rigid body at the vector position r (Fig. 11.7). The
origin O is assumed to be in an inertial frame, so Newton’s first law is valid
in this case. As we saw in Section 10.6, the magnitude of the torque due to this
force relative to the origin is, by definition, rF sin 	, where 	 is the angle between
r and F. The axis about which F tends to produce rotation is perpendicular to the
plane formed by r and F. If the force lies in the xy plane, as it does in Figure 11.7,
the torque � is represented by a vector parallel to the z axis. The force in Figure
11.7 creates a torque that tends to rotate the body counterclockwise about the z
axis; thus the direction of � is toward increasing z, and � is therefore in the positive
z direction. If we reversed the direction of F in Figure 11.7, then � would be in the
negative z direction.

The torque � involves the two vectors r and F, and its direction is perpendicu-
lar to the plane of r and F. We can establish a mathematical relationship between
�, r, and F, using a new mathematical operation called the vector product, or
cross product:

� � r � F (11.7)

11.2

Quick Quiz 11.2

Torque

QuickLab
Hold a basketball and a tennis ball
side by side at the top of a ramp and
release them at the same time. Which
reaches the bottom first? Does the
outcome depend on the angle of the
ramp? What if the angle were 90°
(that is, if the balls were in free fall)?

1 Although a coordinate system whose origin is at the center of mass of a rolling object is not an iner-
tial frame, the expression 
CM � I� still applies in the center-of-mass frame.

through the center of the sphere and is perpendicular to the
plane of the figure.1 Because n and Mg go through the cen-
ter of mass, they have zero moment arm about this axis and
thus do not contribute to the torque. However, the force of
static friction produces a torque about this axis equal to fR in
the clockwise direction; therefore, because 
 is also in the

clockwise direction,

Because and we obtain

(2)

Substituting Equation (2) into Equation (1) gives

which agrees with the result of Example 11.1.
Note that �F � ma applies only if �F is the net external

force exerted on the sphere and a is the acceleration of its
center of mass. In the case of our sphere rolling down an in-
cline, even though the frictional force does not change the
total kinetic energy of the sphere, it does contribute to �F
and thus decreases the acceleration of the center of mass. As
a result, the final translational kinetic energy is less than it
would be in the absence of friction. As mentioned in Exam-
ple 11.1, some of the initial potential energy is converted to
rotational kinetic energy. 

5
7g sin �aCM �

f �
ICM�

R
� �

2
5MR2

R � 
aCM

R
� 2

5MaCM

� � aCM/R,ICM � 2
5MR2


CM � f R � ICM �

x

y

n

CM

f

Mg  cos

Mg

θ

vCM

θ

Mg  sin θ

Figure 11.6 Free-body diagram for a solid sphere rolling down an
incline.
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We now give a formal definition of the vector product. Given any two vectors A
and B, the vector product A � B is defined as a third vector C, the magnitude of
which is AB sin �, where � is the angle between A and B. That is, if C is given by

C � A � B (11.8)

then its magnitude is

(11.9)

The quantity AB sin � is equal to the area of the parallelogram formed by A and B,
as shown in Figure 11.8. The direction of C is perpendicular to the plane formed by
A and B, and the best way to determine this direction is to use the right-hand rule
illustrated in Figure 11.8. The four fingers of the right hand are pointed along A
and then “wrapped” into B through the angle �. The direction of the erect right
thumb is the direction of A � B � C. Because of the notation, A � B is often read
“A cross B”; hence, the term cross product.

Some properties of the vector product that follow from its definition are as 
follows:

1. Unlike the scalar product, the vector product is not commutative. Instead, the
order in which the two vectors are multiplied in a cross product is important:

A � B � � B � A (11.10)

Therefore, if you change the order of the vectors in a cross product, you must
change the sign. You could easily verify this relationship with the right-hand
rule.

2. If A is parallel to B (� � 0° or 180°), then A � B � 0; therefore, it follows that
A � A � 0.

3. If A is perpendicular to B, then 
4. The vector product obeys the distributive law:

A � (B � C) � A � B � A � C (11.11)

5. The derivative of the cross product with respect to some variable such as t is

(11.12)

where it is important to preserve the multiplicative order of A and B, in view of
Equation 11.10.

It is left as an exercise to show from Equations 11.9 and 11.10 and from the
definition of unit vectors that the cross products of the rectangular unit vectors i,

d
dt

 (A � B) � A �
dB
dt

�
dA
dt

� B

� A � B � � AB.

C � AB sin �
O

r

P

φx
F

y

τ  =  r  ×  F

z

τ

Figure 11.7 The torque vector �
lies in a direction perpendicular to
the plane formed by the position
vector r and the applied force vec-
tor F.

Right-hand rule

– C  =  B  ×  A

C  =  A  ×  B

A

B

θ

Figure 11.8 The vector product 
A � B is a third vector C having a
magnitude AB sin � equal to the area
of the parallelogram shown. The di-
rection of C is perpendicular to the
plane formed by A and B, and this
direction is determined by the right-
hand rule.

Properties of the vector product



ANGULAR MOMENTUM OF A PARTICLE
Imagine a rigid pole sticking up through the ice on a frozen pond (Fig. 11.9). A
skater glides rapidly toward the pole, aiming a little to the side so that she does not
hit it. As she approaches a point beside the pole, she reaches out and grabs the
pole, an action that whips her rapidly into a circular path around the pole. Just as
the idea of linear momentum helps us analyze translational motion, a rotational
analog—angular momentum—helps us describe this skater and other objects un-
dergoing rotational motion.

To analyze the motion of the skater, we need to know her mass and her veloc-
ity, as well as her position relative to the pole. In more general terms, consider a

11.3
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j, and k obey the following rules:

(11.13a)

(11.13b)

(11.13c)

(11.13d)

Signs are interchangeable in cross products. For example, A � (� B) � � A � B
and i � (� j) � � i � j.

The cross product of any two vectors A and B can be expressed in the follow-
ing determinant form:

Expanding these determinants gives the result

(11.14)A � B � (AyBz � AzBy)i � (AxBz � AzBx)j � (AxBy � AyBx)k

A � B � � i
Ax

Bx

j
Ay

By

k
Az

Bz
� � i �Ay

By

Az

Bz
� � j �Ax

Bx

Az

Bz
� � k �Ax

Bx

Ay

By
�

k � i � � i � k � j 

j � k � � k � j � i 

i � j � � j � i � k 

i � i � j � j � k � k � 0

The Cross ProductEXAMPLE 11.3

Therefore, A � B � � B � A.
As an alternative method for finding A � B, we could use

Equation 11.14, with and 

Exercise Use the results to this example and Equation 11.9
to find the angle between A and B.

Answer 60.3°

A � B � (0)i � (0)j � [(2)(2) � (3)(�1)]k � 7k

Bz � 0:By � 2,
Bx � � 1,Az � 0Ay � 3,Ax � 2,

�7k � � i � 3j � 2j � 2i � �3k � 4k �

B � A � (�i � 2j) � (2i � 3j) Two vectors lying in the xy plane are given by the equations 
A � 2i � 3 j and B � � i � 2j. Find A � B and verify that 
A � B � � B � A.

Solution Using Equations 11.13a through 11.13d, we
obtain

(We have omitted the terms containing i � i and j � j be-
cause, as Equation 11.13a shows, they are equal to zero.)

We can show that A � B � � B � A, since

7k � 2i � 2j � 3j � (�i) � 4k � 3k �

A � B � (2i � 3j) � (� i � 2j) 

Cross products of unit vectors

7.8
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The instantaneous angular momentum L of the particle relative to the origin O
is defined as the cross product of the particle’s instantaneous position vector r
and its instantaneous linear momentum p:

(11.15)L � r � p

particle of mass m located at the vector position r and moving with linear velocity v
(Fig. 11.10).

The SI unit of angular momentum is kg� m2/s. It is important to note that both
the magnitude and the direction of L depend on the choice of origin. Following
the right-hand rule, note that the direction of L is perpendicular to the plane
formed by r and p. In Figure 11.10, r and p are in the xy plane, and so L points in
the z direction. Because p � mv, the magnitude of L is

(11.16)

where 	 is the angle between r and p. It follows that L is zero when r is parallel to
p (	 � 0 or 180°). In other words, when the linear velocity of the particle is along
a line that passes through the origin, the particle has zero angular momentum
with respect to the origin. On the other hand, if r is perpendicular to p (	 � 90°),
then L � mvr. At that instant, the particle moves exactly as if it were on the rim of
a wheel rotating about the origin in a plane defined by r and p.

Recall the skater described at the beginning of this section. What would be her angular mo-
mentum relative to the pole if she were skating directly toward it?

In describing linear motion, we found that the net force on a particle equals the
time rate of change of its linear momentum, �F � dp/dt (see Eq. 9.3). We now
show that the net torque acting on a particle equals the time rate of change of its an-
gular momentum. Let us start by writing the net torque on the particle in the form

(11.17)

Now let us differentiate Equation 11.15 with respect to time, using the rule given
by Equation 11.12:

Remember, it is important to adhere to the order of terms because A � B �
� B � A. The last term on the right in the above equation is zero because 
v � dr/dt is parallel to p � mv (property 2 of the vector product). Therefore,

(11.18)

Comparing Equations 11.17 and 11.18, we see that

(11.19)�� �
dL
dt

dL
dt

� r �
dp
dt

dL
dt

�
d
dt

 (r � p) � r �
dp
dt

�
dr
dt

� p

�� � r � �F � r �
dp
dt

Quick Quiz 11.3

L � mvr sin 	

Angular momentum of a particle

Figure 11.9 As the skater passes
the pole, she grabs hold of it. This
causes her to swing around the
pole rapidly in a circular path.

O

z

L  =  r  ×  p

r m p

φ

y

x

Figure 11.10 The angular mo-
mentum L of a particle of mass m
and linear momentum p located at
the vector position r is a vector
given by L � r � p. The value of L
depends on the origin about which
it is measured and is a vector per-
pendicular to both r and p.

The net torque equals time rate of
change of angular momentum
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which is the rotational analog of Newton’s second law, �F � dp/dt. Note that
torque causes the angular momentum L to change just as force causes linear mo-
mentum p to change. This rotational result, Equation 11.19, states that

the net torque acting on a particle is equal to the time rate of change of the
particle’s angular momentum.

It is important to note that Equation 11.19 is valid only if �� and L are measured
about the same origin. (Of course, the same origin must be used in calculating all
of the torques.) Furthermore, the expression is valid for any origin fixed in an
inertial frame.

Angular Momentum of a System of Particles

The total angular momentum of a system of particles about some point is defined
as the vector sum of the angular momenta of the individual particles:

where the vector sum is over all n particles in the system.
Because individual angular momenta can change with time, so can the total

angular momentum. In fact, from Equations 11.18 and 11.19, we find that the
time rate of change of the total angular momentum equals the vector sum of 
all torques acting on the system, both those associated with internal forces 
between particles and those associated with external forces. However, the net
torque associated with all internal forces is zero. To understand this, recall 
that Newton’s third law tells us that internal forces between particles of the sys-
tem are equal in magnitude and opposite in direction. If we assume that these
forces lie along the line of separation of each pair of particles, then the torque
due to each action – reaction force pair is zero. That is, the moment arm d from
O to the line of action of the forces is equal for both particles. In the summa-
tion, therefore, we see that the net internal torque vanishes. We conclude that
the total angular momentum of a system can vary with time only if a net exter-
nal torque is acting on the system, so that we have

(11.20)

That is,

��ext � �
i

dLi

dt
�

d
dt

 �
i

Li �
dL
dt

L � L1 � L2 � ��� � Ln � �
i

Li

the time rate of change of the total angular momentum of a system about some
origin in an inertial frame equals the net external torque acting on the system
about that origin.

Note that Equation 11.20 is the rotational analog of Equation 9.38, ,
for a system of particles.

�Fext � dp/dt
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ANGULAR MOMENTUM OF A
ROTATING RIGID OBJECT

Consider a rigid object rotating about a fixed axis that coincides with the z axis of
a coordinate system, as shown in Figure 11.12. Let us determine the angular mo-
mentum of this object. Each particle of the object rotates in the xy plane about the
z axis with an angular speed �. The magnitude of the angular momentum of a par-
ticle of mass mi about the origin O is miviri . Because vi � ri�, we can express the
magnitude of the angular momentum of this particle as

The vector Li is directed along the z axis, as is the vector �.

Li � miri 

2�

11.4

Circular MotionEXAMPLE 11.4
though the direction of p � mv keeps changing. You can vi-
sualize this by sliding the vector v in Figure 11.11 parallel to
itself until its tail meets the tail of r and by then applying the
right-hand rule. (You can use v to determine the direction of
L � r � p because the direction of p is the same as the direc-
tion of v.) Line up your fingers so that they point along r and
wrap your fingers into the vector v. Your thumb points up-
ward and away from the page; this is the direction of L.
Hence, we can write the vector expression L � (mvr)k. If
the particle were to move clockwise, L would point down-
ward and into the page.

(b) Find the magnitude and direction of L in terms of the
particle’s angular speed �.

Solution Because v � r� for a particle rotating in a circle,
we can express L as

where I is the moment of inertia of the particle about the z
axis through O. Because the rotation is counterclockwise, the
direction of � is along the z axis (see Section 10.1). The di-
rection of L is the same as that of �, and so we can write the
angular momentum as L � I� � I�k.

Exercise A car of mass 1 500 kg moves with a linear speed
of 40 m/s on a circular race track of radius 50 m. What is the
magnitude of its angular momentum relative to the center of
the track?

Answer 3.0 � 106 kg� m2/s

I�L � mvr � mr 2� �

A particle moves in the xy plane in a circular path of radius r,
as shown in Figure 11.11. (a) Find the magnitude and direc-
tion of its angular momentum relative to O when its linear ve-
locity is v.

Solution You might guess that because the linear momen-
tum of the particle is always changing (in direction, not mag-
nitude), the direction of the angular momentum must also
change. In this example, however, this is not the case. The
magnitude of L is given by

(for r perpendicular to v)

This value of L is constant because all three factors on the
right are constant. The direction of L also is constant, even

mvrL � mvr sin 90° �

x

y

m

v

O

r

Figure 11.11 A particle moving in a circle of radius r has an angu-
lar momentum about O that has magnitude mvr. The vector L � r � p
points out of the diagram.
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Equation 11.23 also is valid for a rigid object rotating about a moving axis pro-
vided the moving axis (1) passes through the center of mass and (2) is a symmetry
axis.

You should note that if a symmetrical object rotates about a fixed axis passing
through its center of mass, you can write Equation 11.21 in vector form as L � I�,
where L is the total angular momentum of the object measured with respect to the
axis of rotation. Furthermore, the expression is valid for any object, regardless of
its symmetry, if L stands for the component of angular momentum along the axis
of rotation.2

That is, the net external torque acting on a rigid object rotating about a fixed
axis equals the moment of inertia about the rotation axis multiplied by the ob-
ject’s angular acceleration relative to that axis.

Bowling BallEXAMPLE 11.5
solid sphere. A typical bowling ball might have a mass of 6 kg
and a radius of 12 cm. The moment of inertia of a solid
sphere about an axis through its center is, from Table 10.2,

Therefore, the magnitude of the angular momentum is

I � 2
5MR2 � 2

5(6 kg)(0.12 m)2 � 0.035 kg�m2

Estimate the magnitude of the angular momentum of a bowl-
ing ball spinning at 10 rev/s, as shown in Figure 11.13.

Solution We start by making some estimates of the rele-
vant physical parameters and model the ball as a uniform

2 In general, the expression L � I� is not always valid. If a rigid object rotates about an arbitrary axis,
L and � may point in different directions. In this case, the moment of inertia cannot be treated as a
scalar. Strictly speaking, L � I� applies only to rigid objects of any shape that rotate about one of three
mutually perpendicular axes (called principal axes) through the center of mass. This is discussed in
more advanced texts on mechanics.

Figure 11.12 When a rigid body
rotates about an axis, the angular
momentum L is in the same direc-
tion as the angular velocity �, ac-
cording to the expression L � I�.

y

z

L

ω

r

x

vi
mi

We can now find the angular momentum (which in this situation has only a z
component) of the whole object by taking the sum of Li over all particles:

(11.21)

where I is the moment of inertia of the object about the z axis.
Now let us differentiate Equation 11.21 with respect to time, noting that I is

constant for a rigid body:

(11.22)

where � is the angular acceleration relative to the axis of rotation. Because dLz/dt
is equal to the net external torque (see Eq. 11.20), we can express Equation 11.22
as

(11.23)�  
ext �
dLz

dt
� I�

dLz

dt
� I 

d�

dt
� I�

Lz � I� 

Lz � �
i

miri 

2� � ��
i

miri 

2��
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z

y

L

x

Figure 11.13 A bowling ball that rotates about the z axis in the di-
rection shown has an angular momentum L in the positive z direc-
tion. If the direction of rotation is reversed, L points in the negative
z direction.

Because of the roughness of our estimates, we probably want 

to keep only one significant figure, and so L � 2 kg�m2/s.

� 2.2 kg�m2/s

L � I� � (0.035 kg�m2)(10 rev/s)(2 rad/rev)

Rotating RodEXAMPLE 11.6

The torque due to the force m 2g about the pivot is

(�2 into page)

Hence, the net torque exerted on the system about O is

The direction of ��ext is out of the page if m1 � m2 and is
into the page if m2 � m1 .

To find �, we use �
ext � I�, where I was obtained in part (a):

Note that � is zero when � is /2 or � /2 (vertical position)
and is a maximum when � is 0 or  (horizontal position).

Exercise If m2 � m 1, at what value of � is � a maximum? 

Answer � � �/2.

2(m1 � m2)g cos �

�(M/3 � m1 � m2)
� �

�
ext

I
�

�
ext � 
1 � 
2 � 1
2(m1 � m2)g � cos �


2 � �m2g 
�

2
 cos �

A rigid rod of mass M and length � is pivoted without friction
at its center (Fig. 11.14). Two particles of masses m1 and m 2
are connected to its ends. The combination rotates in a verti-
cal plane with an angular speed �. (a) Find an expression for
the magnitude of the angular momentum of the system.

Solution This is different from the last example in that we
now must account for the motion of more than one object.
The moment of inertia of the system equals the sum of the
moments of inertia of the three components: the rod and the
two particles. Referring to Table 10.2 to obtain the expression
for the moment of inertia of the rod, and using the expres-
sion I � mr 2 for each particle, we find that the total moment
of inertia about the z axis through O is

Therefore, the magnitude of the angular momentum is

(b) Find an expression for the magnitude of the angular
acceleration of the system when the rod makes an angle �
with the horizontal.

Solution If the masses of the two particles are equal, then
the system has no angular acceleration because the net
torque on the system is zero when m1 � m 2 . If the initial an-
gle � is exactly /2 or � /2 (vertical position), then the rod
will be in equilibrium. To find the angular acceleration of the
system at any angle �, we first calculate the net torque on the
system and then use �
ext � I� to obtain an expression for �.

The torque due to the force m1g about the pivot is

(�1 out of page)
1 � m1g 
�

2
 cos �

�2

4 � M
3

� m1 � m2��L � I� �

 �
�2

4 � M
3

� m1 � m2� 

I �
1
12

M�2 � m1� �

2 �
2

� m2� �

2 �
2

�

y

θ

m2g

m1g

x
O

m2

m1

Figure 11.14 Because gravitational forces act on the rotating rod,
there is in general a net nonzero torque about O when m1 � m 2 . This
net torque produces an angular acceleration given by � � �
ext �I.



This follows directly from Equation 11.20, which indicates that if

(11.24)

then
(11.25)

For a system of particles, we write this conservation law as � Ln � constant, where
the index n denotes the nth particle in the system.

L � constant

��ext �
dL
dt

� 0
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Two Connected MassesEXAMPLE 11.7
Now let us evaluate the total external torque acting on the

system about the pulley axle. Because it has a moment arm of
zero, the force exerted by the axle on the pulley does not
contribute to the torque. Furthermore, the normal force act-
ing on the block is balanced by the force of gravity m 2g, and
so these forces do not contribute to the torque. The force of
gravity m1g acting on the sphere produces a torque about the
axle equal in magnitude to m1gR, where R is the moment
arm of the force about the axle. (Note that in this situation,
the tension is not equal to m1g.) This is the total external
torque about the pulley axle; that is, �
ext � m1gR. Using this
result, together with Equation (1) and Equation 11.23, we
find

(2)

Because dv/dt � a, we can solve this for a to obtain

a �

You may wonder why we did not include the forces that the
cord exerts on the objects in evaluating the net torque about
the axle. The reason is that these forces are internal to the
system under consideration, and we analyzed the system as a
whole. Only external torques contribute to the change in the
system’s angular momentum.

m1g
(m1 � m2) � I/R2

m1gR � (m1 � m2)R 
dv
dt

�
I
R

 
dv
dt

 

 m1gR �
d
dt �(m1 � m2)Rv � I 

v
R �

�
ext �
dL
dt

 

A sphere of mass m1 and a block of mass m 2 are connected by
a light cord that passes over a pulley, as shown in Figure
11.15. The radius of the pulley is R, and the moment of iner-
tia about its axle is I. The block slides on a frictionless, hori-
zontal surface. Find an expression for the linear acceleration
of the two objects, using the concepts of angular momentum
and torque.

Solution We need to determine the angular momentum
of the system, which consists of the two objects and the pul-
ley. Let us calculate the angular momentum about an axis
that coincides with the axle of the pulley.

At the instant the sphere and block have a common speed
v, the angular momentum of the sphere is m1vR , and that of
the block is m 2vR . At the same instant, the angular momen-
tum of the pulley is I� � Iv/R. Hence, the total angular mo-
mentum of the system is

(1) L � m1vR � m2vR � I 
v
R

The total angular momentum of a system is constant in both magnitude and di-
rection if the resultant external torque acting on the system is zero.

Conservation of angular
momentum

CONSERVATION OF ANGULAR MOMENTUM
In Chapter 9 we found that the total linear momentum of a system of particles re-
mains constant when the resultant external force acting on the system is zero. We
have an analogous conservation law in rotational motion:

11.5

m2

v

v m1

R

Figure 11.15

7.9
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If the mass of an object undergoes redistribution in some way, then the ob-
ject’s moment of inertia changes; hence, its angular speed must change because 
L � I�. In this case we express the conservation of angular momentum in the form

(11.26)

If the system is an object rotating about a fixed axis, such as the z axis, we can
write Lz � I�, where Lz is the component of L along the axis of rotation and I is
the moment of inertia about this axis. In this case, we can express the conservation
of angular momentum as

(11.27)

This expression is valid both for rotation about a fixed axis and for rotation about
an axis through the center of mass of a moving system as long as that axis remains
parallel to itself. We require only that the net external torque be zero.

Although we do not prove it here, there is an important theorem concerning
the angular momentum of an object relative to the object’s center of mass:

I i�i � I f �f � constant

Li � Lf � constant

The resultant torque acting on an object about an axis through the center of
mass equals the time rate of change of angular momentum regardless of the
motion of the center of mass.

This theorem applies even if the center of mass is accelerating, provided � and L
are evaluated relative to the center of mass.

In Equation 11.26 we have a third conservation law to add to our list. We can
now state that the energy, linear momentum, and angular momentum of an iso-
lated system all remain constant:

For an isolated system

There are many examples that demonstrate conservation of angular momen-
tum. You may have observed a figure skater spinning in the finale of a program.
The angular speed of the skater increases when the skater pulls his hands and feet
close to his body, thereby decreasing I. Neglecting friction between skates and ice,
no external torques act on the skater. The change in angular speed is due to the
fact that, because angular momentum is conserved, the product I� remains con-
stant, and a decrease in the moment of inertia of the skater causes an increase in
the angular speed. Similarly, when divers or acrobats wish to make several somer-
saults, they pull their hands and feet close to their bodies to rotate at a higher rate.
In these cases, the external force due to gravity acts through the center of mass
and hence exerts no torque about this point. Therefore, the angular momentum
about the center of mass must be conserved—that is, For example,
when divers wish to double their angular speed, they must reduce their moment of
inertia to one-half its initial value.

A particle moves in a straight line, and you are told that the net torque acting on it is zero
about some unspecified point. Decide whether the following statements are true or false:
(a) The net force on the particle must be zero. (b) The particle’s velocity must be constant.

Quick Quiz 11.4

I i�i � I f �f .

K i � Ui � K f � Uf

pi � pf

 Li � L f

 �

Angular momentum is conserved
as figure skater Todd Eldredge
pulls his arms toward his body. 
(© 1998 David Madison)
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Formation of a Neutron StarEXAMPLE 11.8
of time a point on the star’s equator takes to make one com-
plete circle around the axis of rotation. The angular speed of
a star is given by � � 2/T. Therefore, because I is propor-
tional to r 2, Equation 11.27 gives

Thus, the neutron star rotates about four times each second;
this result is approximately the same as that for a spinning
figure skater.

0.23 s� 2.7 � 10�6 days �

Tf � Ti� rf

ri
�

2
� (30 days)� 3.0 km

1.0 � 104 km �
2

A star rotates with a period of 30 days about an axis through
its center. After the star undergoes a supernova explosion,
the stellar core, which had a radius of 1.0 � 104 km, collapses
into a neutron star of radius 3.0 km. Determine the period of
rotation of the neutron star.

Solution The same physics that makes a skater spin faster
with his arms pulled in describes the motion of the neutron
star. Let us assume that during the collapse of the stellar core,
(1) no torque acts on it, (2) it remains spherical, and (3) its
mass remains constant. Also, let us use the symbol T for the
period, with Ti being the initial period of the star and Tf be-
ing the period of the neutron star. The period is the length

The Merry-Go-RoundEXAMPLE 11.9
Solution The speed change here is similar to the increase
in angular speed of the spinning skater when he pulls his
arms inward. Let us denote the moment of inertia of the plat-
form as Ip and that of the student as Is . Treating the student
as a point mass, we can write the initial moment of inertia Ii
of the system (student plus platform) about the axis of rota-
tion:

I i � Ipi � I si � 1
2MR 2 � mR 2

A horizontal platform in the shape of a circular disk rotates
in a horizontal plane about a frictionless vertical axle (Fig.
11.16). The platform has a mass M � 100 kg and a radius 
R � 2.0 m. A student whose mass is m � 60 kg walks slowly
from the rim of the disk toward its center. If the angular
speed of the system is 2.0 rad/s when the student is at the
rim, what is the angular speed when he has reached a point 
r � 0.50 m from the center?

A color-enhanced, infrared image of Hurricane Mitch, which devastated large areas of Honduras
and Nicaragua in October 1998. The spiral, nonrigid mass of air undergoes rotation and has an-
gular momentum. (Courtesy of NOAA)
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When the student has walked to the position r � R, the mo-
ment of inertia of the system reduces to

Note that we still use the greater radius R when calculating Ipf
because the radius of the platform has not changed. Because
no external torques act on the system about the axis of rotation,
we can apply the law of conservation of angular momentum:

As expected, the angular speed has increased.

Exercise Calculate the initial and final rotational energies
of the system.

Answer K i � 880 J; K f � 1.8 � 103 J.

4.1 rad/s �f � � 200 � 240
200 � 15 �(2.0 rad/s) �

  �f � �
1
2MR2 � mR2

1
2MR2 � mr 2 ��i

�1
2MR2 � mR2��i � (1

2MR2 � mr 2)�f

  I i �i � I f �f  

I f � Ipf � I sf � 1
2MR 2 � mr 2

M

m

R

Figure 11.16 As the student walks toward the center of the rotat-
ing platform, the angular speed of the system increases because the
angular momentum must remain constant.

The Spinning Bicycle WheelEXAMPLE 11.10
stool start rotating. In terms of Li , what are the magnitude
and the direction of L for the student plus stool?

Solution The system consists of the student, the wheel,
and the stool. Initially, the total angular momentum of the
system Li comes entirely from the spinning wheel. As the
wheel is inverted, the student applies a torque to the wheel,
but this torque is internal to the system. No external torque is
acting on the system about the vertical axis. Therefore, the
angular momentum of the system is conserved. Initially, we
have

(upward)

After the wheel is inverted, we have Linverted wheel � � L i . For
angular momentum to be conserved, some other part of the
system has to start rotating so that the total angular momen-
tum remains the initial angular momentum L i . That other
part of the system is the student plus the stool she is sitting
on. So, we can now state that

2LiLstudent�stool �

Lf � Li � Lstudent�stool � Li

Lsystem � Li � Lwheel

In a favorite classroom demonstration, a student holds the
axle of a spinning bicycle wheel while seated on a stool that is
free to rotate (Fig. 11.17). The student and stool are initially
at rest while the wheel is spinning in a horizontal plane with
an initial angular momentum Li that points upward. When
the wheel is inverted about its center by 180°, the student and

L i

Figure 11.17 The wheel is initially spinning when the student is
at rest. What happens when the wheel is inverted?

Note that the rotational energy of the system described in Example 11.9 increases. What ac-
counts for this increase in energy?

Quick Quiz 11.5
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Disk and StickEXAMPLE 11.11
We used the fact that radians are dimensionless to ensure
consistent units for each term.

Finally, the elastic nature of the collision reminds us that
kinetic energy is conserved; in this case, the kinetic energy
consists of translational and rotational forms:

(3)

In solving Equations (1), (2), and (3) simultaneously, we find
that vd f � 2.3 m/s, vs � 1.3 m/s, and � � � 2.0 rad/s. These
values seem reasonable. The disk is moving more slowly than it
was before the collision, and the stick has a small translational
speed. Table 11.1 summarizes the initial and final values of vari-
ables for the disk and the stick and verifies the conservation of
linear momentum, angular momentum, and kinetic energy.

Exercise Verify the values in Table 11.1.

54 m2/s2 � 6.0vd f 

2 � 3.0v s 

2 � (4.0 m2)�2

   � 1
2(1.33 kg�m2/s)�2

  12(2.0 kg)(3.0 m/s)2 � 1
2(2.0 kg)vd f 

2 � 1
2(1.0 kg)v s 

2

  12mdvdi 

2 � 1
2mdvd f 

2 � 1
2msv s 

2 � 1
2I�2  

  K i � K f  

A 2.0-kg disk traveling at 3.0 m/s strikes a 1.0-kg stick that is
lying flat on nearly frictionless ice, as shown in Figure 11.18.
Assume that the collision is elastic. Find the translational
speed of the disk, the translational speed of the stick, and the
rotational speed of the stick after the collision. The moment
of inertia of the stick about its center of mass is 1.33 kg� m2.

Solution Because the disk and stick form an isolated sys-
tem, we can assume that total energy, linear momentum, and
angular momentum are all conserved. We have three un-
knowns, and so we need three equations to solve simultane-
ously. The first comes from the law of the conservation of lin-
ear momentum:

(1)

Now we apply the law of conservation of angular momen-
tum, using the initial position of the center of the stick as our
reference point. We know that the component of angular mo-
mentum of the disk along the axis perpendicular to the plane
of the ice is negative (the right-hand rule shows that Ld points
into the ice).

(2) �9.0 rad/s � (3.0 rad/m)vd f � � 

  � (1.33 kg�m2)�  

  �12 kg�m2/s � �(4.0 kg�m)vd f

  � (1.33 kg�m2)� 

 �(2.0 m)(2.0 kg)(3.0 m/s) � �(2.0 m)(2.0 kg)vd f

 �rmdvdi � �rmdvd f � I� 

 Li � Lf 

6.0 kg�m/s � (2.0 kg)vd f � (1.0 kg)v s 

 (2.0 kg)(3.0 m/s) � (2.0 kg)vd f � (1.0 kg)v s

 mdvdi � mdvd f � msv s 

 pi � pf 

TABLE 11.1 Comparison of Values in Example 11.11 Before and 
After the Collisiona

Ktrans Krot
v (m/s) � (rad/s) p (kg�m/s) L (kg�m2/s) ( J) ( J)

Before
Disk 3.0 — 6.0 � 12 9.0 —
Stick 0 0 0 0 0 0
Total — — 6.0 � 12 9.0 0

After
Disk 2.3 — 4.7 � 9.3 5.4 —
Stick 1.3 � 2.0 1.3 � 2.7 0.9 2.7
Total — — 6.0 � 12 6.3 2.7

a Notice that linear momentum, angular momentum, and total kinetic energy are conserved.

Before After

2.0 m

vdi = 3.0 m/s

ω

vs

vdf

Figure 11.18 Overhead view of a disk striking a stick in an elastic
collision, which causes the stick to rotate.
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Optional Section

THE MOTION OF GYROSCOPES AND TOPS
A very unusual and fascinating type of motion you probably have observed is that
of a top spinning about its axis of symmetry, as shown in Figure 11.19a. If the top
spins very rapidly, the axis rotates about the z axis, sweeping out a cone (see Fig.
11.19b). The motion of the axis about the vertical—known as precessional mo-
tion—is usually slow relative to the spin motion of the top.

It is quite natural to wonder why the top does not fall over. Because the center
of mass is not directly above the pivot point O, a net torque is clearly acting on the
top about O—a torque resulting from the force of gravity Mg. The top would cer-
tainly fall over if it were not spinning. Because it is spinning, however, it has an an-
gular momentum L directed along its symmetry axis. As we shall show, the motion
of this symmetry axis about the z axis (the precessional motion) occurs because
the torque produces a change in the direction of the symmetry axis. This is an 
excellent example of the importance of the directional nature of angular 
momentum.

The two forces acting on the top are the downward force of gravity Mg and
the normal force n acting upward at the pivot point O. The normal force produces
no torque about the pivot because its moment arm through that point is zero.
However, the force of gravity produces a torque � � r � Mg about O, where the
direction of � is perpendicular to the plane formed by r and Mg. By necessity, the
vector � lies in a horizontal xy plane perpendicular to the angular momentum vec-
tor. The net torque and angular momentum of the top are related through Equa-
tion 11.19:

From this expression, we see that the nonzero torque produces a change in angu-
lar momentum dL—a change that is in the same direction as �. Therefore, like
the torque vector, dL must also be at right angles to L. Figure 11.19b illustrates the
resulting precessional motion of the symmetry axis of the top. In a time �t, the
change in angular momentum is Because �L is perpendicu-
lar to L, the magnitude of L does not change Rather, what is chang-
ing is the direction of L. Because the change in angular momentum �L is in the di-
rection of �, which lies in the xy plane, the top undergoes precessional motion.

The essential features of precessional motion can be illustrated by considering
the simple gyroscope shown in Figure 11.20a. This device consists of a wheel free
to spin about an axle that is pivoted at a distance h from the center of mass of the
wheel. When given an angular velocity � about the axle, the wheel has an angular
momentum L � I� directed along the axle as shown. Let us consider the torque
acting on the wheel about the pivot O. Again, the force n exerted by the support
on the axle produces no torque about O, and the force of gravity Mg produces a
torque of magnitude Mgh about O, where the axle is perpendicular to the support.
The direction of this torque is perpendicular to the axle (and perpendicular to L),
as shown in Figure 11.20a. This torque causes the angular momentum to change
in the direction perpendicular to the axle. Hence, the axle moves in the direction
of the torque—that is, in the horizontal plane.

To simplify the description of the system, we must make an assumption: The
total angular momentum of the precessing wheel is the sum of the angular mo-
mentum I� due to the spinning and the angular momentum due to the motion of

(� Li � � � Lf �).
�L � Lf � Li � � �t.

� �
dL
dt

11.6

Precessional motion

L i Lf

L

CM

O
y

z

∆L

τ

Mg

x

n

r

(a)

(b)

Figure 11.19 Precessional mo-
tion of a top spinning about its
symmetry axis. (a) The only exter-
nal forces acting on the top are the
normal force n and the force of
gravity Mg. The direction of the
angular momentum L is along the
axis of symmetry. The right-hand
rule indicates that � � r � F �
r � Mg is in the xy plane. (b). The
direction of �L is parallel to that of 
� in part (a). The fact that Lf �
�L � Li indicates that the top pre-
cesses about the z axis.
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the center of mass about the pivot. In our treatment, we shall neglect the contribu-
tion from the center-of-mass motion and take the total angular momentum to be
just I�. In practice, this is a good approximation if � is made very large.

In a time dt, the torque due to the gravitational force changes the angular mo-
mentum of the system by dL � � dt. When added vectorially to the original total

Li

Lf

ττ

n
h

O

Mg

(a) (b)

Li

LfdL

dφφ

Figure 11.20 (a) The motion of a simple gyroscope pivoted a distance h from its center of
mass. The force of gravity Mg produces a torque about the pivot, and this torque is perpendicu-
lar to the axle. (b) This torque results in a change in angular momentum dL in a direction per-
pendicular to the axle. The axle sweeps out an angle d	 in a time dt.

L

r

n

Mg

τ

This toy gyroscope undergoes precessional motion about the vertical axis as it spins about its axis
of symmetry. The only forces acting on it are the force of gravity Mg and the upward force of the
pivot n. The direction of its angular momentum L is along the axis of symmetry. The torque and
�L are directed into the page. (Courtesy of Central Scientific Company)
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angular momentum I�, this additional angular momentum causes a shift in the di-
rection of the total angular momentum.

The vector diagram in Figure 11.20b shows that in the time dt, the angular
momentum vector rotates through an angle d	, which is also the angle through
which the axle rotates. From the vector triangle formed by the vectors Li , Lf , and
dL, we see that

where we have used the fact that, for small values of any angle �, sin � � �. Divid-
ing through by dt and using the relationship L � I�, we find that the rate at which
the axle rotates about the vertical axis is

(11.28)

The angular speed �p is called the precessional frequency. This result is valid
only when �p V �. Otherwise, a much more complicated motion is involved. As
you can see from Equation 11.28, the condition �p V � is met when I� is great
compared with Mgh. Furthermore, note that the precessional frequency decreases
as � increases—that is, as the wheel spins faster about its axis of symmetry.

How much work is done by the force of gravity when a top precesses through one complete
circle?

Optional Section

ANGULAR MOMENTUM AS A
FUNDAMENTAL QUANTITY

We have seen that the concept of angular momentum is very useful for describing the
motion of macroscopic systems. However, the concept also is valid on a submicro-
scopic scale and has been used extensively in the development of modern theories of
atomic, molecular, and nuclear physics. In these developments, it was found that the
angular momentum of a system is a fundamental quantity. The word fundamental in
this context implies that angular momentum is an intrinsic property of atoms, mole-
cules, and their constituents, a property that is a part of their very nature.

To explain the results of a variety of experiments on atomic and molecular sys-
tems, we rely on the fact that the angular momentum has discrete values. These
discrete values are multiples of the fundamental unit of angular momentum

where h is called Planck’s constant:

Fundamental unit of angular momentum

Let us accept this postulate without proof for the time being and show how it
can be used to estimate the angular speed of a diatomic molecule. Consider the
O2 molecule as a rigid rotor, that is, two atoms separated by a fixed distance d and
rotating about the center of mass (Fig. 11.21). Equating the angular momentum
to the fundamental unit we can estimate the lowest angular speed:

ICM� � �  or  � �
�

ICM

�,

� � � 1.054 � 10�34  kg�m2/s

� � h/2,

11.7

Quick Quiz 11.6

�p �
d	

dt
�

Mgh

I�

sin (d	) � d	 �
dL
L

�
(Mgh)dt

L

Precessional frequency

Figure 11.21 The rigid-rotor
model of a diatomic molecule. The
rotation occurs about the center of
mass in the plane of the page.

d

m m

ω

CM
⊕
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In Example 10.3, we found that the moment of inertia of the O2 molecule
about this axis of rotation is 1.95 � 10�46 kg� m2. Therefore,

Actual angular speeds are multiples of this smallest possible value.
This simple example shows that certain classical concepts and models, when

properly modified, might be useful in describing some features of atomic and mo-
lecular systems. A wide variety of phenomena on the submicroscopic scale can be
explained only if we assume discrete values of the angular momentum associated
with a particular type of motion.

The Danish physicist Niels Bohr (1885–1962) accepted and adopted this radi-
cal idea of discrete angular momentum values in developing his theory of the hy-
drogen atom. Strictly classical models were unsuccessful in describing many prop-
erties of the hydrogen atom. Bohr postulated that the electron could occupy only
those circular orbits about the proton for which the orbital angular momentum
was equal to where n is an integer. That is, he made the bold assumption that
orbital angular momentum is quantized. From this simple model, the rotational
frequencies of the electron in the various orbits can be estimated (see Problem 43).

SUMMARY

The total kinetic energy of a rigid object rolling on a rough surface without slip-
ping equals the rotational kinetic energy about its center of mass, plus the
translational kinetic energy of the center of mass, 

(11.4)

The torque � due to a force F about an origin in an inertial frame is defined
to be

(11.7)

Given two vectors A and B, the cross product A � B is a vector C having a
magnitude

(11.9)

where � is the angle between A and B. The direction of the vector C � A � B is
perpendicular to the plane formed by A and B, and this direction is determined
by the right-hand rule.

The angular momentum L of a particle having linear momentum p � mv is

(11.15)

where r is the vector position of the particle relative to an origin in an inertial
frame.

The net external torque acting on a particle or rigid object is equal to the
time rate of change of its angular momentum:

(11.20)

The z component of angular momentum of a rigid object rotating about a
fixed z axis is

(11.21)Lz � I�

��ext �
dL
dt

L � r � p

C � AB sin �

� � r � F

K � 1
2 ICM�2 � 1

2MvCM 

2

1
2MvCM 

2:

1
2 ICM�2,

n�,

� �
�

ICM
�

1.054 � 10�34 kg�m2/s
1.95 � 10�46 kg�m2 � 5.41 � 1011 rad/s
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QUESTIONS

moved away from him for some unknown reason. At this
point, the alarmed bellhop dropped the suitcase and ran
off. What do you suppose might have been in the suit-
case?

11. When a cylinder rolls on a horizontal surface as in Figure
11.3, do any points on the cylinder have only a vertical
component of velocity at some instant? If so, where are
they?

12. Three objects of uniform density—a solid sphere, a solid
cylinder, and a hollow cylinder—are placed at the top of
an incline (Fig. Q11.12). If they all are released from rest
at the same elevation and roll without slipping, which ob-
ject reaches the bottom first? Which reaches it last? You
should try this at home and note that the result is inde-
pendent of the masses and the radii of the objects.

1. Is it possible to calculate the torque acting on a rigid body
without specifying a center of rotation? Is the torque in-
dependent of the location of the center of rotation?

2. Is the triple product defined by a scalar or a
vector quantity? Explain why the operation 
has no meaning.

3. In some motorcycle races, the riders drive over small hills,
and the motorcycles become airborne for a short time. If
a motorcycle racer keeps the throttle open while leaving
the hill and going into the air, the motorcycle tends to
nose upward. Why does this happen?

4. If the torque acting on a particle about a certain origin is
zero, what can you say about its angular momentum
about that origin?

5. Suppose that the velocity vector of a particle is completely
specified. What can you conclude about the direction of
its angular momentum vector with respect to the direc-
tion of motion?

6. If a single force acts on an object, and the torque caused
by that force is nonzero about some point, is there any
other point about which the torque is zero?

7. If a system of particles is in motion, is it possible for the
total angular momentum to be zero about some origin?
Explain.

8. A ball is thrown in such a way that it does not spin about
its own axis. Does this mean that the angular momentum
is zero about an arbitrary origin? Explain.

9. In a tape recorder, the tape is pulled past the read-and-
write heads at a constant speed by the drive mechanism.
Consider the reel from which the tape is pulled—as the
tape is pulled off it, the radius of the roll of remaining
tape decreases. How does the torque on the reel change
with time? How does the angular speed of the reel
change with time? If the tape mechanism is suddenly
turned on so that the tape is quickly pulled with a great
force, is the tape more likely to break when pulled from a
nearly full reel or a nearly empty reel?

10. A scientist at a hotel sought assistance from a bellhop to
carry a mysterious suitcase. When the unaware bellhop
rounded a corner carrying the suitcase, it suddenly

(A � B) � C
A � (B � C)

where I is the moment of inertia of the object about the axis of rotation and � is
its angular speed.

The net external torque acting on a rigid object equals the product of its mo-
ment of inertia about the axis of rotation and its angular acceleration:

(11.23)

If the net external torque acting on a system is zero, then the total angular
momentum of the system is constant. Applying this law of conservation of angu-
lar momentum to a system whose moment of inertia changes gives

(11.27)I i�i � I f �f � constant

�
ext � I�

13. A mouse is initially at rest on a horizontal turntable
mounted on a frictionless vertical axle. If the mouse be-
gins to walk around the perimeter, what happens to the
turntable? Explain.

14. Stars originate as large bodies of slowly rotating gas. Be-
cause of gravity, these regions of gas slowly decrease in
size. What happens to the angular speed of a star as it
shrinks? Explain.

15. Often, when a high diver wants to execute a flip in
midair, she draws her legs up against her chest. Why does
this make her rotate faster? What should she do when she
wants to come out of her flip?

16. As a tether ball winds around a thin pole, what happens
to its angular speed? Explain.

Figure Q11.12 Which object wins the race?
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17. Two solid spheres—a large, massive sphere and a small
sphere with low mass—are rolled down a hill. Which
sphere reaches the bottom of the hill first? Next, a large,
low-density sphere and a small, high-density sphere hav-
ing the same mass are rolled down the hill. Which one
reaches the bottom first in this case?

18. Suppose you are designing a car for a coasting race—the
cars in this race have no engines; they simply coast down
a hill. Do you want to use large wheels or small wheels?
Do you want to use solid, disk-like wheels or hoop-like
wheels? Should the wheels be heavy or light?

19. Why do tightrope walkers carry a long pole to help them-
selves keep their balance?

20. Two balls have the same size and mass. One is hollow,
whereas the other is solid. How would you determine
which is which without breaking them apart?

21. A particle is moving in a circle with constant speed. Lo-
cate one point about which the particle’s angular mo-
mentum is constant and another about which it changes
with time.

22. If global warming occurs over the next century, it is likely
that some polar ice will melt and the water will be distrib-
uted closer to the equator. How would this change the
moment of inertia of the Earth? Would the length of the
day (one revolution) increase or decrease?

PROBLEMS

7. A metal can containing condensed mushroom soup has
a mass of 215 g, a height of 10.8 cm, and a diameter of
6.38 cm. It is placed at rest on its side at the top of a
3.00-m-long incline that is at an angle of 25.0° to the
horizontal and is then released to roll straight down. As-
suming energy conservation, calculate the moment of
inertia of the can if it takes 1.50 s to reach the bottom
of the incline. Which pieces of data, if any, are unneces-
sary for calculating the solution?

8. A tennis ball is a hollow sphere with a thin wall. It is
set rolling without slipping at 4.03 m/s on the hori-
zontal section of a track, as shown in Figure P11.8. 
It rolls around the inside of a vertical circular loop
90.0 cm in diameter and finally leaves the track at a
point 20.0 cm below the horizontal section. (a) Find
the speed of the ball at the top of the loop. Demon-
strate that it will not fall from the track. (b) Find its
speed as it leaves the track. (c) Suppose that static
friction between the ball and the track was negligible,
so that the ball slid instead of rolling. Would its speed

Section 11.1 Rolling Motion of a Rigid Object
1. A cylinder of mass 10.0 kg rolls without slipping on a

horizontal surface. At the instant its center of mass has
a speed of 10.0 m/s, determine (a) the translational ki-
netic energy of its center of mass, (b) the rotational en-
ergy about its center of mass, and (c) its total energy.

2. A bowling ball has a mass of 4.00 kg, a moment of iner-
tia of 1.60 � 10�2 kg� m2, and a radius of 0.100 m. If it
rolls down the lane without slipping at a linear speed of
4.00 m/s, what is its total energy?

3. A bowling ball has a mass M, a radius R, and a moment
of inertia If it starts from rest, how much work
must be done on it to set it rolling without slipping at a
linear speed v? Express the work in terms of M and v.

4. A uniform solid disk and a uniform hoop are placed
side by side at the top of an incline of height h. If they
are released from rest and roll without slipping, deter-
mine their speeds when they reach the bottom. Which
object reaches the bottom first?

5. (a) Determine the acceleration of the center of mass of
a uniform solid disk rolling down an incline making an
angle � with the horizontal. Compare this acceleration
with that of a uniform hoop. (b) What is the minimum
coefficient of friction required to maintain pure rolling
motion for the disk?

6. A ring of mass 2.40 kg, inner radius 6.00 cm, and outer
radius 8.00 cm rolls (without slipping) up an inclined
plane that makes an angle of � � 36.9° (Fig. P11.6). At
the moment the ring is at position x � 2.00 m up the
plane, its speed is 2.80 m/s. The ring continues up the
plane for some additional distance and then rolls back
down. It does not roll off the top end. How far up the
plane does it go?

2
5MR2.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

θ

v

x

Figure P11.6

WEB
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then be higher, lower, or the same at the top of the
loop? Explain.

Section 11.2 The Vector Product and Torque
9. Given M � 6i � 2j � k and N � 2i � j � 3k, calculate

the vector product M � N.
10. The vectors 42.0 cm at 15.0° and 23.0 cm at 65.0° both

start from the origin. Both angles are measured coun-
terclockwise from the x axis. The vectors form two sides
of a parallelogram. (a) Find the area of the parallelo-
gram. (b) Find the length of its longer diagonal.

11. Two vectors are given by A � � 3i � 4j and B � 2i �
3j. Find (a) A � B and (b) the angle between A and B.

12. For the vectors A � � 3i � 7j � 4k and B � 6i � 10j �
9k, evaluate the expressions (a) cos�1 and
(b) sin�1 (c) Which give(s) the angle
between the vectors?

13. A force of F � 2.00i � 3.00j N is applied to an object
that is pivoted about a fixed axis aligned along the z co-
ordinate axis. If the force is applied at the point r �
(4.00i � 5.00j � 0k) m, find (a) the magnitude of the
net torque about the z axis and (b) the direction of the
torque vector �.

14. A student claims that she has found a vector A such that
(2i � 3j � 4k) � A � (4i � 3j � k). Do you believe
this claim? Explain.

15. Vector A is in the negative y direction, and vector B is in
the negative x direction. What are the directions of 
(a) A � B and (b) B � A?

16. A particle is located at the vector position r � (i � 3j) m,
and the force acting on it is F � (3i � 2j) N. What is 
the torque about (a) the origin and (b) the point hav-
ing coordinates (0, 6) m?

17. If what is the angle between A and B?
18. Two forces F1 and F2 act along the two sides of an equi-

lateral triangle, as shown in Figure P11.18. Point O is
the intersection of the altitudes of the triangle. Find a
third force F3 to be applied at B and along BC that will
make the total torque about the point O be zero. Will
the total torque change if F3 is applied not at B, but
rather at any other point along BC?

� A � B � � A � B,

(� A � B �/AB).
(A � B/AB )

Section 11.3 Angular Momentum of a Particle
19. A light, rigid rod 1.00 m in length joins two particles—

with masses 4.00 kg and 3.00 kg—at its ends. The com-
bination rotates in the xy plane about a pivot through
the center of the rod (Fig. P11.19). Determine the an-
gular momentum of the system about the origin when
the speed of each particle is 5.00 m/s.

WEB

Figure P11.18Figure P11.8
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20. A 1.50-kg particle moves in the xy plane with a velocity
of v � (4.20i � 3.60j) m/s. Determine the particle’s 
angular momentum when its position vector is r �
(1.50i � 2.20j) m.

21. The position vector of a particle of mass 2.00 kg is given
as a function of time by r � (6.00i � 5.00t j) m. Deter-
mine the angular momentum of the particle about the
origin as a function of time.

22. A conical pendulum consists of a bob of mass m in mo-
tion in a circular path in a horizontal plane, as shown in
Figure P11.22. During the motion, the supporting wire
of length � maintains the constant angle � with the ver-
tical. Show that the magnitude of the angular momen-

WEB
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tum of the mass about the center of the circle is

L � (m2g �3 sin4 �/cos �)1/2

cle about the origin when the particle is (a) at the ori-
gin, (b) at the highest point of its trajectory, and (c) just
about to hit the ground. (d) What torque causes its an-
gular momentum to change?

26. Heading straight toward the summit of Pike’s Peak, an
airplane of mass 12 000 kg flies over the plains of
Kansas at a nearly constant altitude of 4.30 km and with
a constant velocity of 175 m/s westward. (a) What is the
airplane’s vector angular momentum relative to a wheat
farmer on the ground directly below the airplane? 
(b) Does this value change as the airplane continues its
motion along a straight line? (c) What is its angular mo-
mentum relative to the summit of Pike’s Peak?

27. A ball of mass m is fastened at the end of a flagpole con-
nected to the side of a tall building at point P, as shown
in Figure P11.27. The length of the flagpole is �, and �
is the angle the flagpole makes with the horizontal. Sup-
pose that the ball becomes loose and starts to fall. De-
termine the angular momentum (as a function of time)
of the ball about point P. Neglect air resistance.

Figure P11.23

Figure P11.22

28. A fireman clings to a vertical ladder and directs the noz-
zle of a hose horizontally toward a burning building.
The rate of water flow is 6.31 kg/s, and the nozzle speed
is 12.5 m/s. The hose passes between the fireman’s feet,
which are 1.30 m vertically below the nozzle. Choose
the origin to be inside the hose between the fireman’s

24. A 4.00-kg mass is attached to a light cord that is wound
around a pulley (see Fig. 10.20). The pulley is a uni-
form solid cylinder with a radius of 8.00 cm and a mass
of 2.00 kg. (a) What is the net torque on the system
about the point O? (b) When the mass has a speed v,
the pulley has an angular speed � � v/R. Determine
the total angular momentum of the system about O. 
(c) Using the fact that � � dL/dt and your result from
part (b), calculate the acceleration of the mass.

25. A particle of mass m is shot with an initial velocity vi and
makes an angle � with the horizontal, as shown in Fig-
ure P11.25. The particle moves in the gravitational field
of the Earth. Find the angular momentum of the parti-

23. A particle of mass m moves in a circle of radius R at a
constant speed v, as shown in Figure P11.23. If the mo-
tion begins at point Q, determine the angular momen-
tum of the particle about point P as a function of time.
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the ratio of the final rotational energy to the initial rota-
tional energy.

34. A playground merry-go-round of radius R � 2.00 m has
a moment of inertia of I � 250 kg� m2 and is rotating at
10.0 rev/min about a frictionless vertical axle. Facing
the axle, a 25.0-kg child hops onto the merry-go-round
and manages to sit down on its edge. What is the new
angular speed of the merry-go-round?

35. A student sits on a freely rotating stool holding two
weights, each of which has a mass of 3.00 kg. When his
arms are extended horizontally, the weights are 1.00 m
from the axis of rotation and he rotates with an angular
speed of 0.750 rad/s. The moment of inertia of the stu-
dent plus stool is 3.00 kg� m2 and is assumed to be con-
stant. The student pulls the weights inward horizontally
to a position 0.300 m from the rotation axis. (a) Find
the new angular speed of the student. (b) Find the ki-
netic energy of the rotating system before and after he
pulls the weights inward.

36. A uniform rod with a mass of 100 g and a length of 
50.0 cm rotates in a horizontal plane about a fixed, 
vertical, frictionless pin passing through its center. 
Two small beads, each having a mass 30.0 g, are
mounted on the rod so that they are able to slide with-
out friction along its length. Initially, the beads are held
by catches at positions 10.0 cm on each side of center; 
at this time, the system rotates at an angular speed of
20.0 rad/s. Suddenly, the catches are released, and the
small beads slide outward along the rod. Find (a) the 
angular speed of the system at the instant the beads
reach the ends of the rod and (b) the angular speed of
the rod after the beads fly off the rod’s ends.

37. A 60.0-kg woman stands at the rim of a horizontal
turntable having a moment of inertia of 500 kg� m2 and
a radius of 2.00 m. The turntable is initially at rest and is
free to rotate about a frictionless, vertical axle through
its center. The woman then starts walking around the
rim clockwise (as viewed from above the system) at a
constant speed of 1.50 m/s relative to the Earth. (a) In
what direction and with what angular speed does the
turntable rotate? (b) How much work does the woman
do to set herself and the turntable into motion?

38. A puck with a mass of 80.0 g and a radius of 4.00 cm
slides along an air table at a speed of 1.50 m/s, as
shown in Figure P11.38a. It makes a glancing collision

feet. What torque must the fireman exert on the hose?
That is, what is the rate of change of angular momen-
tum of the water?

Section 11.4 Angular Momentum of a 
Rotating Rigid Object

29. A uniform solid sphere with a radius of 0.500 m and a
mass of 15.0 kg turns counterclockwise about a vertical
axis through its center. Find its vector angular momen-
tum when its angular speed is 3.00 rad/s.

30. A uniform solid disk with a mass of 3.00 kg and a radius
of 0.200 m rotates about a fixed axis perpendicular 
to its face. If the angular speed is 6.00 rad/s, calculate
the angular momentum of the disk when the axis of ro-
tation (a) passes through its center of mass and 
(b) passes through a point midway between the center
and the rim.

31. A particle with a mass of 0.400 kg is attached to the 
100-cm mark of a meter stick with a mass of 0.100 kg. The
meter stick rotates on a horizontal, frictionless table 
with an angular speed of 4.00 rad/s. Calculate the angu-
lar momentum of the system when the stick is pivoted
about an axis (a) perpendicular to the table through 
the 50.0-cm mark and (b) perpendicular to the table
through the 0-cm mark.

32. The hour and minute hands of Big Ben, the famous
Parliament Building tower clock in London, are 2.70 m
and 4.50 m long and have masses of 60.0 kg and 100 kg,
respectively. Calculate the total angular momentum of
these hands about the center point. Treat the hands as
long thin rods.

Section 11.5 Conservation of Angular Momentum
33. A cylinder with a moment of inertia of I1 rotates about a

vertical, frictionless axle with angular velocity �i . A sec-
ond cylinder that has a moment of inertia of I2 and ini-
tially is not rotating drops onto the first cylinder (Fig.
P11.33). Because of friction between the surfaces, the
two eventually reach the same angular speed �f . 
(a) Calculate �f . (b) Show that the kinetic energy of 
the system decreases in this interaction and calculate

Figure P11.38Figure P11.33

(b)(a)

1.50 m/s

I2

ωi
ωf
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Before After

ω
ω

WEB



354 C H A P T E R  1 1 Rolling Motion and Angular Momentum

with a second puck having a radius of 6.00 cm and a
mass of 120 g (initially at rest) such that their rims just
touch. Because their rims are coated with instant-acting
glue, the pucks stick together and spin after the colli-
sion (Fig. P11.38b). (a) What is the angular momentum
of the system relative to the center of mass? (b) What is
the angular speed about the center of mass?

39. A wooden block of mass M resting on a frictionless hori-
zontal surface is attached to a rigid rod of length � and
of negligible mass (Fig. P11.39). The rod is pivoted at
the other end. A bullet of mass m traveling parallel to
the horizontal surface and normal to the rod with speed
v hits the block and becomes embedded in it. (a) What
is the angular momentum of the bullet–block system?
(b) What fraction of the original kinetic energy is lost
in the collision?

maximum possible decrease in the angular speed of the
Earth due to this collision? Explain your answer.

(Optional)
Section 11.7 Angular Momentum as a 
Fundamental Quantity

43. In the Bohr model of the hydrogen atom, the electron
moves in a circular orbit of radius 0.529 � 10�10 m
around the proton. Assuming that the orbital angular
momentum of the electron is equal to h/2, calculate
(a) the orbital speed of the electron, (b) the kinetic en-
ergy of the electron, and (c) the angular speed of the
electron’s motion.

ADDITIONAL PROBLEMS

44. Review Problem. A rigid, massless rod has three equal
masses attached to it, as shown in Figure P11.44. The
rod is free to rotate in a vertical plane about a friction-
less axle perpendicular to the rod through the point P,
and it is released from rest in the horizontal position at
t � 0. Assuming m and d are known, find (a) the mo-
ment of inertia of the system about the pivot, (b) the
torque acting on the system at t � 0, (c) the angular ac-
celeration of the system at t � 0, (d) the linear accelera-
tion of the mass labeled “3” at t � 0, (e) the maximum

40. A space station shaped like a giant wheel has a radius of
100 m and a moment of inertia of 5.00 � 108 kg� m2. A
crew of 150 are living on the rim, and the station’s rota-
tion causes the crew to experience an acceleration of 1g
(Fig. P11.40). When 100 people move to the center of
the station for a union meeting, the angular speed
changes. What acceleration is experienced by the man-
agers remaining at the rim? Assume that the average
mass of each inhabitant is 65.0 kg.

41. A wad of sticky clay of mass m and velocity vi is fired at a
solid cylinder of mass M and radius R (Fig. P11.41).
The cylinder is initially at rest and is mounted on a
fixed horizontal axle that runs through the center of
mass. The line of motion of the projectile is perpendic-
ular to the axle and at a distance d, less than R, from the
center. (a) Find the angular speed of the system just af-
ter the clay strikes and sticks to the surface of the cylin-
der. (b) Is mechanical energy conserved in this process?
Explain your answer.

42. Suppose a meteor with a mass of 3.00 � 1013 kg is mov-
ing at 30.0 km/s relative to the center of the Earth and
strikes the Earth. What is the order of magnitude of the

Figure P11.39
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kinetic energy of the system, (f) the maximum angular
speed attained by the rod, (g) the maximum angular
momentum of the system, and (h) the maximum speed
attained by the mass labeled “2.”

time. (f) Find the work done by the drive motor during
the 440-s motion. (g) Find the work done by the string
brake on the sliding mass. (h) Find the total work done
on the system consisting of the disk and the sliding
mass.

48. Comet Halley moves about the Sun in an elliptical orbit,
with its closest approach to the Sun being about 
0.590 AU and its greatest distance from the Sun being
35.0 AU (1 AU � the average Earth–Sun distance). If
the comet’s speed at its closest approach is 54.0 km/s,

47. A string is wound around a uniform disk of radius R
and mass M. The disk is released from rest when the
string is vertical and its top end is tied to a fixed bar
(Fig. P11.47). Show that (a) the tension in the string is
one-third the weight of the disk, (b) the magnitude of
the acceleration of the center of mass is 2g/3, and 
(c) the speed of the center of mass is (4gh/3)1/2 as the
disk descends. Verify your answer to part (c) using the
energy approach.

46. A 100-kg uniform horizontal disk of radius 5.50 m turns
without friction at 2.50 rev/s on a vertical axis through
its center, as shown in Figure P11.46. A feedback mech-
anism senses the angular speed of the disk, and a drive
motor at A ensures that the angular speed remains con-
stant. While the disk turns, a 1.20-kg mass on top of the
disk slides outward in a radial slot. The 1.20-kg mass
starts at the center of the disk at time t � 0 and moves
outward with a constant speed of 1.25 cm/s relative to
the disk until it reaches the edge at t � 440 s. The slid-
ing mass experiences no friction. Its motion is con-
strained by a brake at B so that its radial speed remains
constant. The constraint produces tension in a light
string tied to the mass. (a) Find the torque as a function
of time that the drive motor must provide while the
mass is sliding. (b) Find the value of this torque at 
t � 440 s, just before the sliding mass finishes its mo-
tion. (c) Find the power that the drive motor must de-
liver as a function of time. (d) Find the value of the
power when the sliding mass is just reaching the end of
the slot. (e) Find the string tension as a function of

45. A uniform solid sphere of radius r is placed on the in-
side surface of a hemispherical bowl having a much
greater radius R. The sphere is released from rest at an
angle � to the vertical and rolls without slipping (Fig.
P11.45). Determine the angular speed of the sphere
when it reaches the bottom of the bowl.
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what is its speed when it is farthest from the Sun? The
angular momentum of the comet about the Sun is con-
served because no torque acts on the comet. The gravi-
tational force exerted by the Sun on the comet has a
moment arm of zero.

49. A constant horizontal force F is applied to a lawn roller
having the form of a uniform solid cylinder of radius R
and mass M (Fig. P11.49). If the roller rolls without slip-
ping on the horizontal surface, show that (a) the accel-
eration of the center of mass is 2F/3M and that (b) the
minimum coefficient of friction necessary to prevent
slipping is F/3Mg. (Hint: Consider the torque with re-
spect to the center of mass.)

The monkey climbs the rope in an attempt to reach the
bananas. (a) Treating the system as consisting of the
monkey, bananas, rope, and pulley, evaluate the net
torque about the pulley axis. (b) Using the results to
part (a), determine the total angular momentum about
the pulley axis and describe the motion of the system.
Will the monkey reach the bananas?

51. A solid sphere of mass m and radius r rolls without slip-
ping along the track shown in Figure P11.51. The
sphere starts from rest with its lowest point at height h
above the bottom of a loop of radius R, which is much
larger than r. (a) What is the minimum value that h can
have (in terms of R) if the sphere is to complete the
loop? (b) What are the force components on the
sphere at point P if h � 3R?

52. A thin rod with a mass of 0.630 kg and a length of 
1.24 m is at rest, hanging vertically from a strong fixed
hinge at its top end. Suddenly, a horizontal impulsive
force (14.7i) N is applied to it. (a) Suppose that the
force acts at the bottom end of the rod. Find the accel-
eration of the rod’s center of mass and the horizontal
force that the hinge exerts. (b) Suppose that the force
acts at the midpoint of the rod. Find the acceleration of
this point and the horizontal hinge reaction. (c) Where
can the impulse be applied so that the hinge exerts no
horizontal force? (This point is called the center of per-
cussion.)

53. At one moment, a bowling ball is both sliding and spin-
ning on a horizontal surface such that its rotational ki-
netic energy equals its translational kinetic energy. Let
vCM represent the ball’s center-of-mass speed relative to
the surface. Let vr represent the speed of the topmost
point on the ball’s surface relative to the center of mass.
Find the ratio vCM/vr .

54. A projectile of mass m moves to the right with speed vi
(Fig. P11.54a). The projectile strikes and sticks to the
end of a stationary rod of mass M and length d that is
pivoted about a frictionless axle through its center (Fig.
P11.54b). (a) Find the angular speed of the system right
after the collision. (b) Determine the fractional loss in
mechanical energy due to the collision.

50. A light rope passes over a light, frictionless pulley. A
bunch of bananas of mass M is fastened at one end, and
a monkey of mass M clings to the other (Fig. P11.50).

Figure P11.50

Figure P11.49
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55. A mass m is attached to a cord passing through a small
hole in a frictionless, horizontal surface (Fig. P11.55).
The mass is initially orbiting with speed vi in a circle of
radius ri . The cord is then slowly pulled from below,
and the radius of the circle decreases to r. (a) What is
the speed of the mass when the radius is r? (b) Find the
tension in the cord as a function of r. (c) How much
work W is done in moving m from ri to r ? (Note: The
tension depends on r.) (d) Obtain numerical values 
for v, T, and W when r � 0.100 m, m � 50.0 g, ri �
0.300 m, and vi � 1.50 m/s.

cal grape at the top of his bald head, which itself has the
shape of a sphere. After all of the children have had
time to giggle, the grape starts from rest and rolls down
your uncle’s head without slipping. It loses contact with
your uncle’s scalp when the radial line joining it to the
center of curvature makes an angle � with the vertical.
What is the measure of angle �?

58. A thin rod of length h and mass M is held vertically with
its lower end resting on a frictionless horizontal surface.
The rod is then released to fall freely. (a) Determine
the speed of its center of mass just before it hits the hor-
izontal surface. (b) Now suppose that the rod has a
fixed pivot at its lower end. Determine the speed of the
rod’s center of mass just before it hits the surface.

59. Two astronauts (Fig. P11.59), each having a mass of
75.0 kg, are connected by a 10.0-m rope of negligible
mass. They are isolated in space, orbiting their center of
mass at speeds of 5.00 m/s. (a) Treating the astronauts
as particles, calculate the magnitude of the angular mo-
mentum and (b) the rotational energy of the system. By
pulling on the rope, one of the astronauts shortens the
distance between them to 5.00 m. (c) What is the new
angular momentum of the system? (d) What are the as-
tronauts’ new speeds? (e) What is the new rotational en-
ergy of the system? (f) How much work is done by the
astronaut in shortening the rope?

60. Two astronauts (see Fig. P11.59), each having a mass M,
are connected by a rope of length d having negligible
mass. They are isolated in space, orbiting their center of
mass at speeds v. Treating the astronauts as particles,
calculate (a) the magnitude of the angular momentum
and (b) the rotational energy of the system. By pulling
on the rope, one of the astronauts shortens the distance
between them to d/2. (c) What is the new angular mo-
mentum of the system? (d) What are the astronauts’
new speeds? (e) What is the new rotational energy of
the system? (f) How much work is done by the astro-
naut in shortening the rope?

WEB

56. A bowler releases a bowling ball with no spin, sending it
sliding straight down the alley toward the pins. The ball
continues to slide for some distance before its motion
becomes rolling without slipping; of what order of mag-
nitude is this distance? State the quantities you take as
data, the values you measure or estimate for them, and
your reasoning.

57. Following Thanksgiving dinner, your uncle falls into a
deep sleep while sitting straight up and facing the televi-
sion set. A naughty grandchild balances a small spheri-
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Figure P11.59 Problems 59 and 60.

Figure P11.55

Figure P11.54

61. A solid cube of wood of side 2a and mass M is resting
on a horizontal surface. The cube is constrained to ro-
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tate about an axis AB (Fig. P11.61). A bullet of mass m
and speed v is shot at the face opposite ABCD at a
height of 4a/3. The bullet becomes embedded in the
cube. Find the minimum value of v required to tip the
cube so that it falls on face ABCD. Assume m V M.

a horizontal surface and released, as shown in Figure
P11.64. (a) What is the angular speed of the disk once
pure rolling takes place? (b) Find the fractional loss in
kinetic energy from the time the disk is released until
the time pure rolling occurs. (Hint: Consider torques
about the center of mass.)

65. Suppose a solid disk of radius R is given an angular
speed �i about an axis through its center and is then
lowered to a horizontal surface and released, as shown
in Problem 64 (see Fig. P11.64). Furthermore, assume
that the coefficient of friction between the disk and the
surface is �. (a) Show that the time it takes for pure
rolling motion to occur is R�i/3�g. (b) Show that the
distance the disk travels before pure rolling occurs is

66. A solid cube of side 2a and mass M is sliding on a fric-
tionless surface with uniform velocity v, as shown in Fig-
ure P11.66a. It hits a small obstacle at the end of the
table; this causes the cube to tilt, as shown in Figure
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64. A uniform solid disk is set into rotation with an angular
speed �i about an axis through its center. While still ro-
tating at this speed, the disk is placed into contact with

62. A large, cylindrical roll of paper of initial radius R lies
on a long, horizontal surface with the open end of the
paper nailed to the surface. The roll is given a slight
shove (vi � 0) and begins to unroll. (a) Determine the
speed of the center of mass of the roll when its radius
has diminished to r. (b) Calculate a numerical value 
for this speed at r � 1.00 mm, assuming R � 6.00 m. 
(c) What happens to the energy of the system when the
paper is completely unrolled? (Hint: Assume that the
roll has a uniform density and apply energy methods.)

63. A spool of wire of mass M and radius R is unwound un-
der a constant force F (Fig. P11.63). Assuming that the
spool is a uniform solid cylinder that does not slip, show
that (a) the acceleration of the center of mass is 
4F/3M and that (b) the force of friction is to the right
and is equal in magnitude to F/3. (c) If the cylinder
starts from rest and rolls without slipping, what is the
speed of its center of mass after it has rolled through a
distance d?

Figure P11.66

Figure P11.64 Problems 64 and 65.

Figure P11.63

Figure P11.61
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69. The spool of wire shown in Figure P11.68 has an inner
radius r and an outer radius R. The angle � between the
applied force and the horizontal can be varied. Show

68. A spool of wire rests on a horizontal surface as in Figure
P11.68. As the wire is pulled, the spool does not slip at
the contact point P. On separate trials, each one of the
forces F1 , F2 , F3 , and F4 is applied to the spool. For
each one of these forces, determine the direction in
which the spool will roll. Note that the line of action of
F2 passes through P.

that the critical angle for which the spool does not slip
and remains stationary is

(Hint: At the critical angle, the line of action of the ap-
plied force passes through the contact point.)

70. In a demonstration that employs a ballistics cart, a ball
is projected vertically upward from a cart moving with
constant velocity along the horizontal direction. The
ball lands in the catching cup of the cart because both
the cart and the ball have the same horizontal compo-
nent of velocity. Now consider a ballistics cart on an in-
cline making an angle � with the horizontal, as shown in
Figure P11.70. The cart (including its wheels) has a
mass M, and the moment of inertia of each of the two
wheels is mR 2/2. (a) Using conservation of energy con-
siderations (assuming that there is no friction between
the cart and the axles) and assuming pure rolling mo-
tion (that is, no slipping), show that the acceleration of
the cart along the incline is

(b) Note that the x component of acceleration of the
ball released by the cart is g sin �. Thus, the x compo-
nent of the cart’s acceleration is smaller than that of the
ball by the factor M/(M � 2m). Use this fact and kine-
matic equations to show that the ball overshoots the
cart by an amount �x, where

and vyi is the initial speed of the ball imparted to it by
the spring in the cart. (c) Show that the distance d that
the ball travels measured along the incline is

d �
2v 2

 yi

g
 

sin �

cos2 �

�x � � 4m
M � 2m �� sin �

cos2 � � 
vyi

2

g

ax � � M
M � 2m �g sin �

cos �c �
r
R

P11.66b. Find the minimum value of v such that the
cube falls off the table. Note that the moment of inertia
of the cube about an axis along one of its edges is
8Ma2/3. (Hint: The cube undergoes an inelastic colli-
sion at the edge.)

67. A plank with a mass M � 6.00 kg rides on top of two
identical solid cylindrical rollers that have R � 5.00 cm
and m � 2.00 kg (Fig. P11.67). The plank is pulled by a
constant horizontal force of magnitude F � 6.00 N ap-
plied to the end of the plank and perpendicular to the
axes of the cylinders (which are parallel). The cylinders
roll without slipping on a flat surface. Also, no slipping
occurs between the cylinders and the plank. (a) Find
the acceleration of the plank and that of the rollers. 
(b) What frictional forces are acting?

Figure P11.70

Figure P11.68 Problems 68 and 69.

Figure P11.67
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ANSWERS TO QUICK QUIZZES

11.4 Both (a) and (b) are false. The net force is not necessar-
ily zero. If the line of action of the net force passes
through the point, then the net torque about an axis
passing through that point is zero even though the net
force is not zero. Because the net force is not necessarily
zero, you cannot conclude that the particle’s velocity is
constant.

11.5 The student does work as he walks from the rim of the
platform toward its center.

11.6 Because it is perpendicular to the precessional motion
of the top, the force of gravity does no work. This is a sit-
uation in which a force causes motion but does no work.

11.1 There is very little resistance to motion that can reduce
the kinetic energy of the rolling ball. Even though there
is friction between the ball and the floor (if there were
not, then no rotation would occur, and the ball would
slide), there is no relative motion of the two surfaces (by
the definition of “rolling”), and so kinetic friction can-
not reduce K. (Air drag and friction associated with de-
formation of the ball eventually stop the ball.)

11.2 The box. Because none of the box’s initial potential en-
ergy is converted to rotational kinetic energy, at any time
t � 0 its translational kinetic energy is greater than that
of the rolling ball.

11.3 Zero. If she were moving directly toward the pole, r and
p would be antiparallel to each other, and the sine of
the angle between them is zero; therefore, L � 0.
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c h a p t e r

Static Equilibrium and Elasticity

This one-bottle wine holder is an inter-
esting example of a mechanical system
that seems to defy gravity. The system
(holder plus bottle) is balanced when its
center of gravity is directly over the low-
est support point. What two conditions
are necessary for an object to exhibit
this kind of stability? (Charles D. Winters)

C h a p t e r  O u t l i n e

12.1 The Conditions for Equilibrium

12.2 More on the Center of Gravity

12.3 Examples of Rigid Objects in
Static Equilibrium

12.4 Elastic Properties of Solids
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n Chapters 10 and 11 we studied the dynamics of rigid objects—that is, objects
whose parts remain at a fixed separation with respect to each other when sub-
jected to external forces. Part of this chapter addresses the conditions under

which a rigid object is in equilibrium. The term equilibrium implies either that the
object is at rest or that its center of mass moves with constant velocity. We deal
here only with the former case, in which the object is described as being in static
equilibrium. Static equilibrium represents a common situation in engineering prac-
tice, and the principles it involves are of special interest to civil engineers, archi-
tects, and mechanical engineers. If you are an engineering student you will un-
doubtedly take an advanced course in statics in the future.

The last section of this chapter deals with how objects deform under load con-
ditions. Such deformations are usually elastic and do not affect the conditions for
equilibrium. An elastic object returns to its original shape when the deforming
forces are removed. Several elastic constants are defined, each corresponding to a
different type of deformation.

THE CONDITIONS FOR EQUILIBRIUM
In Chapter 5 we stated that one necessary condition for equilibrium is that the net
force acting on an object be zero. If the object is treated as a particle, then this is
the only condition that must be satisfied for equilibrium. The situation with real
(extended) objects is more complex, however, because these objects cannot be
treated as particles. For an extended object to be in static equilibrium, a second
condition must be satisfied. This second condition involves the net torque acting
on the extended object. Note that equilibrium does not require the absence of
motion. For example, a rotating object can have constant angular velocity and still
be in equilibrium.

Consider a single force F acting on a rigid object, as shown in Figure 12.1. The
effect of the force depends on its point of application P. If r is the position vector
of this point relative to O, the torque associated with the force F about O is given
by Equation 11.7:

Recall from the discussion of the vector product in Section 11.2 that the vector � is
perpendicular to the plane formed by r and F. You can use the right-hand rule to
determine the direction of � : Curl the fingers of your right hand in the direction
of rotation that F tends to cause about an axis through O : your thumb then points
in the direction of �. Hence, in Figure 12.1 � is directed toward you out of the
page.

As you can see from Figure 12.1, the tendency of F to rotate the object about
an axis through O depends on the moment arm d, as well as on the magnitude of
F. Recall that the magnitude of � is Fd (see Eq. 10.19). Now suppose a rigid object
is acted on first by force F1 and later by force F2 . If the two forces have the same
magnitude, they will produce the same effect on the object only if they have the
same direction and the same line of action. In other words,

� � r � F

12.1

two forces F1 and F2 are equivalent if and only if F1 � F2 and if and only if the
two produce the same torque about any axis.

Equivalent forces

I

F θ P

r d

O

Figure 12.1 A single force F acts
on a rigid object at the point P.

The two forces shown in Figure 12.2 are equal in magnitude and opposite in
direction. They are not equivalent. The force directed to the right tends to rotate
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the object clockwise about an axis perpendicular to the diagram through O,
whereas the force directed to the left tends to rotate it counterclockwise about that
axis.

Suppose an object is pivoted about an axis through its center of mass, as
shown in Figure 12.3. Two forces of equal magnitude act in opposite directions
along parallel lines of action. A pair of forces acting in this manner form what is
called a couple. (The two forces shown in Figure 12.2 also form a couple.) Do not
make the mistake of thinking that the forces in a couple are a result of Newton’s
third law. They cannot be third-law forces because they act on the same object.
Third-law force pairs act on different objects. Because each force produces the
same torque Fd, the net torque has a magnitude of 2Fd. Clearly, the object rotates
clockwise and undergoes an angular acceleration about the axis. With respect to
rotational motion, this is a nonequilibrium situation. The net torque on the ob-
ject gives rise to an angular acceleration � according to the relationship 

(see Eq. 10.21).
In general, an object is in rotational equilibrium only if its angular accelera-

tion � � 0. Because �� � I� for rotation about a fixed axis, our second necessary
condition for equilibrium is that the net torque about any axis must be zero.
We now have two necessary conditions for equilibrium of an object:

1. The resultant external force must equal zero. (12.1)

2. The resultant external torque about any axis must be zero. (12.2)

The first condition is a statement of translational equilibrium; it tells us that the
linear acceleration of the center of mass of the object must be zero when viewed
from an inertial reference frame. The second condition is a statement of rota-
tional equilibrium and tells us that the angular acceleration about any axis must
be zero. In the special case of static equilibrium, which is the main subject of this
chapter, the object is at rest and so has no linear or angular speed (that is, vCM � 0
and � � 0).

(a) Is it possible for a situation to exist in which Equation 12.1 is satisfied while Equation
12.2 is not? (b) Can Equation 12.2 be satisfied while Equation 12.1 is not?

The two vector expressions given by Equations 12.1 and 12.2 are equivalent, in
general, to six scalar equations: three from the first condition for equilibrium, and
three from the second (corresponding to x, y, and z components). Hence, in a
complex system involving several forces acting in various directions, you could be
faced with solving a set of equations with many unknowns. Here, we restrict our
discussion to situations in which all the forces lie in the xy plane. (Forces whose
vector representations are in the same plane are said to be coplanar.) With this re-
striction, we must deal with only three scalar equations. Two of these come from
balancing the forces in the x and y directions. The third comes from the torque
equation—namely, that the net torque about any point in the xy plane must be
zero. Hence, the two conditions of equilibrium provide the equations

(12.3)

where the axis of the torque equation is arbitrary, as we now show.

�Fx � 0  �Fy � 0  ��z � 0

Quick Quiz 12.1

�� � 0

�F � 0

2Fd � I�
�� �

Conditions for equilibrium

F2

F1

O

Figure 12.2 The forces F1 and
F2 are not equivalent because they
do not produce the same torque
about some axis, even though they
are equal in magnitude and oppo-
site in direction.

F
d

d

CM

– F

Figure 12.3 Two forces of equal
magnitude form a couple if their
lines of action are different parallel
lines. In this case, the object rotates
clockwise. The net torque about
any axis is 2Fd.
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Regardless of the number of forces that are acting, if an object is in transla-
tional equilibrium and if the net torque is zero about one axis, then the net torque
must also be zero about any other axis. The point can be inside or outside the
boundaries of the object. Consider an object being acted on by several forces such
that the resultant force Figure 12.4 describes this
situation (for clarity, only four forces are shown). The point of application of F1
relative to O is specified by the position vector r1 . Similarly, the points of applica-
tion of F2 , F3 , . . . are specified by r2 , r3 , . . . (not shown). The net torque
about an axis through O is

Now consider another arbitrary point O� having a position vector r� relative to
O. The point of application of F1 relative to O� is identified by the vector r1 � r�.
Likewise, the point of application of F2 relative to O� is r2 � r�, and so forth.
Therefore, the torque about an axis through O� is

Because the net force is assumed to be zero (given that the object is in transla-
tional equilibrium), the last term vanishes, and we see that the torque about O� is
equal to the torque about O. Hence, if an object is in translational equilibrium
and the net torque is zero about one point, then the net torque must be zero
about any other point.

MORE ON THE CENTER OF GRAVITY
We have seen that the point at which a force is applied can be critical in determin-
ing how an object responds to that force. For example, two equal-magnitude but
oppositely directed forces result in equilibrium if they are applied at the same
point on an object. However, if the point of application of one of the forces is
moved, so that the two forces no longer act along the same line of action, then a
force couple results and the object undergoes an angular acceleration. (This is the
situation shown in Figure 12.3.) 

Whenever we deal with a rigid object, one of the forces we must consider is
the force of gravity acting on it, and we must know the point of application of this
force. As we learned in Section 9.6, on every object is a special point called its cen-
ter of gravity. All the various gravitational forces acting on all the various mass ele-
ments of the object are equivalent to a single gravitational force acting through
this point. Thus, to compute the torque due to the gravitational force on an object
of mass M, we need only consider the force Mg acting at the center of gravity of
the object.

How do we find this special point? As we mentioned in Section 9.6, if 
we assume that g is uniform over the object, then the center of gravity of 
the object coincides with its center of mass. To see that this is so, consider an
object of arbitrary shape lying in the xy plane, as illustrated in Figure 12.5. 
Suppose the object is divided into a large number of particles of masses 
m 1 , m 2 , m 3 , . . . having coordinates (x1 , y1), (x 2 , y 2), (x 3 , y 3), . . . . In

12.2

 � r1 � F1 � r2 � F2 � r3 � F3 � 			 �r� � (F1 � F2 � F3 � 			)

��O � � (r1 � r�) � F1 � (r2 � r�) � F2 � (r3 � r�) � F3 � 			 

��O � r1 � F1 � r2 � F2 � r3 � F3 � 			

�F � F1 � F2 � F3 � 			 � 0.

F2

F1

F3 F4

r 1
r 1 – r ′

r ′
O

O ′

Figure 12.4 Construction show-
ing that if the net torque is zero
about origin O, it is also zero about
any other origin, such as O�.

x1,y1

y

x 2,y 2

x 3,y 3

m1
m2

m 3

CM

O
x

×

Figure 12.5 An object can be di-
vided into many small particles
each having a specific mass and
specific coordinates. These parti-
cles can be used to locate the cen-
ter of mass.
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Equation 9.28 we defined the x coordinate of the center of mass of such an ob-
ject to be

We use a similar equation to define the y coordinate of the center of mass, replac-
ing each x with its y counterpart.

Let us now examine the situation from another point of view by consider-
ing the force of gravity exerted on each particle, as shown in Figure 12.6. 
Each particle contributes a torque about the origin equal in magnitude to the
particle’s weight mg multiplied by its moment arm. For example, the torque due
to the force m1g1 is m1g 1x1 , where g 1 is the magnitude of the gravitational field
at the position of the particle of mass m1. We wish to locate the center of gravity,
the point at which application of the single gravitational force Mg (where M �
m1 � m2 � m3 � . . . is the total mass of the object) has the same effect on rota-
tion as does the combined effect of all the individual gravitational forces mi g i .
Equating the torque resulting from Mg acting at the center of gravity to the
sum of the torques acting on the individual particles gives

This expression accounts for the fact that the gravitational field strength g can in
general vary over the object. If we assume uniform g over the object (as is usually
the case), then the g terms cancel and we obtain

(12.4)

Comparing this result with Equation 9.28, we see that the center of gravity is lo-
cated at the center of mass as long as the object is in a uniform gravita-
tional field.

In several examples presented in the next section, we are concerned with ho-
mogeneous, symmetric objects. The center of gravity for any such object coincides
with its geometric center.

EXAMPLES OF RIGID OBJECTS
IN STATIC EQUILIBRIUM

The photograph of the one-bottle wine holder on the first page of this chapter
shows one example of a balanced mechanical system that seems to defy gravity. For
the system (wine holder plus bottle) to be in equilibrium, the net external force
must be zero (see Eq. 12.1) and the net external torque must be zero (see Eq.
12.2). The second condition can be satisfied only when the center of gravity of the
system is directly over the support point.

In working static equilibrium problems, it is important to recognize all the ex-
ternal forces acting on the object. Failure to do so results in an incorrect analysis.
When analyzing an object in equilibrium under the action of several external
forces, use the following procedure.

12.3

xCG �
m1x1 � m2x2 � m3x3 � 			

m1 � m2 � m3 � 			

(m1g1 � m2g2 � m3g3 � 			)xCG � m1g1x1 � m2g2x2 � m3g3x3 � 			

xCM �
m1x1 � m 2x 2 � m 3x 3 � 			

m1 � m 2 � m 3 � 			
�

�
i
mix i

�
i
mi

m3g

m2g
x1,y1

y

x 2,y 2

x 3,y 3

m1g

CG

O
x

×

Fg = Mg

Figure 12.6 The center of gravity
of an object is located at the center
of mass if g is constant over the
object.

A large balanced rock at the Gar-
den of the Gods in Colorado
Springs, Colorado—an example of
stable equilibrium. 
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The first and second conditions for equilibrium give a set of linear equations con-
taining several unknowns, and these equations can be solved simultaneously.

Problem-Solving Hints
Objects in Static Equilibrium

• Draw a simple, neat diagram of the system.
• Isolate the object being analyzed. Draw a free-body diagram and then show

and label all external forces acting on the object, indicating where those
forces are applied. Do not include forces exerted by the object on its sur-
roundings. (For systems that contain more than one object, draw a separate
free-body diagram for each one.) Try to guess the correct direction for each
force. If the direction you select leads to a negative force, do not be
alarmed; this merely means that the direction of the force is the opposite of
what you guessed.

• Establish a convenient coordinate system for the object and find the compo-
nents of the forces along the two axes. Then apply the first condition for
equilibrium. Remember to keep track of the signs of all force components.

• Choose a convenient axis for calculating the net torque on the object. Re-
member that the choice of origin for the torque equation is arbitrary; there-
fore, choose an origin that simplifies your calculation as much as possible.
Note that a force that acts along a line passing through the point chosen as
the origin gives zero contribution to the torque and thus can be ignored.

The SeesawEXAMPLE 12.1
(b) Determine where the child should sit to balance the

system.

Solution To find this position, we must invoke the second
condition for equilibrium. Taking an axis perpendicular to
the page through the center of gravity of the board as the
axis for our torque equation (this means that the torques

A uniform 40.0-N board supports a father and daughter
weighing 800 N and 350 N, respectively, as shown in Figure
12.7. If the support (called the fulcrum) is under the center of
gravity of the board and if the father is 1.00 m from the cen-
ter, (a) determine the magnitude of the upward force n ex-
erted on the board by the support.

Solution First note that, in addition to n, the external
forces acting on the board are the downward forces exerted
by each person and the force of gravity acting on the board.
We know that the board’s center of gravity is at its geometric
center because we were told the board is uniform. Because
the system is in static equilibrium, the upward force n must
balance all the downward forces. From we have,
once we define upward as the positive y direction,

(The equation also applies, but we do not need
to consider it because no forces act horizontally on the
board.)

�Fx � 0

1 190 Nn �

n � 800 N � 350 N � 40.0 N � 0

�Fy � 0,

1.00 m

n

x

350 N

40.0 N
800 N

Figure 12.7 A balanced system.
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In Example 12.1, if the fulcrum did not lie under the board’s center of gravity, what other
information would you need to solve the problem?

Quick Quiz 12.2

A Weighted HandEXAMPLE 12.2
Solution We simplify the situation by modeling the fore-
arm as a bar as shown in Figure 12.8b, where F is the upward
force exerted by the biceps and R is the downward force ex-
erted by the upper arm at the joint. From the first condition
for equilibrium, we have, with upward as the positive y direc-
tion,

(1)

From the second condition for equilibrium, we know that
the sum of the torques about any point must be zero. With
the joint O as the axis, we have

This value for F can be substituted into Equation (1) to
give R � 533 N. As this example shows, the forces at joints
and in muscles can be extremely large.

Exercise In reality, the biceps makes an angle of 15.0° with
the vertical; thus, F has both a vertical and a horizontal com-
ponent. Find the magnitude of F and the components of R
when you include this fact in your analysis.

Answer F � 604 N, Rx � 156 N, R y � 533 N.

583 N  F �

F(3.00 cm) � (50.0 N)(35.0 cm) � 0 

 Fd � mg� � 0 

�Fy � F � R � 50.0 N � 0

A person holds a 50.0-N sphere in his hand. The forearm is
horizontal, as shown in Figure 12.8a. The biceps muscle is at-
tached 3.00 cm from the joint, and the sphere is 35.0 cm
from the joint. Find the upward force exerted by the biceps
on the forearm and the downward force exerted by the up-
per arm on the forearm and acting at the joint. Neglect the
weight of the forearm.

produced by n and the force of gravity acting on the board
about this axis are zero), we see from that

(c) Repeat part (b) for another axis.

Solution To illustrate that the choice of axis is arbitrary,
let us choose an axis perpendicular to the page and passing

2.29 mx �

(800 N)(1.00 m) � (350 N)x � 0

�� � 0
through the location of the father. Recall that the sign of the
torque associated with a force is positive if that force tends to
rotate the system counterclockwise, while the sign of the
torque is negative if the force tends to rotate the system
clockwise. In this case, yields

From part (a) we know that n � 1 190 N. Thus, we can solve 

for x to find This result is in agreement with 

the one we obtained in part (b).

x � 2.29 m.

n(1.00 m) � (40.0 N)(1.00 m) � (350 N)(1.00 m � x) � 0

�� � 0

�

mg

d

O

mg = 50.0 N
d = 3.00 cm
� = 35.0 cm

O

�

d

R

mg

F
Biceps

Figure 12.8 (a) The biceps muscle pulls upward with a force F
that is essentially at right angles to the forearm. (b) The mechanical
model for the system described in part (a).

Standing on a Horizontal BeamEXAMPLE 12.3
the horizontal (Fig. 12.9a). If a 600-N person stands 2.00 m
from the wall, find the tension in the cable, as well as the magni-
tude and direction of the force exerted by the wall on the beam.

A uniform horizontal beam with a length of 8.00 m and a
weight of 200 N is attached to a wall by a pin connection. Its far
end is supported by a cable that makes an angle of 53.0° with
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Solution First we must identify all the external forces
acting on the beam: They are the 200-N force of gravity, the
force T exerted by the cable, the force R exerted by the
wall at the pivot, and the 600-N force that the person exerts
on the beam. These forces are all indicated in the free-body
diagram for the beam shown in Figure 12.9b. When we con-
sider directions for forces, it sometimes is helpful if we
imagine what would happen if a force were suddenly re-
moved. For example, if the wall were to vanish suddenly,

the left end of the beam would probably move to the left as
it begins to fall. This tells us that the wall is not only hold-
ing the beam up but is also pressing outward against it.
Thus, we draw the vector R as shown in Figure 12.9b. If we
resolve T and R into horizontal and vertical components,
as shown in Figure 12.9c, and apply the first condition for
equilibrium, we obtain

(1)

(2)

where we have chosen rightward and upward as our positive
directions. Because R, T, and 
 are all unknown, we cannot
obtain a solution from these expressions alone. (The number
of simultaneous equations must equal the number of un-
knowns for us to be able to solve for the unknowns.)

Now let us invoke the condition for rotational equilib-
rium. A convenient axis to choose for our torque equation is
the one that passes through the pin connection. The feature
that makes this point so convenient is that the force R and
the horizontal component of T both have a moment arm of
zero; hence, these forces provide no torque about this point.
Recalling our counterclockwise-equals-positive convention for
the sign of the torque about an axis and noting that the mo-
ment arms of the 600-N, 200-N, and T sin 53.0° forces are
2.00 m, 4.00 m, and 8.00 m, respectively, we obtain

Thus, the torque equation with this axis gives us one of the
unknowns directly! We now substitute this value into Equa-
tions (1) and (2) and find that

We divide the second equation by the first and, recalling the
trigonometric identity sin 
/cos 
 � tan 
, we obtain

This positive value indicates that our estimate of the direction
of R was accurate. 

Finally,

If we had selected some other axis for the torque equa-
tion, the solution would have been the same. For example, if

580 NR �
188 N
cos 


�
188 N

cos 71.1�
�

71.1�   
 �

tan 
 �
550 N
188 N

� 2.93

R sin 
 � 550 N

R cos 
 � 188 N

313 N  T �

� (600 N)(2.00 m) � (200 N )(4.00 m) � 0
�� � (T sin 53.0�)(8.00 m)

� 600 N � 200 N � 0
�Fy � R sin 
 � T sin 53.0�

�Fx � R cos 
 � T cos 53.0� � 0 

200 N

600 N

53.0°

8.00 m

(a)

(b)

TR

53.0°

200 N

600 N

4.00 m

2.00 m

R cos θ

R sin θ

T cos 53.0°

T sin 53.0°

θ

θ

θ

Figure 12.9 (a) A uniform beam supported by a cable. (b) The
free-body diagram for the beam. (c) The free-body diagram for the
beam showing the components of R and T.
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Moment Arm
Force Relative to Torque About
Component O (m) O (N	m)

T sin 53.0° 8.00 (8.00)T sin 53.0°
T cos 53.0° 0 0
200 N 4.00 � (4.00)(200)
600 N 2.00 � (2.00)(600)
R sin 
 0 0
R cos 
 0 0

The Leaning LadderEXAMPLE 12.4
for equilibrium to the ladder, we have

From the second equation we see that n � mg � 50 N. Fur-
thermore, when the ladder is on the verge of slipping, the
force of friction must be a maximum, which is given by

(Recall Eq. 5.8: fs � sn.)
Thus, at this angle, P � 20 N.

To find 
min , we must use the second condition for equi-
librium. When we take the torques about an axis through the
origin O at the bottom of the ladder, we have

Because P � 20 N when the ladder is about to slip, and be-
cause mg � 50 N, this expression gives

An alternative approach is to consider the intersection O�
of the lines of action of forces mg and P. Because the torque
about any origin must be zero, the torque about O� must be
zero. This requires that the line of action of R (the resultant
of n and f ) pass through O�. In other words, because the lad-
der is stationary, the three forces acting on it must all pass
through some common point. (We say that such forces are
concurrent.) With this condition, you could then obtain the
angle � that R makes with the horizontal (where � is greater
than 
). Because this approach depends on the length of the
ladder, you would have to know the value of � to obtain a
value for 
min .

Exercise For the angles labeled in Figure 12.10, show that
tan � � 2 tan 
.

51�  
min �

tan 
min �
mg
2P

�
50 N
40 N

� 1.25

��O � P  � sin 
 � mg 
�

2
 cos 
 � 0

fs,max � sn � 0.40(50 N) � 20 N.

�Fy � n � mg � 0

�Fx � f � P � 0 

A uniform ladder of length � and weight mg � 50 N rests
against a smooth, vertical wall (Fig. 12.10a). If the coefficient
of static friction between the ladder and the ground is s �
0.40, find the minimum angle 
min at which the ladder does
not slip.

Solution The free-body diagram showing all the external
forces acting on the ladder is illustrated in Figure 12.10b.
The reaction force R exerted by the ground on the ladder is
the vector sum of a normal force n and the force of static fric-
tion fs . The reaction force P exerted by the wall on the lad-
der is horizontal because the wall is frictionless. Notice how
we have included only forces that act on the ladder. For ex-
ample, the forces exerted by the ladder on the ground and
on the wall are not part of the problem and thus do not ap-
pear in the free-body diagram. Applying the first condition

we had chosen an axis through the center of gravity of the
beam, the torque equation would involve both T and R. How-
ever, this equation, coupled with Equations (1) and (2),
could still be solved for the unknowns. Try it!

When many forces are involved in a problem of this na-
ture, it is convenient to set up a table. For instance, for the
example just given, we could construct the following table.
Setting the sum of the terms in the last column equal to zero
represents the condition of rotational equilibrium.

(a)

θ

�

(b)

θ
φ

mgO f

n R

P

O ′

Figure 12.10 (a) A uniform ladder at rest, leaning against a
smooth wall. The ground is rough. (b) The free-body diagram for
the ladder. Note that the forces R, mg, and P pass through a com-
mon point O�.
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Negotiating a CurbEXAMPLE 12.5
(a) Estimate the magnitude of the force F a person must ap-
ply to a wheelchair’s main wheel to roll up over a sidewalk
curb (Fig. 12.11a). This main wheel, which is the one that
comes in contact with the curb, has a radius r, and the height
of the curb is h.

Solution Normally, the person’s hands supply the re-
quired force to a slightly smaller wheel that is concentric with
the main wheel. We assume that the radius of the smaller
wheel is the same as the radius of the main wheel, and so we
can use r for our radius. Let us estimate a combined weight
of mg � 1 400 N for the person and the wheelchair and
choose a wheel radius of r � 30 cm, as shown in Figure
12.11b. We also pick a curb height of h � 10 cm. We assume
that the wheelchair and occupant are symmetric, and that
each wheel supports a weight of 700 N. We then proceed to
analyze only one of the wheels.

When the wheel is just about to be raised from the street,
the reaction force exerted by the ground on the wheel at
point Q goes to zero. Hence, at this time only three forces act
on the wheel, as shown in Figure 12.11c. However, the force
R, which is the force exerted on the wheel by the curb, acts at
point P, and so if we choose to have our axis of rotation pass
through point P, we do not need to include R in our torque
equation. From the triangle OPQ shown in Figure 12.11b, we
see that the moment arm d of the gravitational force mg act-
ing on the wheel relative to point P is

The moment arm of F relative to point P is 2r � h. There-
fore, the net torque acting on the wheel about point P is

(Notice that we have kept only one digit as significant.) This
result indicates that the force that must be applied to each
wheel is substantial. You may want to estimate the force re-
quired to roll a wheelchair up a typical sidewalk accessibility
ramp for comparison.

(b) Determine the magnitude and direction of R.

Solution We use the first condition for equilibrium to de-
termine the direction:

Dividing the second equation by the first gives

; 70�  
 �tan 
 �
mg
F

�
700 N
300 N

�Fy � R sin 
 � mg � 0

�Fx � F � R cos 
 � 0  

300 N  F �
(700 N)!2(0.3 m)(0.1 m) � (0.1 m)2

2(0.3 m) � 0.1 m
�

  F �
mg !2rh � h2

2r � h
      

mg !2rh � h2 � F(2r � h) � 0     

    mgd � F(2r � h) � 0    

d � !r 2 � (r � h)2
 � !2rh � h2

(d)

R

F

θ

mg

(a)

(c)

F

O
2r – h

P

C

θ

R

mg

F

r – h

d

r
P

Q

h

(b)

O

R

Figure 12.11 (a) A wheelchair and person of total weight mg being
raised over a curb by a force F. (b) Details of the wheel and curb. 
(c) The free-body diagram for the wheel when it is just about to be
raised. Three forces act on the wheel at this instant: F, which is exerted
by the hand; R, which is exerted by the curb; and the gravitational
force mg. (d) The vector sum of the three external forces acting on the
wheel is zero.
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Analysis of a TrussAPPLICATION

Next, we calculate the torque about A, noting that the overall
length of the bridge structure is L � 50 m:

Although we could repeat the torque calculation for the right
end (point E), it should be clear from symmetry arguments
that nA � 3 600 N.

Now let us balance the vertical forces acting on the pin at
point A. If we assume that strut AB is in compression, then
the force FAB that the strut exerts on the pin at point A has a
negative y component. (If the strut is actually in tension, our
calculations will result in a negative value for the magnitude
of the force, still of the correct size):

The positive result shows that our assumption of compression
was correct.

We can now find the forces acting in the strut between A
and C by considering the horizontal forces acting on the pin
at point A. Because point A is not accelerating, we can safely
assume that FAC must point toward the right (Fig. 12.12b);
this indicates that the bar between points A and C is under
tension:

Now let us consider the vertical forces acting on the pin at
point C. We shall assume that strut BC is in tension. (Imagine
the subsequent motion of the pin at point C if strut BC were
to break suddenly.) On the basis of symmetry, we assert that

and that 

Finally, we balance the horizontal forces on B, assuming that
strut BD is in compression:

Thus, the top bar in a bridge of this design must be very
strong.

FBD � 12 000 N

(7 200 N)cos 30� � (7 200 N)cos 30� � FBD � 0
�Fx � FAB cos 30� � FBC cos 30� � FBD � 0

  FBC � 7 200 N  
�Fy � 2 FBC sin 30� � 7 200 N � 0

FAC � FEC :FBC � FDC

  FAC � (7 200 N)cos 30� � 6 200 N
�Fx � FAC � FAB cos 30� � 0  

  FAB � 7 200 N  
�Fy � nA � FAB sin 30� � 0

nE � Fg/2 � 3 600 N  
�� � LnE � (L/2)Fg � 0

nA � nE � 7 200 N  

  �Fy � nA � nE � Fg � 0Roofs, bridges, and other structures that must be both strong
and lightweight often are made of trusses similar to the one
shown in Figure 12.12a. Imagine that this truss structure repre-
sents part of a bridge. To approach this problem, we assume
that the structural components are connected by pin joints. We
also assume that the entire structure is free to slide horizon-
tally because it sits on “rockers” on each end, which allow it to
move back and forth as it undergoes thermal expansion and
contraction. Assuming the mass of the bridge structure is negli-
gible compared with the load, let us calculate the forces of ten-
sion or compression in all the structural components when it is
supporting a 7 200-N load at the center (see Problem 58).

The force notation that we use here is not of our usual for-
mat. Until now, we have used the notation FAB to mean “the
force exerted by A on B.” For this application, however, all
double-letter subscripts on F indicate only the body exerting
the force. The body on which a given force acts is not named
in the subscript. For example, in Figure 12.12, FAB is the force
exerted by strut AB on the pin at A.

First, we apply Newton’s second law to the truss as a whole
in the vertical direction. Internal forces do not enter into this
accounting. We balance the weight of the load with the nor-
mal forces exerted at the two ends by the supports on which
the bridge rests:

We can use the right triangle shown in Figure 12.11d to ob-
tain R :

800 NR � !(mg)2 � F2 � !(700 N)2 � (300 N)2 �

Exercise Solve this problem by noting that the three forces
acting on the wheel are concurrent (that is, that all three pass
through the point C). The three forces form the sides of the
triangle shown in Figure 12.11d.

50 m

30° 30° 30° 30°A E

B D

C

(a)

Load: 7 200 N

Figure 12.12 (a) Truss structure for a bridge. (b) The forces act-
ing on the pins at points A, C, and E. As an exercise, you should dia-
gram the forces acting on the pin at point B.

A E

B D

C30°
FACFAB

nA

FCA FCE

Fg

FBC FDC

FEC

nE

FED

30° 30°

(b)

30°
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ELASTIC PROPERTIES OF SOLIDS
In our study of mechanics thus far, we have assumed that objects remain unde-
formed when external forces act on them. In reality, all objects are deformable.
That is, it is possible to change the shape or the size of an object (or both) by ap-
plying external forces. As these changes take place, however, internal forces in the
object resist the deformation.

We shall discuss the deformation of solids in terms of the concepts of stress
and strain. Stress is a quantity that is proportional to the force causing a deforma-
tion; more specifically, stress is the external force acting on an object per unit
cross-sectional area. Strain is a measure of the degree of deformation. It is found
that, for sufficiently small stresses, strain is proportional to stress; the constant
of proportionality depends on the material being deformed and on the nature of
the deformation. We call this proportionality constant the elastic modulus. The
elastic modulus is therefore the ratio of the stress to the resulting strain:

(12.5)

In a very real sense it is a comparison of what is done to a solid object (a force is
applied) and how that object responds (it deforms to some extent).

Elastic modulus �
stress
strain

12.4

A plastic model of an arch structure under load conditions. The wavy lines indicate regions
where the stresses are greatest. Such models are useful in designing architectural components.
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Young’s Modulus: Elasticity in Length

Consider a long bar of cross-sectional area A and initial length Li that is clamped
at one end, as in Figure 12.13. When an external force is applied perpendicular to
the cross section, internal forces in the bar resist distortion (“stretching”), but the
bar attains an equilibrium in which its length Lf is greater than Li and in which
the external force is exactly balanced by internal forces. In such a situation, the
bar is said to be stressed. We define the tensile stress as the ratio of the magni-
tude of the external force F to the cross-sectional area A. The tensile strain in this
case is defined as the ratio of the change in length �L to the original length Li .
We define Young’s modulus by a combination of these two ratios:

(12.6)

Young’s modulus is typically used to characterize a rod or wire stressed under ei-
ther tension or compression. Note that because strain is a dimensionless quantity,
Y has units of force per unit area. Typical values are given in Table 12.1. Experi-
ments show (a) that for a fixed applied force, the change in length is proportional
to the original length and (b) that the force necessary to produce a given strain is
proportional to the cross-sectional area. Both of these observations are in accord
with Equation 12.6.

The elastic limit of a substance is defined as the maximum stress that can be
applied to the substance before it becomes permanently deformed. It is possible to
exceed the elastic limit of a substance by applying a sufficiently large stress, as seen
in Figure 12.14. Initially, a stress– strain curve is a straight line. As the stress in-
creases, however, the curve is no longer straight. When the stress exceeds the elas-

Y �
tensile stress
tensile strain

�
F/A

�L/Li

We consider three types of deformation and define an elastic modulus for each:

1. Young’s modulus, which measures the resistance of a solid to a change in its
length

2. Shear modulus, which measures the resistance to motion of the planes of a
solid sliding past each other

3. Bulk modulus, which measures the resistance of solids or liquids to changes
in their volume

TABLE 12.1 Typical Values for Elastic Modulus

Young’s Modulus Shear Modulus Bulk Modulus
Substance (N/m2) (N/m2) (N/m2)

Tungsten 35 � 1010 14 � 1010 20 � 1010

Steel 20 � 1010 8.4 � 1010 6 � 1010

Copper 11 � 1010 4.2 � 1010 14 � 1010

Brass 9.1 � 1010 3.5 � 1010 6.1 � 1010

Aluminum 7.0 � 1010 2.5 � 1010 7.0 � 1010

Glass 6.5–7.8 � 1010 2.6–3.2 � 1010 5.0–5.5 � 1010

Quartz 5.6 � 1010 2.6 � 1010 2.7 � 1010

Water — — 0.21 � 1010

Mercury — — 2.8 � 1010

F
A

Li
∆L

Figure 12.13 A long bar
clamped at one end is stretched by
an amount �L under the action of
a force F.

Elastic
limit

Breaking
point

Elastic
behavior

0.002 0.004 0.006 0.008 0.010

100

200

300

400

Stress
(MN/m2)

Strain

Figure 12.14 Stress-versus-strain
curve for an elastic solid.

Young’s modulus
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tic limit, the object is permanently distorted and does not return to its original
shape after the stress is removed. Hence, the shape of the object is permanently
changed. As the stress is increased even further, the material ultimately breaks.

What is Young’s modulus for the elastic solid whose stress– strain curve is depicted in Figure
12.14?

A material is said to be ductile if it can be stressed well beyond its elastic limit without break-
ing. A brittle material is one that breaks soon after the elastic limit is reached. How would
you classify the material in Figure 12.14?

Shear Modulus: Elasticity of Shape

Another type of deformation occurs when an object is subjected to a force tangen-
tial to one of its faces while the opposite face is held fixed by another force (Fig.
12.15a). The stress in this case is called a shear stress. If the object is originally a
rectangular block, a shear stress results in a shape whose cross-section is a parallel-
ogram. A book pushed sideways, as shown in Figure 12.15b, is an example of an
object subjected to a shear stress. To a first approximation (for small distortions),
no change in volume occurs with this deformation.

We define the shear stress as F/A, the ratio of the tangential force to the area
A of the face being sheared. The shear strain is defined as the ratio �x/h, where
�x is the horizontal distance that the sheared face moves and h is the height of the
object. In terms of these quantities, the shear modulus is

(12.7)

Values of the shear modulus for some representative materials are given in
Table 12.1. The unit of shear modulus is force per unit area.

Bulk Modulus: Volume Elasticity

Bulk modulus characterizes the response of a substance to uniform squeezing or
to a reduction in pressure when the object is placed in a partial vacuum. Suppose
that the external forces acting on an object are at right angles to all its faces, as
shown in Figure 12.16, and that they are distributed uniformly over all the faces.
As we shall see in Chapter 15, such a uniform distribution of forces occurs when
an object is immersed in a fluid. An object subject to this type of deformation un-
dergoes a change in volume but no change in shape. The volume stress is de-
fined as the ratio of the magnitude of the normal force F to the area A. The quan-
tity P � F/A is called the pressure. If the pressure on an object changes by an
amount �P � �F/A, then the object will experience a volume change �V. The vol-
ume strain is equal to the change in volume �V divided by the initial volume Vi .
Thus, from Equation 12.5, we can characterize a volume (“bulk”) compression in
terms of the bulk modulus, which is defined as

(12.8)B �
volume stress
volume strain

� �
�F/A
�V/Vi

� �
�P

�V/Vi

S �
shear stress
shear strain

�
F/A
�x/h

Quick Quiz 12.4

Quick Quiz 12.3

Shear modulus

Bulk modulus

QuickLab
Estimate the shear modulus for the
pages of your textbook. Does the
thickness of the book have any effect
on the modulus value?

F

(b)

–F

∆x A
F

Fixed face

h

(a)

fs

Figure 12.15 (a) A shear defor-
mation in which a rectangular
block is distorted by two forces of
equal magnitude but opposite di-
rections applied to two parallel
faces. (b) A book under shear
stress.
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A negative sign is inserted in this defining equation so that B is a positive number.
This maneuver is necessary because an increase in pressure (positive �P) causes a
decrease in volume (negative �V ) and vice versa.

Table 12.1 lists bulk moduli for some materials. If you look up such values in a
different source, you often find that the reciprocal of the bulk modulus is listed.
The reciprocal of the bulk modulus is called the compressibility of the material.

Note from Table 12.1 that both solids and liquids have a bulk modulus. How-
ever, no shear modulus and no Young’s modulus are given for liquids because a
liquid does not sustain a shearing stress or a tensile stress (it flows instead).

Prestressed Concrete

If the stress on a solid object exceeds a certain value, the object fractures. The
maximum stress that can be applied before fracture occurs depends on the nature
of the material and on the type of applied stress. For example, concrete has a ten-
sile strength of about 2 � 106 N/m2, a compressive strength of 20 � 106 N/m2,
and a shear strength of 2 � 106 N/m2. If the applied stress exceeds these values,
the concrete fractures. It is common practice to use large safety factors to prevent
failure in concrete structures.

Concrete is normally very brittle when it is cast in thin sections. Thus, concrete
slabs tend to sag and crack at unsupported areas, as shown in Figure 12.17a. The
slab can be strengthened by the use of steel rods to reinforce the concrete, as illus-
trated in Figure 12.17b. Because concrete is much stronger under compression
(squeezing) than under tension (stretching) or shear, vertical columns of concrete
can support very heavy loads, whereas horizontal beams of concrete tend to sag
and crack. However, a significant increase in shear strength is achieved if the rein-
forced concrete is prestressed, as shown in Figure 12.17c. As the concrete is being
poured, the steel rods are held under tension by external forces. The external

Figure 12.16 When a solid is under uniform pressure, it
undergoes a change in volume but no change in shape.
This cube is compressed on all sides by forces normal to its
six faces.

Vi

F

Vi – ∆V

Load force

Concrete
Cracks

(a)

Steel
reinforcing

rod

(b) (c)

Steel
rod

under
tension

Figure 12.17 (a) A concrete slab with no reinforcement tends to crack under a heavy load.
(b) The strength of the concrete is increased by using steel reinforcement rods. (c) The concrete
is further strengthened by prestressing it with steel rods under tension.

QuickLab
Support a new flat eraser (art gum or
Pink Pearl will do) on two parallel
pencils at least 3 cm apart. Press
down on the middle of the top sur-
face just enough to make the top face
of the eraser curve a bit. Is the top
face under tension or compression?
How about the bottom? Why does a
flat slab of concrete supported at the
ends tend to crack on the bottom
face and not the top?
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forces are released after the concrete cures; this results in a permanent tension in
the steel and hence a compressive stress on the concrete. This enables the con-
crete slab to support a much heavier load.

Squeezing a Brass SphereEXAMPLE 12.7

Because the final pressure is so much greater than the initial
pressure, we can neglect the initial pressure and state that

Therefore,

The negative sign indicates a decrease in volume.

�1.6 � 10�4 m3�V � �
(0.50 m3)(2.0 � 107 N/m2)

6.1 � 1010 N/m2 �

�P � Pf � Pi  � Pf � 2.0 � 107
 N/m2.

�V � �
V i �P

B
A solid brass sphere is initially surrounded by air, and the air
pressure exerted on it is 1.0 � 105 N/m2 (normal atmos-
pheric pressure). The sphere is lowered into the ocean to a
depth at which the pressure is 2.0 � 107 N/m2. The volume
of the sphere in air is 0.50 m3. By how much does this volume
change once the sphere is submerged?

Solution From the definition of bulk modulus, we have

 B � �
�P

�V/Vi

Stage DesignEXAMPLE 12.6
The radius of the wire can be found from 

To provide a large margin of safety, we would probably use a
flexible cable made up of many smaller wires having a total
cross-sectional area substantially greater than our calculated
value.

3.4 mmd � 2r � 2(1.7 mm) �

r �! A

�
�! 9.4 � 10�6 m2

�
� 1.7 � 10�3 m � 1.7 mm

A � �r 2:Recall Example 8.10, in which we analyzed a cable used to
support an actor as he swung onto the stage. The tension in
the cable was 940 N. What diameter should a 10-m-long steel
wire have if we do not want it to stretch more than 0.5 cm un-
der these conditions?

Solution From the definition of Young’s modulus, we can
solve for the required cross-sectional area. Assuming that the
cross section is circular, we can determine the diameter of the
wire. From Equation 12.6, we have

A �
FLi

Y �L
�

(940 N)(10 m)
(20 � 1010 N/m2)(0.005 m)

� 9.4 � 10�6 m2

Y �
F/A

�L/Li
  

SUMMARY

A rigid object is in equilibrium if and only if the resultant external force acting
on it is zero and the resultant external torque on it is zero about any axis:

(12.1)

(12.2)

The first condition is the condition for translational equilibrium, and the second
is the condition for rotational equilibrium. These two equations allow you to ana-
lyze a great variety of problems. Make sure you can identify forces unambiguously,
create a free-body diagram, and then apply Equations 12.1 and 12.2 and solve for
the unknowns.

�� � 0

�F � 0
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The force of gravity exerted on an object can be considered as acting at a sin-
gle point called the center of gravity. The center of gravity of an object coincides
with its center of mass if the object is in a uniform gravitational field.

We can describe the elastic properties of a substance using the concepts of
stress and strain. Stress is a quantity proportional to the force producing a defor-
mation; strain is a measure of the degree of deformation. Strain is proportional to
stress, and the constant of proportionality is the elastic modulus:

(12.5)

Three common types of deformation are (1) the resistance of a solid to elon-
gation under a load, characterized by Young’s modulus Y ; (2) the resistance of a
solid to the motion of internal planes sliding past each other, characterized by the
shear modulus S ; and (3) the resistance of a solid or fluid to a volume change,
characterized by the bulk modulus B.

Elastic modulus �
stress
strain

QUESTIONS

keep the back as vertical as possible, lifting from the
knees, rather than bending over and lifting from the
waist?

10. Give a few examples in which several forces are acting on
a system in such a way that their sum is zero but the sys-
tem is not in equilibrium.

11. If you measure the net torque and the net force on a sys-
tem to be zero, (a) could the system still be rotating with
respect to you? (b) Could it be translating with respect to
you?

12. A ladder is resting inclined against a wall. Would you feel
safer climbing up the ladder if you were told that the
ground is frictionless but the wall is rough or that the wall
is frictionless but the ground is rough? Justify your an-
swer.

13. What kind of deformation does a cube of Jell-O exhibit
when it “jiggles”?

14. Ruins of ancient Greek temples often have intact vertical
columns, but few horizontal slabs of stone are still in
place. Can you think of a reason why this is so?

1. Can a body be in equilibrium if only one external force
acts on it? Explain.

2. Can a body be in equilibrium if it is in motion? Explain.
3. Locate the center of gravity for the following uniform ob-

jects: (a) sphere, (b) cube, (c) right circular cylinder.
4. The center of gravity of an object may be located outside

the object. Give a few examples for which this is the case.
5. You are given an arbitrarily shaped piece of plywood, to-

gether with a hammer, nail, and plumb bob. How could
you use these items to locate the center of gravity of the
plywood? (Hint: Use the nail to suspend the plywood.)

6. For a chair to be balanced on one leg, where must the
center of gravity of the chair be located?

7. Can an object be in equilibrium if the only torques acting
on it produce clockwise rotation?

8. A tall crate and a short crate of equal mass are placed side
by side on an incline (without touching each other). As
the incline angle is increased, which crate will topple
first? Explain.

9. When lifting a heavy object, why is it recommended to

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Section 12.1 The Conditions for Equilibrium
1. A baseball player holds a 36-oz bat (weight � 10.0 N)

with one hand at the point O (Fig. P12.1). The bat is in
equilibrium. The weight of the bat acts along a line 
60.0 cm to the right of O. Determine the force and the
torque exerted on the bat by the player.

60.0 cm

O

mg

Figure P12.1
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2. Write the necessary conditions of equilibrium for the
body shown in Figure P12.2. Take the origin of the
torque equation at the point O.

Section 12.2 More on the Center of Gravity
5. A 3.00-kg particle is located on the x axis at x �

� 5.00 m, and a 4.00-kg particle is located on the x axis
at x � 3.00 m. Find the center of gravity of this two-
particle system.

6. A circular pizza of radius R has a circular piece of radius
R/2 removed from one side, as shown in Figure P12.6.
Clearly, the center of gravity has moved from C to C�
along the x axis. Show that the distance from C to C� is
R/6. (Assume that the thickness and density of the
pizza are uniform throughout.)

Fg

Fx

Fy

Rx O

θ

Ry

�

12.0 cm

18.0 cm

4.0 cm

4.0 cm

C ′
C

12 m
Tree

0.50 m

F

d

P

x

O

�
2

�

m2m1

CG

8. Pat builds a track for his model car out of wood, as illus-
trated in Figure P12.8. The track is 5.00 cm wide, 
1.00 m high, and 3.00 m long, and it is solid. The run-
way is cut so that it forms a parabola described by the
equation y � (x � 3)2/9. Locate the horizontal position
of the center of gravity of this track.

9. Consider the following mass distribution: 5.00 kg at 
(0, 0) m, 3.00 kg at (0, 4.00) m, and 4.00 kg at 
(3.00, 0) m. Where should a fourth mass of 8.00 kg be
placed so that the center of gravity of the four-mass
arrangement will be at (0, 0)?

7. A carpenter’s square has the shape of an L, as shown in
Figure P12.7. Locate its center of gravity.

4. A student gets his car stuck in a snow drift. Not at a loss,
having studied physics, he attaches one end of a stout
rope to the vehicle and the other end to the trunk of a
nearby tree, allowing for a very small amount of slack.
The student then exerts a force F on the center of the
rope in the direction perpendicular to the car–tree line,
as shown in Figure P12.4. If the rope is inextensible and
if the magnitude of the applied force is 500 N, what is
the force on the car? (Assume equilibrium conditions.)

3. A uniform beam of mass mb and length � supports
blocks of masses m1 and m2 at two positions, as shown in
Figure P12.3. The beam rests on two points. For what
value of x will the beam be balanced at P such that the
normal force at O is zero?

Figure P12.2

Figure P12.3

Figure P12.4

Figure P12.6

Figure P12.7

WEB

WEB
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10. Figure P12.10 shows three uniform objects: a rod, a
right triangle, and a square. Their masses in kilograms
and their coordinates in meters are given. Determine
the center of gravity for the three-object system.

13. A 15.0-m uniform ladder weighing 500 N rests against a
frictionless wall. The ladder makes a 60.0° angle with
the horizontal. (a) Find the horizontal and vertical
forces that the ground exerts on the base of the ladder
when an 800-N firefighter is 4.00 m from the bottom.
(b) If the ladder is just on the verge of slipping when
the firefighter is 9.00 m up, what is the coefficient of
static friction between the ladder and the ground?

14. A uniform ladder of length L and mass m1 rests against a
frictionless wall. The ladder makes an angle 
 with the
horizontal. (a) Find the horizontal and vertical forces that
the ground exerts on the base of the ladder when a fire-
fighter of mass m2 is a distance x from the bottom. (b) If
the ladder is just on the verge of slipping when the fire-
fighter is a distance d from the bottom, what is the coeffi-
cient of static friction between the ladder and the ground?

15. Figure P12.15 shows a claw hammer as it is being used
to pull a nail out of a horizontal surface. If a force of
magnitude 150 N is exerted horizontally as shown, find

y

1.00 m

3.00 m

5.00 cm x

y = (x – 3)2/9

Single point
of contact

5.00 cm

30.0°

30.0 cm

F

15.0°

(4,1)

(2,7)
(8,5)

(9,7)
6.00 kg

5.00 kg
3.00 kg

(–2,2)

(–5,5)

y(m)

x(m)

Section 12.3 Examples of Rigid Objects 
in Static Equilibrium

11. Stephen is pushing his sister Joyce in a wheelbarrow
when it is stopped by a brick 8.00 cm high (Fig.
P12.11). The handles make an angle of 15.0° from the
horizontal. A downward force of 400 N is exerted on
the wheel, which has a radius of 20.0 cm. (a) What force
must Stephen apply along the handles to just start the
wheel over the brick? (b) What is the force (magnitude
and direction) that the brick exerts on the wheel just as
the wheel begins to lift over the brick? Assume in both
parts (a) and (b) that the brick remains fixed and does
not slide along the ground.

12. Two pans of a balance are 50.0 cm apart. The fulcrum of
the balance has been shifted 1.00 cm away from the cen-
ter by a dishonest shopkeeper. By what percentage is the
true weight of the goods being marked up by the shop-
keeper? (Assume that the balance has negligible mass.)

Figure P12.8

Figure P12.10

Figure P12.11

Figure P12.15
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(a) the force exerted by the hammer claws on the nail
and (b) the force exerted by the surface on the point of
contact with the hammer head. Assume that the force
the hammer exerts on the nail is parallel to the nail.

16. A uniform plank with a length of 6.00 m and a mass of
30.0 kg rests horizontally across two horizontal bars of a
scaffold. The bars are 4.50 m apart, and 1.50 m of the
plank hangs over one side of the scaffold. Draw a free-
body diagram for the plank. How far can a painter with
a mass of 70.0 kg walk on the overhanging part of the
plank before it tips?

17. A 1 500-kg automobile has a wheel base (the distance
between the axles) of 3.00 m. The center of mass of the
automobile is on the center line at a point 1.20 m be-
hind the front axle. Find the force exerted by the
ground on each wheel.

18. A vertical post with a square cross section is 10.0 m tall.
Its bottom end is encased in a base 1.50 m tall that is
precisely square but slightly loose. A force of 5.50 N 
to the right acts on the top of the post. The base main-
tains the post in equilibrium. Find the force that the top
of the right sidewall of the base exerts on the post. Find
the force that the bottom of the left sidewall of the base
exerts on the post.

19. A flexible chain weighing 40.0 N hangs between two
hooks located at the same height (Fig. P12.19). At each
hook, the tangent to the chain makes an angle 
 �
42.0° with the horizontal. Find (a) the magnitude of the
force each hook exerts on the chain and (b) the ten-
sion in the chain at its midpoint. (Hint: For part (b),
make a free-body diagram for half the chain.)

combined with that of his armor and steed is 1 000 kg.
Determine (a) the tension in the cable, as well as 
(b) the horizontal and (c) the vertical force compo-
nents acting on the bridge at the hinge.

22. Two identical, uniform bricks of length L are placed in
a stack over the edge of a horizontal surface such that
the maximum possible overhang without falling is
achieved, as shown in Figure P12.22. Find the dis-
tance x.

x

L

0.75 m
0.25 m

LuLu’s

Boutique

θ

20. A hemispherical sign 1.00 m in diameter and of uni-
form mass density is supported by two strings, as shown
in Figure P12.20. What fraction of the sign’s weight is
supported by each string?

21. Sir Lost-a-Lot dons his armor and sets out from the cas-
tle on his trusty steed in his quest to improve communi-
cation between damsels and dragons (Fig. P12.21). Un-
fortunately, his squire lowered the draw bridge too far
and finally stopped lowering it when it was 20.0° below
the horizontal. Lost-a-Lot and his horse stop when their
combined center of mass is 1.00 m from the end of the
bridge. The bridge is 8.00 m long and has a mass of 
2 000 kg. The lift cable is attached to the bridge 5.00 m
from the hinge at the castle end and to a point on the
castle wall 12.0 m above the bridge. Lost-a-Lot’s mass

Figure P12.19

Figure P12.20

Figure P12.21

Figure P12.22
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23. A vaulter holds a 29.4-N pole in equilibrium by exerting
an upward force U with her leading hand and a down-
ward force D with her trailing hand, as shown in Figure
P12.23. Point C is the center of gravity of the pole.
What are the magnitudes of U and D?

30. Review Problem. A 2.00-m-long cylindrical steel wire
with a cross-sectional diameter of 4.00 mm is placed
over a light frictionless pulley, with one end of the wire
connected to a 5.00-kg mass and the other end con-
nected to a 3.00-kg mass. By how much does the wire
stretch while the masses are in motion?

31. Review Problem. A cylindrical steel wire of length Li
with a cross-sectional diameter d is placed over a light
frictionless pulley, with one end of the wire connected
to a mass m1 and the other end connected to a mass m2 .
By how much does the wire stretch while the masses are
in motion?

32. Calculate the density of sea water at a depth of 1 000 m,
where the water pressure is about 1.00 � 107 N/m2 .
(The density of sea water is 1.030 � 103 kg/m3 at the
surface.)

33. If the shear stress exceeds about 4.00 � 108 N/m2, steel
ruptures. Determine the shearing force necessary (a) to
shear a steel bolt 1.00 cm in diameter and (b) to punch
a 1.00-cm-diameter hole in a steel plate 0.500 cm thick.

34. (a) Find the minimum diameter of a steel wire 18.0 m
long that elongates no more than 9.00 mm when a load
of 380 kg is hung on its lower end. (b) If the elastic
limit for this steel is 3.00 � 108 N/m2, does permanent
deformation occur with this load?

35. When water freezes, it expands by about 9.00%. What
would be the pressure increase inside your automobile’s
engine block if the water in it froze? (The bulk modulus
of ice is 2.00 � 109 N/m2.)

36. For safety in climbing, a mountaineer uses a 50.0-m ny-
lon rope that is 10.0 mm in diameter. When supporting
the 90.0-kg climber on one end, the rope elongates by
1.60 m. Find Young’s modulus for the rope material.

ADDITIONAL PROBLEMS

37. A bridge with a length of 50.0 m and a mass of 8.00 �
104 kg is supported on a smooth pier at each end, as il-
lustrated in Figure P12.37. A truck of mass 3.00 � 104 kg

2.25 m
0.750 m

A

1.50 m

U

D

B

C

Fg

Section 12.4 Elastic Properties of Solids
24. Assume that Young’s modulus for bone is 1.50 �

1010 N/m2 and that a bone will fracture if more than
1.50 � 108 N/m2 is exerted. (a) What is the maximum
force that can be exerted on the femur bone in the leg
if it has a minimum effective diameter of 2.50 cm? 
(b) If a force of this magnitude is applied compres-
sively, by how much does the 25.0-cm-long bone
shorten?

25. A 200-kg load is hung on a wire with a length of 4.00 m,
a cross-sectional area of 0.200 � 10�4 m2, and a Young’s
modulus of 8.00 � 1010 N/m2. What is its increase in
length?

26. A steel wire 1 mm in diameter can support a tension of
0.2 kN. Suppose you need a cable made of these wires
to support a tension of 20 kN. The cable’s diameter
should be of what order of magnitude?

27. A child slides across a floor in a pair of rubber-soled
shoes. The frictional force acting on each foot is 20.0 N.
The footprint area of each shoe’s sole is 14.0 cm2, and
the thickness of each sole is 5.00 mm. Find the horizon-
tal distance by which the upper and lower surfaces of
each sole are offset. The shear modulus of the rubber is
3.00 � 106 N/m2.

28. Review Problem. A 30.0-kg hammer strikes a steel
spike 2.30 cm in diameter while moving with a speed of
20.0 m/s. The hammer rebounds with a speed of 
10.0 m/s after 0.110 s. What is the average strain in the
spike during the impact?

29. If the elastic limit of copper is 1.50 � 108 N/m2, deter-
mine the minimum diameter a copper wire can have
under a load of 10.0 kg if its elastic limit is not to be ex-
ceeded.

Figure P12.23

WEB

A B

15.0 m
50.0 m

Figure P12.37
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is located 15.0 m from one end. What are the forces on
the bridge at the points of support?

38. A frame in the shape of the letter A is formed from two
uniform pieces of metal, each of weight 26.0 N and
length 1.00 m. They are hinged at the top and held to-
gether by a horizontal wire 1.20 m in length (Fig.
P12.38). The structure rests on a frictionless surface. If
the wire is connected at points a distance of 0.650 m
from the top of the frame, determine the tension in the
wire.

lower ends of the ladder rest on frictionless surfaces.
The lower end is fastened to the wall by a horizontal
rope that can support a maximum tension of 110 N. 
(a) Draw a free-body diagram for the ladder. (b) Find
the tension in the rope when the monkey is one third
the way up the ladder. (c) Find the maximum distance
d that the monkey can climb up the ladder before the
rope breaks. Express your answer as a fraction of L.

42. A hungry bear weighing 700 N walks out on a beam in
an attempt to retrieve a basket of food hanging at the
end of the beam (Fig. P12.42). The beam is uniform,
weighs 200 N, and is 6.00 m long; the basket weighs
80.0 N. (a) Draw a free-body diagram for the beam. 
(b) When the bear is at x � 1.00 m, find the tension in
the wire and the components of the force exerted by
the wall on the left end of the beam. (c) If the wire can
withstand a maximum tension of 900 N, what is the
maximum distance that the bear can walk before the
wire breaks?

43. Old MacDonald had a farm, and on that farm he had a
gate (Fig. P12.43). The gate is 3.00 m wide and 1.80 m

39. Refer to Figure 12.17c. A lintel of prestressed rein-
forced concrete is 1.50 m long. The cross-sectional area
of the concrete is 50.0 cm2. The concrete encloses one
steel reinforcing rod with a cross-sectional area of 
1.50 cm2. The rod joins two strong end plates. Young’s
modulus for the concrete is 30.0 � 109 N/m2. After the
concrete cures and the original tension T1 in the rod is
released, the concrete will be under a compressive stress
of 8.00 � 106 N/m2. (a) By what distance will the rod
compress the concrete when the original tension in the
rod is released? (b) Under what tension T2 will the rod
still be? (c) How much longer than its unstressed length
will the rod then be? (d) When the concrete was
poured, the rod should have been stretched by what ex-
tension distance from its unstressed length? (e) Find
the required original tension T1 in the rod.

40. A solid sphere of radius R and mass M is placed in a
trough, as shown in Figure P12.40. The inner surfaces
of the trough are frictionless. Determine the forces ex-
erted by the trough on the sphere at the two contact
points.

41. A 10.0-kg monkey climbs up a 120-N uniform ladder of
length L, as shown in Figure P12.41. The upper and

Figure P12.38

Figure P12.40

Figure P12.41

Figure P12.42

60.0°

x

Goodies

53°

L

α β

1.20 m

0.65 m

0.35 m
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high, with hinges attached to the top and bottom. The
guy wire makes an angle of 30.0° with the top of the
gate and is tightened by a turn buckle to a tension of
200 N. The mass of the gate is 40.0 kg. (a) Determine
the horizontal force exerted on the gate by the bottom
hinge. (b) Find the horizontal force exerted by the up-
per hinge. (c) Determine the combined vertical force
exerted by both hinges. (d) What must the tension in
the guy wire be so that the horizontal force exerted by
the upper hinge is zero?

44. A 1 200-N uniform boom is supported by a cable, as il-
lustrated in Figure P12.44. The boom is pivoted at the
bottom, and a 2 000-N object hangs from its top. Find
the tension in the cable and the components of the re-
action force exerted on the boom by the floor.

46. A crane of mass 3 000 kg supports a load of 10 000 kg as
illustrated in Figure P12.46. The crane is pivoted with a
frictionless pin at A and rests against a smooth support
at B. Find the reaction forces at A and B.

47. A ladder having a uniform density and a mass m rests
against a frictionless vertical wall, making an angle 60.0°
with the horizontal. The lower end rests on a flat sur-
face, where the coefficient of static friction is s �
0.400. A window cleaner having a mass M � 2m at-
tempts to climb the ladder. What fraction of the length
L of the ladder will the worker have reached when the
ladder begins to slip?

48. A uniform ladder weighing 200 N is leaning against a
wall (see Fig. 12.10). The ladder slips when 
 � 60.0°.
Assuming that the coefficients of static friction at the
wall and the ground are the same, obtain a value for s .

49. A 10 000-N shark is supported by a cable attached to a
4.00-m rod that can pivot at its base. Calculate the ten-
sion in the tie-rope between the wall and the rod if it is
holding the system in the position shown in Figure
P12.49. Find the horizontal and vertical forces exerted
on the base of the rod. (Neglect the weight of the rod.)

45. A uniform sign of weight Fg and width 2L hangs from a
light, horizontal beam hinged at the wall and supported
by a cable (Fig. P12.45). Determine (a) the tension in
the cable and (b) the components of the reaction force
exerted by the wall on the beam in terms of Fg , d, L, 
and 
.

Figure P12.43

d

θ

2L

10 000 kg

(3 000 kg)g
B

A

2.00 m

6.00 m

1.00 m

25°

65°

2000 N

�3
4 �

30.0°

3.00 m

1.80 m

Figure P12.44

Figure P12.45

Figure P12.46

WEB
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50. When a person stands on tiptoe (a strenuous position),
the position of the foot is as shown in Figure P12.50a.
The total weight of the body Fg is supported by the
force n exerted by the floor on the toe. A mechanical
model for the situation is shown in Figure P12.50b,

where T is the force exerted by the Achilles tendon on
the foot and R is the force exerted by the tibia on the
foot. Find the values of T, R, and 
 when Fg � 700 N.

51. A person bends over and lifts a 200-N object as shown in
Figure P12.51a, with his back in a horizontal position (a
terrible way to lift an object). The back muscle attached
at a point two thirds the way up the spine maintains the
position of the back, and the angle between the spine
and this muscle is 12.0°. Using the mechanical model
shown in Figure P12.51b and taking the weight of the
upper body to be 350 N, find the tension in the back
muscle and the compressional force in the spine.

53. A force acts on a rectangular cabinet weighing 400 N, as
illustrated in Figure P12.53. (a) If the cabinet slides
with constant speed when F � 200 N and h � 0.400 m,

52. Two 200-N traffic lights are suspended from a single ca-
ble, as shown in Figure 12.52. Neglecting the cable’s
weight, (a) prove that if 
1 � 
2 , then T1 � T2 . 
(b) Determine the three tensions T1 , T2 , and T3 if 

1 � 
2 � 8.00°.

Figure P12.49

Figure P12.50

Figure P12.51

Figure P12.52

60.0°

10 000 N

20.0°

T3
θ1 θ2

T1 T2

θ θ

Ry

Rx

T 12.0°

200 N

350 N

Pivot

Back muscle

(a) (b)

15.0° R

T

90.0°

25.0 cm

(b)

 θ

18.0 cm

n

Achilles
tendon

Tibia

(a)
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find the coefficient of kinetic friction and the position
of the resultant normal force. (b) If F � 300 N, find the
value of h for which the cabinet just begins to tip.

59. A stepladder of negligible weight is constructed as
shown in Figure P12.59. A painter with a mass of 
70.0 kg stands on the ladder 3.00 m from the bottom.
Assuming that the floor is frictionless, find (a) the ten-
sion in the horizontal bar connecting the two halves of
the ladder, (b) the normal forces at A and B, and 
(c) the components of the reaction force at the single
hinge C that the left half of the ladder exerts on the
right half. (Hint: Treat each half of the ladder sepa-
rately.)

58. Figure P12.58 shows a truss that supports a downward
force of 1 000 N applied at the point B. The truss has
negligible weight. The piers at A and C are smooth. 
(a) Apply the conditions of equilibrium to prove that 
nA � 366 N and that nC � 634 N. (b) Show that, be-
cause forces act on the light truss only at the hinge
joints, each bar of the truss must exert on each hinge
pin only a force along the length of that bar—a force
of tension or compression. (c) Find the force of tension
or compression in each of the three bars.

be suspended from the top before the beam slips. 
(b) Determine the magnitude of the reaction force at
the floor and the magnitude of the force exerted by the
beam on the rope at P in terms of m, M, and s .

56. Review Problem. A cue stick strikes a cue ball and de-
livers a horizontal impulse in such a way that the ball
rolls without slipping as it starts to move. At what height
above the ball’s center (in terms of the radius of the
ball) was the blow struck?

57. A uniform beam of mass m is inclined at an angle 
 to
the horizontal. Its upper end produces a 90° bend in a
very rough rope tied to a wall, and its lower end rests on
a rough floor (Fig. P12.57). (a) If the coefficient of sta-
tic friction between the beam and the floor is s , deter-
mine an expression for the maximum mass M that can

54. Consider the rectangular cabinet of Problem 53, but
with a force F applied horizontally at its upper edge. 
(a) What is the minimum force that must be applied for
the cabinet to start tipping? (b) What is the minimum
coefficient of static friction required to prevent the cabi-
net from sliding with the application of a force of this
magnitude? (c) Find the magnitude and direction of
the minimum force required to tip the cabinet if the
point of application can be chosen anywhere on it.

55. A uniform rod of weight Fg and length L is supported at
its ends by a frictionless trough, as shown in Figure
P12.55. (a) Show that the center of gravity of the rod is
directly over point O when the rod is in equilibrium.
(b) Determine the equilibrium value of the angle 
.

1000 N

B

CA

10.0 m
nCnA

30.0° 45.0°

P

m

θ

M

O

60.0°30.0°

θ

h

37.0°

w = 60 cm

� = 100 cm

F

Figure P12.53 Problems 53 and 54.

Figure P12.55

Figure P12.57

Figure P12.58
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60. A flat dance floor of dimensions 20.0 m by 20.0 m has a
mass of 1 000 kg. Three dance couples, each of mass
125 kg, start in the top left, top right, and bottom left
corners. (a) Where is the initial center of gravity? 
(b) The couple in the bottom left corner moves 10.0 m
to the right. Where is the new center of gravity? 
(c) What was the average velocity of the center of grav-
ity if it took that couple 8.00 s to change position?

61. A shelf bracket is mounted on a vertical wall by a single
screw, as shown in Figure P12.61. Neglecting the weight
of the bracket, find the horizontal component of the
force that the screw exerts on the bracket when an 
80.0-N vertical force is applied as shown. (Hint: Imagine
that the bracket is slightly loose.)

P3

P2

P1

A

P

80.0 N 5.00 cm

3.00 cm

6.00 cm

2.00 m

2.00 m

3.00 m

A 2.00 m B

C

Figure P12.59

Figure P12.61

Figure P12.62

Figure P12.64

65. In Figure P12.65, the scales read Fg1 � 380 N and Fg 2 �
320 N. Neglecting the weight of the supporting plank,

62. Figure P12.62 shows a vertical force applied tangentially
to a uniform cylinder of weight Fg . The coefficient of

static friction between the cylinder and all surfaces is
0.500. In terms of Fg , find the maximum force P that
can be applied that does not cause the cylinder to ro-
tate. (Hint: When the cylinder is on the verge of slip-
ping, both friction forces are at their maximum values.
Why?)

63. Review Problem. A wire of length Li , Young’s modu-
lus Y, and cross-sectional area A is stretched elastically
by an amount �L. According to Hooke’s law, the restor-
ing force is � k �L. (a) Show that k � YA/Li . (b) Show
that the work done in stretching the wire by an amount
�L is W � YA(�L)2/2Li .

64. Two racquetballs are placed in a glass jar, as shown in
Figure P12.64. Their centers and the point A lie on a
straight line. (a) Assuming that the walls are frictionless,
determine P1 , P2 , and P3 . (b) Determine the magni-
tude of the force exerted on the right ball by the left
ball. Assume each ball has a mass of 170 g.

WEB
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how far from the woman’s feet is her center of mass,
given that her height is 2.00 m?

66. A steel cable 3.00 cm2 in cross-sectional area has a mass
of 2.40 kg per meter of length. If 500 m of the cable is
hung over a vertical cliff, how much does the cable
stretch under its own weight? (For Young’s modulus for
steel, refer to Table 12.1.)

67. (a) Estimate the force with which a karate master strikes
a board if the hand’s speed at time of impact is 
10.0 m/s and decreases to 1.00 m/s during a 0.002 00-s
time-of-contact with the board. The mass of coordi-
nated hand-and-arm is 1.00 kg. (b) Estimate the shear
stress if this force is exerted on a 1.00-cm-thick pine
board that is 10.0 cm wide. (c) If the maximum shear
stress a pine board can receive before breaking is 
3.60 � 106 N/m2, will the board break?

68. A bucket is made from thin sheet metal. The bottom
and top of the bucket have radii of 25.0 cm and 
35.0 cm, respectively. The bucket is 30.0 cm high and
filled with water. Where is the center of gravity? (Ignore
the weight of the bucket itself.)

69. Review Problem. A trailer with a loaded weight of Fg is
being pulled by a vehicle with a force P, as illustrated in
Figure P12.69. The trailer is loaded such that its center
of mass is located as shown. Neglect the force of rolling
friction and let a represent the x component of the ac-
celeration of the trailer. (a) Find the vertical compo-
nent of P in terms of the given parameters. (b) If a �
2.00 m/s2 and h � 1.50 m, what must be the value of d

30° 60° 30°A E

B D

C

100 m

60°

40° 40° 40°A E

B D

C

200 m

40°

d

L

×

n

h P

CM

Fg

Fg1 Fg 2

2.00 m

Figure P12.65

Figure P12.69

Figure P12.71

Figure P12.72

72. A 100-m-long bridge truss is supported at its ends so that
it can slide freely (Fig. P12.72). A 1 500-kg car is halfway
between points A and C.  Show that the weight of the car
is evenly distributed between points A and C, and calcu-
late the force in each structural component. Specify
whether each structural component is under tension or
compression. Assume that the structural components are
connected by pin joints and that the masses of the com-
ponents are small compared with the mass of the car.

so that Py � 0 (that is, no vertical load on the vehicle)?
(c) Find the values of Px and Py given that Fg � 1 500 N,
d � 0.800 m, L � 3.00 m, h � 1.50 m, and a �
� 2.00 m/s2.

70. Review Problem. An aluminum wire is 0.850 m long
and has a circular cross section of diameter 0.780 mm.
Fixed at the top end, the wire supports a 1.20-kg mass
that swings in a horizontal circle. Determine the angu-
lar velocity required to produce strain 1.00 � 10�3.

71. A 200-m-long bridge truss extends across a river (Fig.
P12.71). Calculate the force of tension or compression
in each structural component when a 1 360-kg car is at
the center of the bridge.  Assume that the structure is
free to slide horizontally to permit thermal expansion
and contraction, that the structural components are
connected by pin joints, and that the masses of the
structural components are small compared with the
mass of the car.
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ANSWERS TO QUICK QUIZZES

12.3 Young’s modulus is given by the ratio of stress to strain,
which is the slope of the elastic behavior section of the
graph in Figure 12.14. Reading from the graph, we note
that a stress of approximately 3 � 108 N/m2 results in a
strain of 0.003. The slope, and hence Young’s modulus,
are therefore 10 � 1010 N/m2.

12.4 A substantial part of the graph extends beyond the elas-
tic limit, indicating permanent deformation. Thus, the
material is ductile.

12.1 (a) Yes, as Figure 12.3 shows. The unbalanced torques
cause an angular acceleration even though the linear ac-
celeration is zero. (b) Yes, again. This happens when the
lines of action of all the forces intersect at a common
point. If a net force acts on the object, then the object
has a translational acceleration. However, because there
is no net torque on the object, the object has no angular
acceleration. There are other instances in which torques
cancel but the forces do not. You should be able to draw
at least two.

12.2 The location of the board’s center of gravity relative to
the fulcrum.
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Oscillatory Motion

Inside the pocket watch is a small disk
(called a torsional pendulum) that oscil-
lates back and forth at a very precise
rate and controls the watch gears. A
grandfather clock keeps accurate time
because of its pendulum. The tall
wooden case provides the space needed
by the long pendulum as it advances the
clock gears with each swing. In both of
these timepieces, the vibration of a care-
fully shaped component is critical to ac-
curate operation. What properties of os-
cillating objects make them so useful in
timing devices? (Photograph of pocket

watch, George Semple; photograph of grand-

father clock, Charles D. Winters) 
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13.1 Simple Harmonic Motion

13.2 The Block–Spring System
Revisited

13.3 Energy of the Simple Harmonic
Oscillator

13.4 The Pendulum

13.5 Comparing Simple Harmonic
Motion with Uniform Circular
Motion

13.6 (Optional) Damped Oscillations

13.7 (Optional) Forced Oscillations
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very special kind of motion occurs when the force acting on a body is propor-
tional to the displacement of the body from some equilibrium position. If
this force is always directed toward the equilibrium position, repetitive back-

and-forth motion occurs about this position. Such motion is called periodic motion,
harmonic motion, oscillation, or vibration (the four terms are completely equivalent).

You are most likely familiar with several examples of periodic motion, such as
the oscillations of a block attached to a spring, the swinging of a child on a play-
ground swing, the motion of a pendulum, and the vibrations of a stringed musical
instrument. In addition to these everyday examples, numerous other systems ex-
hibit periodic motion. For example, the molecules in a solid oscillate about their
equilibrium positions; electromagnetic waves, such as light waves, radar, and radio
waves, are characterized by oscillating electric and magnetic field vectors; and in
alternating-current electrical circuits, voltage, current, and electrical charge vary
periodically with time.

Most of the material in this chapter deals with simple harmonic motion, in which
an object oscillates such that its position is specified by a sinusoidal function of
time with no loss in mechanical energy. In real mechanical systems, damping (fric-
tional) forces are often present. These forces are considered in optional Section
13.6 at the end of this chapter.

SIMPLE HARMONIC MOTION
Consider a physical system that consists of a block of mass m attached to the end of a
spring, with the block free to move on a horizontal, frictionless surface (Fig. 13.1).
When the spring is neither stretched nor compressed, the block is at the position

called the equilibrium position of the system. We know from experience that
such a system oscillates back and forth if disturbed from its equilibrium position.

We can understand the motion in Figure 13.1 qualitatively by first recalling
that when the block is displaced a small distance x from equilibrium, the spring 
exerts on the block a force that is proportional to the displacement and given by
Hooke’s law (see Section 7.3):

(13.1)

We call this a restoring force because it is is always directed toward the equilib-
rium position and therefore opposite the displacement. That is, when the block is
displaced to the right of in Figure 13.1, then the displacement is positive
and the restoring force is directed to the left. When the block is displaced to the
left of then the displacement is negative and the restoring force is directed
to the right.

Applying Newton’s second law to the motion of the block, together with Equa-
tion 13.1, we obtain

(13.2)

That is, the acceleration is proportional to the displacement of the block, and its
direction is opposite the direction of the displacement. Systems that behave in this
way are said to exhibit simple harmonic motion. An object moves with simple
harmonic motion whenever its acceleration is proportional to its displace-
ment from some equilibrium position and is oppositely directed.

 a � �
k
m

 x 

Fs � �kx � ma

x � 0,

x � 0

Fs � �kx

x � 0,

13.1

A

8.10

Fs

Fs

m

(a)

x

x = 0
x

(b)

x

x = 0

Fs = 0

(c)

x

x = 0
x

m

m

Figure 13.1 A block attached to
a spring moving on a frictionless
surface. (a) When the block is dis-
placed to the right of equilibrium
(x � 0), the force exerted by the
spring acts to the left. (b) When
the block is at its equilibrium posi-
tion (x � 0), the force exerted by
the spring is zero. (c) When the
block is displaced to the left of
equilibrium (x � 0), the force ex-
erted by the spring acts to the
right.
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An experimental arrangement that exhibits simple harmonic motion is illus-
trated in Figure 13.2. A mass oscillating vertically on a spring has a pen attached to
it. While the mass is oscillating, a sheet of paper is moved perpendicular to the di-
rection of motion of the spring, and the pen traces out a wavelike pattern.

In general, a particle moving along the x axis exhibits simple harmonic mo-
tion when x, the particle’s displacement from equilibrium, varies in time according
to the relationship

(13.3)

where A, �, and � are constants. To give physical significance to these constants,
we have labeled a plot of x as a function of t in Figure 13.3a. This is just the pattern
that is observed with the experimental apparatus shown in Figure 13.2. The ampli-
tude A of the motion is the maximum displacement of the particle in either the
positive or negative x direction. The constant � is called the angular frequency of
the motion and has units of radians per second. (We shall discuss the geometric
significance of � in Section 13.2.) The constant angle �, called the phase con-
stant (or phase angle), is determined by the initial displacement and velocity of
the particle. If the particle is at its maximum position at then 
and the curve of x versus t is as shown in Figure 13.3b. If the particle is at some
other position at the constants � and A tell us what the position was at time

The quantity is called the phase of the mo-
tion and is useful in comparing the motions of two oscillators.

Note from Equation 13.3 that the trigonometric function x is periodic and re-
peats itself every time �t increases by 2� rad. The period T of the motion is the
time it takes for the particle to go through one full cycle. We say that the par-
ticle has made one oscillation. This definition of T tells us that the value of x at time
t equals the value of x at time We can show that by using the pre-
ceding observation that the phase increases by 2� rad in a time T :

Hence, or

(13.4)T �
2�

�

�T � 2�,

�t � � � 2� � �(t � T ) � �

(�t � �)
T � 2�/�t � T.

(�t � �)t � 0.
t � 0,

� � 0t � 0,x � A

x � A cos(�t � �)

8.2 
& 
8.3

Displacement versus time for
simple harmonic motion

Motion
of paper

m

Figure 13.2 An experimental apparatus for demonstrating
simple harmonic motion. A pen attached to the oscillating
mass traces out a wavelike pattern on the moving chart paper.

x

A

–A

t

(b)

x
φ/ω

A

–A

t

T

(a)

φ ω

Figure 13.3 (a) An x – t curve for
a particle undergoing simple har-
monic motion. The amplitude of
the motion is A, the period is T,
and the phase constant is �. 
(b) The x – t curve in the special
case in which at and
hence � � 0.

t � 0x � A
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The inverse of the period is called the frequency f of the motion. The fre-
quency represents the number of oscillations that the particle makes per
unit time:

(13.5)

The units of f are cycles per second � s�1, or hertz (Hz).
Rearranging Equation 13.5, we obtain the angular frequency:

(13.6)

What would the phase constant � have to be in Equation 13.3 if we were describing an oscil-
lating object that happened to be at the origin at 

An object undergoes simple harmonic motion of amplitude A. Through what total distance
does the object move during one complete cycle of its motion? (a) A/2. (b) A. (c) 2A. (d) 4A.

We can obtain the linear velocity of a particle undergoing simple harmonic mo-
tion by differentiating Equation 13.3 with respect to time:

(13.7)

The acceleration of the particle is

(13.8)

Because we can express Equation 13.8 in the form

(13.9)

From Equation 13.7 we see that, because the sine function oscillates between
	 1, the extreme values of v are 	 �A. Because the cosine function also oscillates
between 	 1, Equation 13.8 tells us that the extreme values of a are 	 �2A. There-
fore, the maximum speed and the magnitude of the maximum acceleration of a
particle moving in simple harmonic motion are

(13.10)

(13.11)

Figure 13.4a represents the displacement versus time for an arbitrary value of
the phase constant. The velocity and acceleration curves are illustrated in Figure
13.4b and c. These curves show that the phase of the velocity differs from the
phase of the displacement by �/2 rad, or 90°. That is, when x is a maximum or a
minimum, the velocity is zero. Likewise, when x is zero, the speed is a maximum.

amax � �2A

vmax � �A 

a � ��2x

x � A cos(�t � �),

a �
dv
dt

� ��2A cos(�t � �)

v �
dx
dt

� ��A sin(�t � �)

Quick Quiz 13.2

t � 0?

Quick Quiz 13.1

� � 2�f �
2�

T

f �
1
T

�
�

2�

Angular frequency

Velocity in simple harmonic
motion

Acceleration in simple harmonic
motion

Maximum values of speed and
acceleration in simple harmonic
motion

Frequency
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Furthermore, note that the phase of the acceleration differs from the phase of the
displacement by � rad, or 180°. That is, when x is a maximum, a is a maximum in
the opposite direction.

The phase constant � is important when we compare the motion of two or
more oscillating objects. Imagine two identical pendulum bobs swinging side by
side in simple harmonic motion, with one having been released later than the
other. The pendulum bobs have different phase constants. Let us show how the
phase constant and the amplitude of any particle moving in simple harmonic mo-
tion can be determined if we know the particle’s initial speed and position and the
angular frequency of its motion.

Suppose that at the initial position of a single oscillator is and its
initial speed is Under these conditions, Equations 13.3 and 13.7 give

(13.12)

(13.13)

Dividing Equation 13.13 by Equation 13.12 eliminates A, giving 
or

(13.14)

Furthermore, if we square Equations 13.12 and 13.13, divide the velocity equation
by �2, and then add terms, we obtain

Using the identity we can solve for A:

(13.15)A � √x i 

2 � � vi

� �
2

sin2 � � cos2 � � 1,

x i 

2 � � vi
� �

2
� A2 cos2 � � A2 sin2 �

tan � � �
vi

�x i

v i/x i � �� tan �,

vi � ��A sin �

x i � A cos � 

v � vi .
x � x it � 0

T

A
tO

x

xi

tO

v

vi

tO

a

vmax = ωA

amax= ω2A

(a)

(b)

(c)

ω

ω

Figure 13.4 Graphical representation of
simple harmonic motion. (a) Displacement
versus time. (b) Velocity versus time. (c) Ac-
celeration versus time. Note that at any speci-
fied time the velocity is 90° out of phase with
the displacement and the acceleration is 180°
out of phase with the displacement.



The following properties of a particle moving in simple harmonic motion are
important:

• The acceleration of the particle is proportional to the displacement but is in the
opposite direction. This is the necessary and sufficient condition for simple harmonic
motion, as opposed to all other kinds of vibration.

• The displacement from the equilibrium position, velocity, and acceleration all
vary sinusoidally with time but are not in phase, as shown in Figure 13.4.

• The frequency and the period of the motion are independent of the amplitude.
(We show this explicitly in the next section.)

Can we use Equations 2.8, 2.10, 2.11, and 2.12 (see pages 35 and 36) to describe the motion
of a simple harmonic oscillator?

Quick Quiz 13.3
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An Oscillating ObjectEXAMPLE 13.1
Solution Noting that the angles in the trigonometric func-
tions are in radians, we obtain, at s,

(d) Determine the maximum speed and maximum accel-
eration of the object.

Solution In the general expressions for v and a found in
part (b), we use the fact that the maximum values of the sine
and cosine functions are unity. Therefore, v varies between
	 4.00� m/s, and a varies between 	 4.00�2 m/s2. Thus,

m/s �

m/s2 �

We obtain the same results using and 
where m and rad/s.

(e) Find the displacement of the object between and
s.t � 1.00

t � 0
� � �A � 4.00

amax � �2A,vmax � �A

39.5 m/s2amax � 4.00�2

12.6 m/svmax � 4.00�

27.9 m/s2� �(4.00�2 m/s2)(�0.707) �

a � �(4.00�2 m/s2) cos � 5�

4 �

8.89 m/s�

v � �(4.00� m/s) sin � 5�

4 � � �(4.00� m/s)(�0.707)

�2.83 m � (4.00 m)(�0.707) �

x � (4.00 m) cos �� �
�

4 � � (4.00 m) cos � 5�

4 � 

t � 1.00
An object oscillates with simple harmonic motion along the x
axis. Its displacement from the origin varies with time accord-
ing to the equation

where t is in seconds and the angles in the parentheses are in
radians. (a) Determine the amplitude, frequency, and period
of the motion.

Solution By comparing this equation with Equation 13.3,
the general equation for simple harmonic motion—

)—we see that m and 
rad/s. Therefore, Hz and

s.
(b) Calculate the velocity and acceleration of the object at

any time t.

Solution

(c) Using the results of part (b), determine the position,
velocity, and acceleration of the object at s.t � 1.00

�(4.00�2 m/s2) cos ��t �
�

4 � �

a �
dv
dt

� �(4.00� m/s) cos ��t �
�

4 � 
d
dt

 (�t)

�(4.00� m/s) sin ��t �
�

4 � �

v �
dx
dt

� �(4.00 m) sin ��t �
�

4 � 
d
dt

 (�t) 

T � 1/f � 2.00
f � �/2� � �/2� � 0.500�

� �A � 4.00x � A cos(�t � �

x � (4.00 m) cos ��t �
�

4 �

Properties of simple harmonic
motion
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Solution The x coordinate at is

In part (c), we found that the x coordinate at s is
� 2.83 m; therefore, the displacement between and

s is

�5.66 m�x � x f � x i � �2.83 m � 2.83 m �

t � 1.00
t � 0

t � 1.00

x i � (4.00 m) cos �0 �
�

4 � � (4.00 m)(0.707) � 2.83 m

t � 0 Because the object’s velocity changes sign during the first
second, the magnitude of �x is not the same as the distance
traveled in the first second. (By the time the first second is
over, the object has been through the point m
once, traveled to m, and come back to

Exercise What is the phase of the motion at s?

Answer 9�/4 rad.

t � 2.00

x � �2.83 m.)
x � �4.00

x � �2.83

THE BLOCK – SPRING SYSTEM REVISITED
Let us return to the block–spring system (Fig. 13.5). Again we assume that the sur-
face is frictionless; hence, when the block is displaced from equilibrium, the only
force acting on it is the restoring force of the spring. As we saw in Equation 13.2,
when the block is displaced a distance x from equilibrium, it experiences an accel-
eration If the block is displaced a maximum distance at some
initial time and then released from rest, its initial acceleration at that instant is
� kA/m (its extreme negative value). When the block passes through the equilib-
rium position , its acceleration is zero. At this instant, its speed is a maxi-
mum. The block then continues to travel to the left of equilibrium and finally
reaches at which time its acceleration is kA/m (maximum positive) and
its speed is again zero. Thus, we see that the block oscillates between the turning
points 

Let us now describe the oscillating motion in a quantitative fashion. Recall
that and so we can express Equation 13.2 as

(13.16)

If we denote the ratio k/m with the symbol �2, this equation becomes

(13.17)

Now we require a solution to Equation 13.17—that is, a function x(t) that sat-
isfies this second-order differential equation. Because Equations 13.17 and 13.9
are equivalent, each solution must be that of simple harmonic motion:

To see this explicitly, assume that x � A cos(�t � �). Then

Comparing the expressions for x and d 2x/dt2, we see that d 2x/dt2 � � �2x, and
Equation 13.17 is satisfied. We conclude that whenever the force acting on a
particle is linearly proportional to the displacement from some equilibrium

d 2x
dt2 � ��A 

d
dt

 sin(�t � �) � ��2A cos(�t � �)

 
dx
dt

� A 
d
dt

 cos(�t � �) � ��A sin(�t � �) 

x � A cos(�t � �)

d 2x
dt2 � ��2x

d 2x
dt2 � �

k
m

 x

a � dv/dt � d 2x/dt2,

x � 	A.

x � �A,

x � 0

x � Aa � �(k/m)x.

13.2

m

m

(a)

x

x = 0

a

x

m

(b)

x

x = 0

a = 0

(c)

x

x = 0

a

x

Figure 13.5 A block of mass m at-
tached to a spring on a frictionless
surface undergoes simple har-
monic motion. (a) When the block
is displaced to the right of equilib-
rium, the displacement is positive
and the acceleration is negative.
(b) At the equilibrium position,

, the acceleration is zero and
the speed is a maximum. (c) When
the block is displaced to the left of
equilibrium, the displacement is
negative and the acceleration is
positive.

x � 0
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position and in the opposite direction (F � � kx), the particle moves in sim-
ple harmonic motion.

Recall that the period of any simple harmonic oscillator is (Eq.
13.4) and that the frequency is the inverse of the period. We know from Equations 

13.16 and 13.17 that , so we can express the period and frequency of the
block–spring system as

(13.18)

(13.19)

That is, the frequency and period depend only on the mass of the block and
on the force constant of the spring. Furthermore, the frequency and period are
independent of the amplitude of the motion. As we might expect, the frequency is
greater for a stiffer spring (the stiffer the spring, the greater the value of k) and
decreases with increasing mass.

Special Case 1. Let us consider a special case to better understand the physi-
cal significance of Equation 13.3, the defining expression for simple harmonic
motion. We shall use this equation to describe the motion of an oscillating
block– spring system. Suppose we pull the block a distance A from equilibrium
and then release it from rest at this stretched position, as shown in Figure 13.6.
Our solution for x must obey the initial conditions that and at

It does if we choose � � 0, which gives cos �t as the solution. To
check this solution, we note that it satisfies the condition that at be-
cause cos Thus, we see that A and � contain the information on initial
conditions.

Now let us investigate the behavior of the velocity and acceleration for this
special case. Because cos �t,

From the velocity expression we see that, because sin at as we
require. The expression for the acceleration tells us that at Physi-
cally, this negative acceleration makes sense because the force acting on the block
is directed to the left when the displacement is positive. In fact, at the extreme po-

t � 0.a � ��2A
t � 0,vi � 00 � 0,

a �
dv
dt

� ��2A cos �t

v �
dx
dt

� ��A sin �t 

x � A

0 � 1.
t � 0x i � A

x � At � 0.
vi � 0x i � A

f �
1
T

�
1

2�
 √ k

m

T �
2�

�
� 2� √ m

k

� � √k/m

T � 2�/�

Period and frequency for a
block–spring system

QuickLab
Hang an object from a rubber band
and start it oscillating. Measure T.
Now tie four identical rubber bands
together, end to end. How should k
for this longer band compare with k
for the single band? Again, time the
oscillations with the same object. Can
you verify Equation 13.19?

A
x = 0

t = 0
xi = A
vi = 0

x = A cos ωtm ω

Figure 13.6 A block–spring system that starts from rest at In this case, � � 0 and thus
cos �t.x � A

x i � A.
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sition shown in Figure 13.6, (to the left) and the initial acceleration is

Another approach to showing that cos �t is the correct solution involves
using the relationship tan (Eq. 13.14). Because at 
tan � � 0 and thus � � 0. (The tangent of � also equals zero, but � � � gives the
wrong value for xi .)

Figure 13.7 is a plot of displacement, velocity, and acceleration versus time for
this special case. Note that the acceleration reaches extreme values of 	 �2A while
the displacement has extreme values of 	 A because the force is maximal at those
positions. Furthermore, the velocity has extreme values of 	 �A, which both occur
at Hence, the quantitative solution agrees with our qualitative description
of this system.

Special Case 2. Now suppose that the block is given an initial velocity vi to the
right at the instant it is at the equilibrium position, so that and at

(Fig. 13.8). The expression for x must now satisfy these initial conditions. Be-
cause the block is moving in the positive x direction at and because at

the expression for x must have the form sin �t.
Applying Equation 13.14 and the initial condition that at we 

find that tan and Hence, Equation 13.3 becomes 
A cos ( which can be written sin �t. Furthermore, from Equa-
tion 13.15 we see that therefore, we can express x as

The velocity and acceleration in this case are

These results are consistent with the facts that (1) the block always has a maximum

a �
dv
dt

� ��vi sin �t

v �
dx
dt

� vi cos �t 

x �
vi

�
 sin �t

A � vi/� ;
x � A�t � �/2),

x �� � ��/2.� � ��
t � 0,x i � 0

x � At � 0,
x i � 0t � 0

t � 0
v � vix i � 0

x � 0.

t � 0,vi � 0� � �vi/�x i

x � A
��2A � �kA/m.

Fs � �kA

x = A cos ωt

T
2

TO ′

x

O
t

3T
2

T
2

TO ′

v

t
3T
2

v = –ωA sin ωt

T
2

TO ′

a

t
3T
2

a = –ω2A cos ωt

O

O

ω ω

ω ω

ω

Figure 13.7 Displacement, velocity, and ac-
celeration versus time for a block–spring sys-
tem like the one shown in Figure 13.6, undergo-
ing simple harmonic motion under the initial
conditions that at , and 
(Special Case 1). The origins at O correspond
to Special Case 2, the block–spring system un-
der the initial conditions shown in Figure 13.8.

v i � 0x i � At � 0

xi = 0
t = 0

v = vi

x = 0

vi

x = A sin ωt

m

ω

Figure 13.8 The block–spring
system starts its motion at the equi-
librium position at . If its ini-
tial velocity is vi to the right, the
block’s x coordinate varies as
x � (v i /�) sin �t.

t � 0
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speed at and (2) the force and acceleration are zero at this position. The
graphs of these functions versus time in Figure 13.7 correspond to the origin at O.

What is the solution for x if the block is initially moving to the left in Figure 13.8?

Quick Quiz 13.4

x � 0

Watch Out for Potholes!EXAMPLE 13.2
Hence, the frequency of vibration is, from Equation 13.19,

Exercise How long does it take the car to execute two com-
plete vibrations?

Answer 1.70 s.

1.18 Hzf �
1

2�
 √ k

m
�

1
2�

 √ 20 000 N/m
365 kg

�

A car with a mass of 1 300 kg is constructed so that its frame
is supported by four springs. Each spring has a force constant
of 20 000 N/m. If two people riding in the car have a com-
bined mass of 160 kg, find the frequency of vibration of the
car after it is driven over a pothole in the road.

Solution We assume that the mass is evenly distributed.
Thus, each spring supports one fourth of the load. The total
mass is 1 460 kg, and therefore each spring supports 365 kg.

A Block – Spring SystemEXAMPLE 13.3
(c) What is the maximum acceleration of the block?

Solution We use Equation 13.11:

(d) Express the displacement, speed, and acceleration as
functions of time.

Solution This situation corresponds to Special Case 1,
where our solution is cos �t. Using this expression and
the results from (a), (b), and (c), we find that

�(1.25 m/s2) cos 5.00ta � �2A cos �t �

�(0.250 m/s) sin 5.00t v � �A sin �t �

(0.050 m) cos 5.00t x � A cos �t �

x � A

1.25 m/s2amax � �2A � (5.00 rad/s)2(5.00 � 10�2 m) �

A block with a mass of 200 g is connected to a light spring for
which the force constant is 5.00 N/m and is free to oscillate
on a horizontal, frictionless surface. The block is displaced
5.00 cm from equilibrium and released from rest, as shown in
Figure 13.6. (a) Find the period of its motion.

Solution From Equations 13.16 and 13.17, we know that
the angular frequency of any block–spring system is

and the period is

(b) Determine the maximum speed of the block.

Solution We use Equation 13.10:

0.250 m/svmax � �A � (5.00 rad/s)(5.00 � 10�2 m) �

1.26 sT �
2�

�
�

2�

5.00 rad/s
�

� � √ k
m

� √ 5.00 N/m
200 � 10�3 kg

� 5.00 rad/s

ENERGY OF THE SIMPLE HARMONIC OSCILLATOR
Let us examine the mechanical energy of the block–spring system illustrated in
Figure 13.6. Because the surface is frictionless, we expect the total mechanical en-
ergy to be constant, as was shown in Chapter 8. We can use Equation 13.7 to ex-

13.3
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press the kinetic energy as

(13.20)

The elastic potential energy stored in the spring for any elongation x is given
by (see Eq. 8.4). Using Equation 13.3, we obtain

(13.21)

We see that K and U are always positive quantities. Because we can ex-
press the total mechanical energy of the simple harmonic oscillator as

From the identity sin2 we see that the quantity in square brackets is
unity. Therefore, this equation reduces to

(13.22)

That is, the total mechanical energy of a simple harmonic oscillator is a con-
stant of the motion and is proportional to the square of the amplitude. Note
that U is small when K is large, and vice versa, because the sum must be constant.
In fact, the total mechanical energy is equal to the maximum potential energy
stored in the spring when because at these points and thus there is
no kinetic energy. At the equilibrium position, where because the to-
tal energy, all in the form of kinetic energy, is again That is,

(at 

Plots of the kinetic and potential energies versus time appear in Figure 13.9a,
where we have taken � � 0. As already mentioned, both K and U are always posi-
tive, and at all times their sum is a constant equal to the total energy of the
system. The variations of K and U with the displacement x of the block are plotted

1
2 kA2,

x � 0)E � 1
2 mv2

max � 1
2 m�2A2 � 1

2 m 
k
m

 A2 � 1
2 kA2

1
2 kA2.

x � 0,U � 0
v � 0x � 	A

E � 1
2 kA2

� � cos2 � � 1,

E � K � U � 1
2 kA2[sin2(�t � �) � cos2(�t � �)]

�2 � k/m,

U � 1
2 kx2 � 1

2 kA2 cos2(�t � �)

1
2 kx2

K � 1
2 mv2 � 1

2 m�2A2 sin2(�t � �) Kinetic energy of a simple
harmonic oscillator

Potential energy of a simple
harmonic oscillator

Total energy of a simple harmonic
oscillator

K , U

1
2 kA2

U

K

U =    kx2

K =    mv2

1
2
1
2

φ = 0

(a)

T
t

T
2

K , U

(b)

A
x

–A O

φ

Figure 13.9 (a) Kinetic energy and potential energy versus time for a simple harmonic oscilla-
tor with � � 0. (b) Kinetic energy and potential energy versus displacement for a simple har-
monic oscillator. In either plot, note that constant.K � U �



400 C H A P T E R  1 3 Oscillatory Motion

in Figure 13.9b. Energy is continuously being transformed between potential en-
ergy stored in the spring and kinetic energy of the block.

Figure 13.10 illustrates the position, velocity, acceleration, kinetic energy, and
potential energy of the block–spring system for one full period of the motion.
Most of the ideas discussed so far are incorporated in this important figure. Study
it carefully.

Finally, we can use the principle of conservation of energy to obtain the veloc-
ity for an arbitrary displacement by expressing the total energy at some arbitrary
position x as

(13.23)

When we check Equation 13.23 to see whether it agrees with known cases, we find
that it substantiates the fact that the speed is a maximum at and is zero at
the turning points x � 	A.

x � 0

 v � 	√ k
m

 (A2 � x2) � 	�√A2 � x2

E � K � U � 1
2 mv2 � 1

2 kx2 � 1
2 kA2 

Velocity as a function of position
for a simple harmonic oscillator

–A 0 A
x

amax

vmax

amax

vmax

amax

t x v a K U

0 A 0 –ω2A 0

T/4 0 –ωA 0 0

T/2 –A 0 ω2A 0

3T/4 0 ωA 0 0

T A 0 –ω2A 0
1
2 kA2

1
2 kA2

1
2 kA2

1
2 kA2

1
2 kA2

θmaxθ

θmaxθ

θmaxθ

ω

ω

ω

ω

ω

Figure 13.10 Simple harmonic motion for a block–spring system and its relationship to the
motion of a simple pendulum. The parameters in the table refer to the block–spring system, as-
suming that at thus, cos �t (see Special Case 1).x � At � 0;x � A
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You may wonder why we are spending so much time studying simple harmonic
oscillators. We do so because they are good models of a wide variety of physical
phenomena. For example, recall the Lennard–Jones potential discussed in Exam-
ple 8.11. This complicated function describes the forces holding atoms together.
Figure 13.11a shows that, for small displacements from the equilibrium position,
the potential energy curve for this function approximates a parabola, which repre-
sents the potential energy function for a simple harmonic oscillator. Thus, we can
approximate the complex atomic binding forces as tiny springs, as depicted in Fig-
ure 13.11b. 

The ideas presented in this chapter apply not only to block–spring systems
and atoms, but also to a wide range of situations that include bungee jumping,
tuning in a television station, and viewing the light emitted by a laser. You will see
more examples of simple harmonic oscillators as you work through this book.

Oscillations on a Horizontal SurfaceEXAMPLE 13.4
(b) What is the velocity of the cube when the displace-

ment is 2.00 cm?

Solution We can apply Equation 13.23 directly:

The positive and negative signs indicate that the cube could
be moving to either the right or the left at this instant.

(c) Compute the kinetic and potential energies of the sys-
tem when the displacement is 2.00 cm.

	0.141 m/s�

  � 	√ 20.0 N/m
0.500 kg

 [(0.030 0 m)2 � (0.020 0 m)2]

v � 	√ k
m

 (A2 � x2) 

A 0.500-kg cube connected to a light spring for which the
force constant is 20.0 N/m oscillates on a horizontal, friction-
less track. (a) Calculate the total energy of the system and the
maximum speed of the cube if the amplitude of the motion is 
3.00 cm.

Solution Using Equation 13.22, we obtain

When the cube is at we know that and
therefore,

0.190 m/s vmax � √ 18.0 � 10�3 J
0.500 kg

�

1
2 mv2

max � 9.00 � 10�3 J 

E � 1
2 mv2

max ;
U � 0x � 0,

9.00 � 10�3 J�

E � K � U � 1
2 kA2 � 1

2 (20.0 N/m) (3.00 � 10�2 m)2

U

r

Figure 13.11 (a) If the atoms in a molecule do not move too far from their equilibrium posi-
tions, a graph of potential energy versus separation distance between atoms is similar to the
graph of potential energy versus position for a simple harmonic oscillator. (b) Tiny springs ap-
proximate the forces holding atoms together.
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THE PENDULUM
The simple pendulum is another mechanical system that exhibits periodic mo-
tion. It consists of a particle-like bob of mass m suspended by a light string of
length L that is fixed at the upper end, as shown in Figure 13.12. The motion oc-
curs in the vertical plane and is driven by the force of gravity. We shall show that,
provided the angle � is small (less than about 10°), the motion is that of a simple
harmonic oscillator.

The forces acting on the bob are the force T exerted by the string and the
gravitational force mg. The tangential component of the gravitational force, 
mg sin �, always acts toward � � 0, opposite the displacement. Therefore, the tan-
gential force is a restoring force, and we can apply Newton’s second law for mo-
tion in the tangential direction:

where s is the bob’s displacement measured along the arc and the minus sign indi-
cates that the tangential force acts toward the equilibrium (vertical) position. Be-
cause (Eq. 10.1a) and L is constant, this equation reduces to

The right side is proportional to sin � rather than to �; hence, with sin �
present, we would not expect simple harmonic motion because this expression is
not of the form of Equation 13.17. However, if we assume that � is small, we can
use the approximation sin � � �; thus the equation of motion for the simple pen-

d 2�

dt2 � �
g
L

 sin �

s � L�

�Ft � �mg sin � � m 
d 2s
dt2

13.4

8.11 
& 

8.12

Solution Using the result of (b), we find that

4.00 � 10�3 JU � 1
2 kx2 � 1

2 (20.0 N/m)(0.020 0 m)2 �

5.00 � 10�3 JK � 1
2 mv2 � 1

2 (0.500 kg)(0.141 m/s)2 �

Note that 

Exercise For what values of x is the speed of the cube 
0.100 m/s?

Answer 	 2.55 cm.

K � U � E.

θ

TL

s

m g sin

m

m g cos

m g

θ
θ

θ

Figure 13.12 When � is small, a
simple pendulum oscillates in sim-
ple harmonic motion about the
equilibrium position � � 0. The
restoring force is mg sin �, the com-
ponent of the gravitational force
tangent to the arc.

The motion of a simple pendulum, captured
with multiflash photography. Is the oscillating
motion simple harmonic in this case? 
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dulum becomes

(13.24)

Now we have an expression of the same form as Equation 13.17, and we conclude
that the motion for small amplitudes of oscillation is simple harmonic motion.
Therefore, � can be written as � � �max cos where �max is the maximum
angular displacement and the angular frequency � is

(13.25)� � √ g
L

(�t � �),

d 2�

dt2 � �
g
L

 �

Angular frequency of motion for a
simple pendulum

The Foucault pendulum at the Franklin Institute in Philadelphia. This type of pendulum was first
used by the French physicist Jean Foucault to verify the Earth’s rotation experimentally. As the
pendulum swings, the vertical plane in which it oscillates appears to rotate as the bob successively
knocks over the indicators arranged in a circle on the floor. In reality, the plane of oscillation is
fixed in space, and the Earth rotating beneath the swinging pendulum moves the indicators into
position to be knocked down, one after the other.

Equation of motion for a simple
pendulum (small �)
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The period of the motion is

(13.26)

In other words, the period and frequency of a simple pendulum depend only
on the length of the string and the acceleration due to gravity. Because the
period is independent of the mass, we conclude that all simple pendulums that are
of equal length and are at the same location (so that g is constant) oscillate with
the same period. The analogy between the motion of a simple pendulum and that
of a block–spring system is illustrated in Figure 13.10.

The simple pendulum can be used as a timekeeper because its period depends
only on its length and the local value of g. It is also a convenient device for making
precise measurements of the free-fall acceleration. Such measurements are impor-
tant because variations in local values of g can provide information on the location
of oil and of other valuable underground resources.

A block of mass m is first allowed to hang from a spring in static equilibrium. It stretches the
spring a distance L beyond the spring’s unstressed length. The block and spring are then
set into oscillation. Is the period of this system less than, equal to, or greater than the pe-
riod of a simple pendulum having a length L and a bob mass m?

Quick Quiz 13.5

T �
2�

�
� 2� √ L

g

QuickLab
Firmly hold a ruler so that about half
of it is over the edge of your desk.
With your other hand, pull down and
then release the free end, watching
how it vibrates. Now slide the ruler so
that only about a quarter of it is free
to vibrate. This time when you release
it, how does the vibrational period
compare with its earlier value? Why?

A Connection Between Length and TimeEXAMPLE 13.5
Thus, the meter’s length would be slightly less than one-
fourth its current length. Note that the number of significant
digits depends only on how precisely we know g because the
time has been defined to be exactly 1 s.

Christian Huygens (1629–1695), the greatest clockmaker in
history, suggested that an international unit of length could
be defined as the length of a simple pendulum having a pe-
riod of exactly 1 s. How much shorter would our length unit
be had his suggestion been followed?

Solution Solving Equation 13.26 for the length gives

0.248 mL �
T 2g
4�2 �

(1 s)2(9.80 m/s2)
4�2 �

Physical Pendulum

Suppose you balance a wire coat hanger so that the hook is supported by your ex-
tended index finger. When you give the hanger a small displacement (with your
other hand) and then release it, it oscillates. If a hanging object oscillates about a
fixed axis that does not pass through its center of mass and the object cannot be
approximated as a point mass, we cannot treat the system as a simple pendulum.
In this case the system is called a physical pendulum.

Consider a rigid body pivoted at a point O that is a distance d from the center
of mass (Fig. 13.13). The force of gravity provides a torque about an axis through
O, and the magnitude of that torque is mgd sin �, where � is as shown in Figure
13.13. Using the law of motion � where I is the moment of inertia about� � I�,

Period of motion for a simple
pendulum
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the axis through O, we obtain

The minus sign indicates that the torque about O tends to decrease �. That is, the
force of gravity produces a restoring torque. Because this equation gives us the
angular acceleration d 2�/dt2 of the pivoted body, we can consider it the equation
of motion for the system. If we again assume that � is small, the approximation 
sin � � � is valid, and the equation of motion reduces to

(13.27)

Because this equation is of the same form as Equation 13.17, the motion is simple
harmonic motion. That is, the solution of Equation 13.27 is � � �max cos(�t � �),
where �max is the maximum angular displacement and

The period is

(13.28)

One can use this result to measure the moment of inertia of a flat rigid body. If
the location of the center of mass—and hence the value of d —are known, the mo-
ment of inertia can be obtained by measuring the period. Finally, note that Equation
13.28 reduces to the period of a simple pendulum (Eq. 13.26) when I � md 2—that
is, when all the mass is concentrated at the center of mass.

T �
2�

�
� 2� √ I

mgd

� � √ mgd
I

d 2�

dt2 � �� mgd
I � � � ��2�

�mgd sin � � I 
d 2�

dt2

Period of motion for a physical
pendulum

Pivot O

θ
d

d sin θ
CM

m g

Figure 13.13 A physical pendu-
lum.

A Swinging RodEXAMPLE 13.6
Exercise Calculate the period of a meter stick that is piv-
oted about one end and is oscillating in a vertical plane.

Answer 1.64 s.

A uniform rod of mass M and length L is pivoted about one
end and oscillates in a vertical plane (Fig. 13.14). Find the
period of oscillation if the amplitude of the motion is small.

Solution In Chapter 10 we found that the moment of in-
ertia of a uniform rod about an axis through one end is

The distance d from the pivot to the center of mass is
L/2. Substituting these quantities into Equation 13.28 gives

Comment In one of the Moon landings, an astronaut walk-
ing on the Moon’s surface had a belt hanging from his space
suit, and the belt oscillated as a physical pendulum. A scien-
tist on the Earth observed this motion on television and used
it to estimate the free-fall acceleration on the Moon. How did
the scientist make this calculation?

2� √ 2L
3g

T � 2� √
1
3 ML2

Mg 
L
2

�

1
3ML2.

Pivot

O

L

CM

Mg

Figure 13.14 A rigid rod oscillating about a pivot through one end
is a physical pendulum with and, from Table 10.2, I � 1

3 ML2.d � L/2
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Torsional Pendulum

Figure 13.15 shows a rigid body suspended by a wire attached at the top to a fixed
support. When the body is twisted through some small angle �, the twisted wire ex-
erts on the body a restoring torque that is proportional to the angular displace-
ment. That is,

where � (kappa) is called the torsion constant of the support wire. The value of �
can be obtained by applying a known torque to twist the wire through a measur-
able angle �. Applying Newton’s second law for rotational motion, we find

(13.29)

Again, this is the equation of motion for a simple harmonic oscillator, with 
and a period

(13.30)

This system is called a torsional pendulum. There is no small-angle restriction in this
situation as long as the elastic limit of the wire is not exceeded. Figure 13.16 shows
the balance wheel of a watch oscillating as a torsional pendulum, energized by the
mainspring.

COMPARING SIMPLE HARMONIC MOTION WITH
UNIFORM CIRCULAR MOTION

We can better understand and visualize many aspects of simple harmonic motion
by studying its relationship to uniform circular motion. Figure 13.17 is an over-
head view of an experimental arrangement that shows this relationship. A ball is
attached to the rim of a turntable of radius A, which is illuminated from the side
by a lamp. The ball casts a shadow on a screen. We find that as the turntable ro-
tates with constant angular speed, the shadow of the ball moves back and forth in
simple harmonic motion.

13.5

T � 2� √ I
�

� � √�/I

d 2�

dt2 � �
�

I
 � 

 � � ��� � I 
d 2�

dt2

� � ���

8.8

Period of motion for a torsional
pendulum

O

P
maxθ

Figure 13.15 A torsional pendu-
lum consists of a rigid body sus-
pended by a wire attached to a
rigid support. The body oscillates
about the line OP with an ampli-
tude �max .

Balance wheel

Figure 13.16 The balance wheel of this antique pocket watch is a torsional pendulum and reg-
ulates the time-keeping mechanism.
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Consider a particle located at point P on the circumference of a circle of ra-
dius A, as shown in Figure 13.18a, with the line OP making an angle � with the x
axis at . We call this circle a reference circle for comparing simple harmonic mo-
tion and uniform circular motion, and we take the position of P at as our ref-
erence position. If the particle moves along the circle with constant angular speed
� until OP makes an angle � with the x axis, as illustrated in Figure 13.18b, then at
some time t � 0, the angle between OP and the x axis is � � �t � �. As the parti-
cle moves along the circle, the projection of P on the x axis, labeled point Q ,
moves back and forth along the x axis, between the limits 

Note that points P and Q always have the same x coordinate. From the right
triangle OPQ , we see that this x coordinate is

(13.31)

This expression shows that the point Q moves with simple harmonic motion along
the x axis. Therefore, we conclude that

x � A cos(�t � �)

x � 	A.

t � 0
t � 0

simple harmonic motion along a straight line can be represented by the projec-
tion of uniform circular motion along a diameter of a reference circle.

We can make a similar argument by noting from Figure 13.18b that the projec-
tion of P along the y axis also exhibits simple harmonic motion. Therefore, uni-
form circular motion can be considered a combination of two simple har-
monic motions, one along the x axis and one along the y axis, with the two
differing in phase by 90°.

This geometric interpretation shows that the time for one complete revolution
of the point P on the reference circle is equal to the period of motion T for simple
harmonic motion between That is, the angular speed � of P is the same
as the angular frequency � of simple harmonic motion along the x axis (this is why
we use the same symbol). The phase constant � for simple harmonic motion cor-
responds to the initial angle that OP makes with the x axis. The radius A of the ref-
erence circle equals the amplitude of the simple harmonic motion.

x � 	A.
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Figure 13.17 An experimental
setup for demonstrating the con-
nection between simple harmonic
motion and uniform circular mo-
tion. As the ball rotates on the
turntable with constant angular
speed, its shadow on the screen
moves back and forth in simple
harmonic motion.

Figure 13.18 Relationship between the uniform circular motion of a point P and the simple
harmonic motion of a point Q. A particle at P moves in a circle of radius A with constant angular
speed �. (a) A reference circle showing the position of P at . (b) The x coordinates of
points P and Q are equal and vary in time as cos(�t � �). (c) The x component of the ve-
locity of P equals the velocity of Q . (d) The x component of the acceleration of P equals the ac-
celeration of Q .

x � A
t � 0
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Because the relationship between linear and angular speed for circular mo-
tion is (see Eq. 10.10), the particle moving on the reference circle of radius
A has a velocity of magnitude �A. From the geometry in Figure 13.18c, we see that
the x component of this velocity is � �A sin(�t � �). By definition, the point Q
has a velocity given by dx/dt. Differentiating Equation 13.31 with respect to time,
we find that the velocity of Q is the same as the x component of the velocity of P.

The acceleration of P on the reference circle is directed radially inward toward
O and has a magnitude From the geometry in Figure 13.18d, we see
that the x component of this acceleration is This value is also
the acceleration of the projected point Q along the x axis, as you can verify by tak-
ing the second derivative of Equation 13.31.

cos(�t � �).��2A
v2/A � �2A.

v � r�

Circular Motion with Constant Angular SpeedEXAMPLE 13.7

Note that � in the cosine function must be in radians.
(b) Find the x components of the particle’s velocity and

acceleration at any time t.

Solution

From these results, we conclude that vmax � 24.0 m/s and
that amax � 192 m/s2. Note that these values also equal the
tangential speed �A and the centripetal acceleration �2A.

�(192 m/s2) cos(8.00t � 0.841) �

ax �
dvx

dt
� (�24.0 m/s)(8.00 rad/s) cos(8.00t � 0.841)

�(24.0 m/s) sin(8.00t � 0.841) �

vx �
dx
dt

� (�3.00 m)(8.00 rad/s) sin(8.00t � 0.841) 

(3.00 m) cos (8.00t � 0.841)x �
A particle rotates counterclockwise in a circle of radius 
3.00 m with a constant angular speed of 8.00 rad/s. At ,
the particle has an x coordinate of 2.00 m and is moving to
the right. (a) Determine the x coordinate as a function of
time.

Solution Because the amplitude of the particle’s motion
equals the radius of the circle and � � 8.00 rad/s, we have

We can evaluate � by using the initial condition that 
2.00 m at 

If we were to take our answer as � � 48.2°, then the coordi-
nate x � (3.00 m) cos (8.00t � 48.2°) would be decreasing at
time t � 0 (that is, moving to the left). Because our particle is
first moving to the right, we must choose � � �48.2° �
�0.841 rad. The x coordinate as a function of time is then

 � � cos�1 � 2.00 m
3.00 m �

2.00 m � (3.00 m) cos(0 � �) 

t � 0:
x �

x � A cos(�t � �) � (3.00 m) cos(8.00t � �)

t � 0

Optional Section

DAMPED OSCILLATIONS
The oscillatory motions we have considered so far have been for ideal systems—
that is, systems that oscillate indefinitely under the action of a linear restoring
force. In many real systems, dissipative forces, such as friction, retard the motion.
Consequently, the mechanical energy of the system diminishes in time, and the
motion is said to be damped.

One common type of retarding force is the one discussed in Section 6.4,
where the force is proportional to the speed of the moving object and acts in the
direction opposite the motion. This retarding force is often observed when an ob-
ject moves through air, for instance. Because the retarding force can be expressed
as R � � bv (where b is a constant called the damping coefficient) and the restoring

13.6
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force of the system is � kx, we can write Newton’s second law as

(13.32)

The solution of this equation requires mathematics that may not be familiar to you
yet; we simply state it here without proof. When the retarding force is small com-
pared with the maximum restoring force—that is, when b is small—the solution
to Equation 13.32 is

(13.33)

where the angular frequency of oscillation is

(13.34)

This result can be verified by substituting Equation 13.33 into Equation 13.32.
Figure 13.19a shows the displacement as a function of time for an object oscil-

lating in the presence of a retarding force, and Figure 13.19b depicts one such sys-
tem: a block attached to a spring and submersed in a viscous liquid. We see that
when the retarding force is much smaller than the restoring force, the oscil-
latory character of the motion is preserved but the amplitude decreases in
time, with the result that the motion ultimately ceases. Any system that be-
haves in this way is known as a damped oscillator. The dashed blue lines in Fig-
ure 13.19a, which define the envelope of the oscillatory curve, represent the expo-
nential factor in Equation 13.33. This envelope shows that the amplitude decays
exponentially with time. For motion with a given spring constant and block
mass, the oscillations dampen more rapidly as the maximum value of the retarding
force approaches the maximum value of the restoring force.

It is convenient to express the angular frequency of a damped oscillator in the
form

where represents the angular frequency in the absence of a retarding
force (the undamped oscillator) and is called the natural frequency of the sys-
tem. When the magnitude of the maximum retarding force 
the system is said to be underdamped. As the value of R approaches kA, the am-
plitudes of the oscillations decrease more and more rapidly. This motion is repre-
sented by the blue curve in Figure 13.20. When b reaches a critical value bc such
that bc/2m � �0 , the system does not oscillate and is said to be critically damped.
In this case the system, once released from rest at some nonequilibrium position,
returns to equilibrium and then stays there. The graph of displacement versus
time for this case is the red curve in Figure 13.20.

If the medium is so viscous that the retarding force is greater than the restor-
ing force—that is, if and —the system is over-
damped. Again, the displaced system, when free to move, does not oscillate but
simply returns to its equilibrium position. As the damping increases, the time it
takes the system to approach equilibrium also increases, as indicated by the black
curve in Figure 13.20.

In any case in which friction is present, whether the system is overdamped or
underdamped, the energy of the oscillator eventually falls to zero. The lost me-
chanical energy dissipates into internal energy in the retarding medium.

b/2m � �0R max � bvmax � kA

R max � bvmax � kA,

�0 � √k/m

� � √�0 

2 � � b
2m �

2

� � √ k
m

� � b
2m �

2

x � Ae� b
2mt cos(�t � �)

�kx � b 
dx
dt

� m 
d 2x
dt2  

 �Fx � �kx � bv � max A

x

0 t

A e

(a)

(b)

m

b
2m

– t

Figure 13.19 (a) Graph of dis-
placement versus time for a
damped oscillator. Note the de-
crease in amplitude with time. 
(b) One example of a damped os-
cillator is a mass attached to a
spring and submersed in a viscous
liquid.

x

a
b

c

t

Figure 13.20 Graphs of dis-
placement versus time for (a) an
underdamped oscillator, (b) a criti-
cally damped oscillator, and (c) an
overdamped oscillator.
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An automotive suspension system consists of a combination of springs and shock absorbers,
as shown in Figure 13.21. If you were an automotive engineer, would you design a suspen-
sion system that was underdamped, critically damped, or overdamped? Discuss each case.

Optional Section

FORCED OSCILLATIONS
It is possible to compensate for energy loss in a damped system by applying an ex-
ternal force that does positive work on the system. At any instant, energy can be
put into the system by an applied force that acts in the direction of motion of the
oscillator. For example, a child on a swing can be kept in motion by appropriately
timed pushes. The amplitude of motion remains constant if the energy input per
cycle exactly equals the energy lost as a result of damping. Any motion of this type
is called forced oscillation.

A common example of a forced oscillator is a damped oscillator driven by an
external force that varies periodically, such as where � is the angu-
lar frequency of the periodic force and Fext is a constant. Adding this driving force
to the left side of Equation 13.32 gives

(13.35)

(As earlier, we present the solution of this equation without proof.) After a suffi-
ciently long period of time, when the energy input per cycle equals the energy lost
per cycle, a steady-state condition is reached in which the oscillations proceed with
constant amplitude. At this time, when the system is in a steady state, the solution
of Equation 13.35 is

(13.36)x � A cos(�t � �)

Fext cos �t � kx � b 
dx
dt

� m 
d 2x
dt2

F � Fext  cos �t,

13.7

Quick Quiz 13.6

Oil or
other viscous
fluid

Piston
with holes

(a)

Shock absorber
Coil spring

(b)

Figure 13.21 (a) A shock absorber consists of a piston oscillating in a chamber filled with oil.
As the piston oscillates, the oil is squeezed through holes between the piston and the chamber,
causing a damping of the piston’s oscillations. (b) One type of automotive suspension system, in
which a shock absorber is placed inside a coil spring at each wheel.

web
To learn more about shock
absorbers, visit
http://www.hdridecontrol.com
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where

(13.37)

and where is the angular frequency of the undamped oscillator 
One could argue that in steady state the oscillator must physically have the same fre-
quency as the driving force, and thus the solution given by Equation 13.36 is ex-
pected. In fact, when this solution is substituted into Equation 13.35, one finds that
it is indeed a solution, provided the amplitude is given by Equation 13.37.

Equation 13.37 shows that, because an external force is driving it, the motion
of the forced oscillator is not damped. The external agent provides the necessary
energy to overcome the losses due to the retarding force. Note that the system os-
cillates at the angular frequency � of the driving force. For small damping, the am-
plitude becomes very large when the frequency of the driving force is near the nat-
ural frequency of oscillation. The dramatic increase in amplitude near the natural
frequency �0 is called resonance, and for this reason �0 is sometimes called the
resonance frequency of the system.

The reason for large-amplitude oscillations at the resonance frequency is that
energy is being transferred to the system under the most favorable conditions. We
can better understand this by taking the first time derivative of x in Equation
13.36, which gives an expression for the velocity of the oscillator. We find that v is
proportional to sin When the applied force F is in phase with the veloc-
ity, the rate at which work is done on the oscillator by F equals the dot product
F � v. Remember that “rate at which work is done” is the definition of power. Be-
cause the product F � v is a maximum when F and v are in phase, we conclude that
at resonance the applied force is in phase with the velocity and that the
power transferred to the oscillator is a maximum.

Figure 13.22 is a graph of amplitude as a function of frequency for a forced os-
cillator with and without damping. Note that the amplitude increases with decreas-
ing damping (b : 0) and that the resonance curve broadens as the damping in-
creases. Under steady-state conditions and at any driving frequency, the energy
transferred into the system equals the energy lost because of the damping force;
hence, the average total energy of the oscillator remains constant. In the absence
of a damping force (b � 0), we see from Equation 13.37 that the steady-state am-
plitude approaches infinity as � : �0 . In other words, if there are no losses in the
system and if we continue to drive an initially motionless oscillator with a periodic
force that is in phase with the velocity, the amplitude of motion builds without
limit (see the red curve in Fig. 13.22). This limitless building does not occur in
practice because some damping is always present.

The behavior of a driven oscillating system after the driving force is removed
depends on b and on how close � was to �0 . This behavior is sometimes quantified
by a parameter called the quality factor Q. The closer a system is to being un-
damped, the greater its Q. The amplitude of oscillation drops by a factor of 
e . . . ) in Q/� cycles.

Later in this book we shall see that resonance appears in other areas of physics.
For example, certain electrical circuits have natural frequencies. A bridge has nat-
ural frequencies that can be set into resonance by an appropriate driving force. A
dramatic example of such resonance occurred in 1940, when the Tacoma Narrows
Bridge in the state of Washington was destroyed by resonant vibrations. Although
the winds were not particularly strong on that occasion, the bridge ultimately col-
lapsed (Fig. 13.23) because the bridge design had no built-in safety features.

(�2.718

(�t � �).

(b � 0).�0 � √k/m

A �
Fext/m

√(�2 � �0 

2)2 � � b�

m �
2

A
b = 0
Undamped

Small b

Large b

ω00
ω

ω

Figure 13.22 Graph of ampli-
tude versus frequency for a
damped oscillator when a periodic
driving force is present. When the
frequency of the driving force
equals the natural frequency �0 ,
resonance occurs. Note that the
shape of the resonance curve de-
pends on the size of the damping
coefficient b.

QuickLab
Tie several objects to strings and sus-
pend them from a horizontal string,
as illustrated in the figure. Make two
of the hanging strings approximately
the same length. If one of this pair,
such as P, is set into sideways motion,
all the others begin to oscillate. But
Q , whose length is the same as that of
P, oscillates with the greatest ampli-
tude. Must all the masses have the
same value?

Q

P
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Many other examples of resonant vibrations can be cited. A resonant vibration
that you may have experienced is the “singing” of telephone wires in the wind. Ma-
chines often break if one vibrating part is at resonance with some other moving
part. Soldiers marching in cadence across a bridge have been known to set up res-
onant vibrations in the structure and thereby cause it to collapse. Whenever any
real physical system is driven near its resonance frequency, you can expect oscilla-
tions of very large amplitudes.

SUMMARY

When the acceleration of an object is proportional to its displacement from some
equilibrium position and is in the direction opposite the displacement, the object
moves with simple harmonic motion. The position x of a simple harmonic oscilla-
tor varies periodically in time according to the expression

(13.3)

where A is the amplitude of the motion, � is the angular frequency, and � is the
phase constant. The value of � depends on the initial position and initial velocity
of the oscillator. You should be able to use this formula to describe the motion of
an object undergoing simple harmonic motion.

The time T needed for one complete oscillation is defined as the period of
the motion:

(13.4)

The inverse of the period is the frequency of the motion, which equals the num-
ber of oscillations per second.

The velocity and acceleration of a simple harmonic oscillator are

(13.7)

(13.8)

(13.23)v � 	�√A2 � x2

a �
dv
dt

� ��2A cos(�t � �)

v �
dx
dt

� ��A sin(�t � �) 

T �
2�

�

x � A cos(�t � �)

Figure 13.23 (a) In 1940 turbulent winds set up torsional vibrations in the Tacoma Narrows
Bridge, causing it to oscillate at a frequency near one of the natural frequencies of the bridge
structure. (b) Once established, this resonance condition led to the bridge’s collapse.

(a) (b)



Questions 413

Thus, the maximum speed is �A, and the maximum acceleration is �2A. The speed
is zero when the oscillator is at its turning points, and is a maximum when
the oscillator is at the equilibrium position The magnitude of the accelera-
tion is a maximum at the turning points and zero at the equilibrium position. You
should be able to find the velocity and acceleration of an oscillating object at any
time if you know the amplitude, angular frequency, and phase constant.

A block–spring system moves in simple harmonic motion on a frictionless sur-
face, with a period

(13.18)

The kinetic energy and potential energy for a simple harmonic oscillator vary with
time and are given by

(13.20)

(13.21)

These three formulas allow you to analyze a wide variety of situations involving os-
cillations. Be sure you recognize how the mass of the block and the spring con-
stant of the spring enter into the calculations.

The total energy of a simple harmonic oscillator is a constant of the motion
and is given by

(13.22)

The potential energy of the oscillator is a maximum when the oscillator is at its
turning points and is zero when the oscillator is at the equilibrium position. The
kinetic energy is zero at the turning points and a maximum at the equilibrium po-
sition. You should be able to determine the division of energy between potential
and kinetic forms at any time t .

A simple pendulum of length L moves in simple harmonic motion. For small
angular displacements from the vertical, its period is

(13.26)

For small angular displacements from the vertical, a physical pendulum
moves in simple harmonic motion about a pivot that does not go through the cen-
ter of mass.  The period of this motion is

(13.28)

where I is the moment of inertia about an axis through the pivot and d is the dis-
tance from the pivot to the center of mass. You should be able to distinguish when
to use the simple-pendulum formula and when the system must be considered a
physical pendulum.

Uniform circular motion can be considered a combination of two simple har-
monic motions, one along the x axis and the other along the y axis, with the two
differing in phase by 90°.

T � 2� √ I
mgd

T � 2� √ L
g

E � 1
2 kA2

U � 1
2 kx2 � 1

2 kA2 cos2(�t � �)

K � 1
2 mv2 � 1

2 m�2A2 sin2(�t � �)

T �
2�

�
� 2� √ m

k

x � 0.
x � 	A,

QUESTIONS

2. If the coordinate of a particle varies as cos �t,
what is the phase constant in Equation 13.3? At what posi-
tion does the particle begin its motion?

x � �A1. Is a bouncing ball an example of simple harmonic motion?
Is the daily movement of a student from home to school
and back simple harmonic motion? Why or why not?
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PROBLEMS

find (a) the displacement of the particle, (b) its velocity,
and (c) its acceleration. (d) Find the period and ampli-
tude of the motion.

5. A particle moving along the x axis in simple harmonic
motion starts from its equilibrium position, the origin,
at and moves to the right. The amplitude of its
motion is 2.00 cm, and the frequency is 1.50 Hz. 
(a) Show that the displacement of the particle is given
by Determine (b) the maxi-
mum speed and the earliest time (t � 0) at which the
particle has this speed, (c) the maximum acceleration
and the earliest time (t � 0) at which the particle has
this acceleration, and (d) the total distance traveled be-
tween and s.

6. The initial position and initial velocity of an object mov-
ing in simple harmonic motion are xi and vi ; the angular
frequency of oscillation is �. (a) Show that the position
and velocity of the object for all time can be written as

(b) If the amplitude of the motion is A, show that

v2 � ax � vi 

2 � aix i � �2A2

v(t) � �x i� sin �t � vi cos �t

x(t) � x i cos �t � � vi

� � sin �t

t � 1.00t � 0

x � (2.00 cm) sin(3.00�t).

t � 0

Section 13.1 Simple Harmonic Motion
1. The displacement of a particle at s is given by

the expression where x
is in meters and t is in seconds. Determine (a) the fre-
quency and period of the motion, (b) the amplitude of
the motion, (c) the phase constant, and (d) the dis-
placement of the particle at s.

2. A ball dropped from a height of 4.00 m makes a per-
fectly elastic collision with the ground. Assuming that
no energy is lost due to air resistance, (a) show that the
motion is periodic and (b) determine the period of the
motion. (c) Is the motion simple harmonic? Explain.

3. A particle moves in simple harmonic motion with a fre-
quency of 3.00 oscillations/s and an amplitude of 
5.00 cm. (a) Through what total distance does the parti-
cle move during one cycle of its motion? (b) What is its
maximum speed? Where does this occur? (c) Find the
maximum acceleration of the particle. Where in the
motion does the maximum acceleration occur?

4. In an engine, a piston oscillates with simple harmonic
motion so that its displacement varies according to the
expression

where x is in centimeters and t is in seconds. At ,t � 0

x � (5.00 cm) cos(2t � �/6)

t � 0.250

x � (4.00 m) cos(3.00�t � �),
t � 0.250

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

3. Does the displacement of an oscillating particle between
and a later time t necessarily equal the position of

the particle at time t? Explain.
4. Determine whether the following quantities can be in the

same direction for a simple harmonic oscillator: (a) dis-
placement and velocity, (b) velocity and acceleration, 
(c) displacement and acceleration.

5. Can the amplitude A and the phase constant � be deter-
mined for an oscillator if only the position is specified at

? Explain.
6. Describe qualitatively the motion of a mass–spring system

when the mass of the spring is not neglected.
7. Make a graph showing the potential energy of a station-

ary block hanging from a spring, Why is
the lowest part of the graph offset from the origin?

8. A block–spring system undergoes simple harmonic motion
with an amplitude A. Does the total energy change if the
mass is doubled but the amplitude is not changed? Do the
kinetic and potential energies depend on the mass? Explain.

9. What happens to the period of a simple pendulum if the
pendulum’s length is doubled? What happens to the pe-
riod if the mass of the suspended bob is doubled?

10. A simple pendulum is suspended from the ceiling of a sta-
tionary elevator, and the period is determined. Describe
the changes, if any, in the period when the elevator 

U � 1
2 ky2 � mgy.

t � 0

t � 0
(a) accelerates upward, (b) accelerates downward, and
(c) moves with constant velocity.

11. A simple pendulum undergoes simple harmonic motion
when � is small. Is the motion periodic when � is large?
How does the period of motion change as � increases?

12. Will damped oscillations occur for any values of b and k?
Explain.

13. As it possible to have damped oscillations when a system
is at resonance? Explain.

14. At resonance, what does the phase constant � equal in
Equation 13.36? (Hint: Compare this equation with the
expression for the driving force, which must be in phase
with the velocity at resonance.)

15. Some parachutes have holes in them to allow air to move
smoothly through them. Without such holes, sometimes
the air that has gathered beneath the chute as a para-
chutist falls is released from under its edges alternately
and periodically, at one side and then at the other. Why
might this periodic release of air cause a problem?

16. If a grandfather clock were running slowly, how could we
adjust the length of the pendulum to correct the time?

17. A pendulum bob is made from a sphere filled with water.
What would happen to the frequency of vibration of this
pendulum if the sphere had a hole in it that allowed the
water to leak out slowly?
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Section 13.2 The Block – Spring System Revisited
Note: Neglect the mass of the spring in all problems in this
section.

7. A spring stretches by 3.90 cm when a 10.0-g mass is
hung from it. If a 25.0-g mass attached to this spring os-
cillates in simple harmonic motion, calculate the period
of the motion.

8. A simple harmonic oscillator takes 12.0 s to undergo
five complete vibrations. Find (a) the period of its mo-
tion, (b) the frequency in hertz, and (c) the angular
frequency in radians per second.

9. A 0.500-kg mass attached to a spring with a force con-
stant of 8.00 N/m vibrates in simple harmonic motion
with an amplitude of 10.0 cm. Calculate (a) the maxi-
mum value of its speed and acceleration, (b) the speed
and acceleration when the mass is 6.00 cm from the
equilibrium position, and (c) the time it takes the mass
to move from to cm.

10. A 1.00-kg mass attached to a spring with a force con-
stant of 25.0 N/m oscillates on a horizontal, frictionless
track. At , the mass is released from rest at

cm. (That is, the spring is compressed by
3.00 cm.) Find (a) the period of its motion; (b) the
maximum values of its speed and acceleration; and 
(c) the displacement, velocity, and acceleration as func-
tions of time.

11. A 7.00-kg mass is hung from the bottom end of a verti-
cal spring fastened to an overhead beam. The mass is
set into vertical oscillations with a period of 2.60 s. Find
the force constant of the spring.

12. A block of unknown mass is attached to a spring with a
spring constant of 6.50 N/m and undergoes simple har-
monic motion with an amplitude of 10.0 cm. When the
mass is halfway between its equilibrium position and the
end point, its speed is measured to be � 30.0 cm/s. Cal-
culate (a) the mass of the block, (b) the period of the
motion, and (c) the maximum acceleration of the
block.

13. A particle that hangs from a spring oscillates with an an-
gular frequency of 2.00 rad/s. The spring–particle sys-
tem is suspended from the ceiling of an elevator car and
hangs motionless (relative to the elevator car) as the car
descends at a constant speed of 1.50 m/s. The car then
stops suddenly. (a) With what amplitude does the parti-
cle oscillate? (b) What is the equation of motion for the
particle? (Choose upward as the positive direction.)

14. A particle that hangs from a spring oscillates with an an-
gular frequency �. The spring–particle system is sus-
pended from the ceiling of an elevator car and hangs
motionless (relative to the elevator car) as the car de-
scends at a constant speed v. The car then stops sud-
denly. (a) With what amplitude does the particle oscil-
late? (b) What is the equation of motion for the
particle? (Choose upward as the positive direction.)

15. A 1.00-kg mass is attached to a horizontal spring. The
spring is initially stretched by 0.100 m, and the mass is

x � �3.00
t � 0

x � 8.00x � 0

released from rest there. It proceeds to move without
friction. After 0.500 s, the speed of the mass is zero.
What is the maximum speed of the mass?

Section 13.3 Energy of the Simple Harmonic Oscillator
Note: Neglect the mass of the spring in all problems in this
section.

16. A 200-g mass is attached to a spring and undergoes sim-
ple harmonic motion with a period of 0.250 s. If the to-
tal energy of the system is 2.00 J, find (a) the force con-
stant of the spring and (b) the amplitude of the motion.

17. An automobile having a mass of 1 000 kg is driven into
a brick wall in a safety test. The bumper behaves as a
spring of constant 5.00 � 106 N/m and compresses 
3.16 cm as the car is brought to rest. What was the
speed of the car before impact, assuming that no energy
is lost during impact with the wall?

18. A mass–spring system oscillates with an amplitude of
3.50 cm. If the spring constant is 250 N/m and the mass
is 0.500 kg, determine (a) the mechanical energy of the
system, (b) the maximum speed of the mass, and 
(c) the maximum acceleration.

19. A 50.0-g mass connected to a spring with a force con-
stant of 35.0 N/m oscillates on a horizontal, frictionless
surface with an amplitude of 4.00 cm. Find (a) the total
energy of the system and (b) the speed of the mass
when the displacement is 1.00 cm. Find (c) the kinetic
energy and (d) the potential energy when the displace-
ment is 3.00 cm.

20. A 2.00-kg mass is attached to a spring and placed on a
horizontal, smooth surface. A horizontal force of 20.0 N
is required to hold the mass at rest when it is pulled
0.200 m from its equilibrium position (the origin of the
x axis). The mass is now released from rest with an ini-
tial displacement of m, and it subsequently
undergoes simple harmonic oscillations. Find (a) the
force constant of the spring, (b) the frequency of the
oscillations, and (c) the maximum speed of the mass.
Where does this maximum speed occur? (d) Find the
maximum acceleration of the mass. Where does it oc-
cur? (e) Find the total energy of the oscillating system.
Find (f) the speed and (g) the acceleration when the
displacement equals one third of the maximum 
value.

21. A 1.50-kg block at rest on a tabletop is attached to a hor-
izontal spring having force constant of 19.6 N/m. The
spring is initially unstretched. A constant 20.0-N hori-
zontal force is applied to the object, causing the spring
to stretch. (a) Determine the speed of the block after it
has moved 0.300 m from equilibrium, assuming that the
surface between the block and the tabletop is friction-
less. (b) Answer part (a) for a coefficient of kinetic fric-
tion of 0.200 between the block and the tabletop.

22. The amplitude of a system moving in simple harmonic
motion is doubled. Determine the change in (a) the to-
tal energy, (b) the maximum speed, (c) the maximum
acceleration, and (d) the period.

x i � 0.200

WEB
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23. A particle executes simple harmonic motion with an
amplitude of 3.00 cm. At what displacement from the
midpoint of its motion does its speed equal one half of
its maximum speed?

24. A mass on a spring with a constant of 3.24 N/m vi-
brates, with its position given by the equation 

cm) cos(3.60t rad/s). (a) During the first 
cycle, for 0 � t � 1.75 s, when is the potential energy 
of the system changing most rapidly into kinetic energy?
(b) What is the maximum rate of energy transfor-
mation?

Section 13.4 The Pendulum
25. A man enters a tall tower, needing to know its height.

He notes that a long pendulum extends from the ceil-
ing almost to the floor and that its period is 12.0 s. 
(a) How tall is the tower? (b) If this pendulum is taken
to the Moon, where the free-fall acceleration is 
1.67 m/s2, what is its period there?

26. A “seconds” pendulum is one that moves through its
equilibrium position once each second. (The period of
the pendulum is 2.000 s.) The length of a seconds pen-
dulum is 0.992 7 m at Tokyo and 0.994 2 m at Cam-
bridge, England. What is the ratio of the free-fall accel-
erations at these two locations?

27. A rigid steel frame above a street intersection supports
standard traffic lights, each of which is hinged to hang
immediately below the frame. A gust of wind sets a light
swinging in a vertical plane. Find the order of magni-
tude of its period. State the quantities you take as data
and their values.

28. The angular displacement of a pendulum is repre-
sented by the equation � � (0.320 rad)cos �t, where �
is in radians and � � 4.43 rad/s. Determine the period
and length of the pendulum.

29. A simple pendulum has a mass of 0.250 kg and a length
of 1.00 m. It is displaced through an angle of 15.0° and
then released. What are (a) the maximum speed, 
(b) the maximum angular acceleration, and 
(c) the maximum restoring force?

30. A simple pendulum is 5.00 m long. (a) What is the pe-
riod of simple harmonic motion for this pendulum if it
is hanging in an elevator that is accelerating upward at
5.00 m/s2? (b) What is its period if the elevator is accel-
erating downward at 5.00 m/s2? (c) What is the period
of simple harmonic motion for this pendulum if it is
placed in a truck that is accelerating horizontally at 
5.00 m/s2?

31. A particle of mass m slides without friction inside a
hemispherical bowl of radius R . Show that, if it starts
from rest with a small displacement from equilibrium,
the particle moves in simple harmonic motion with an
angular frequency equal to that of a simple pendulum
of length R . That is, 

32. A mass is attached to the end of a string to form a sim-
ple pendulum. The period of its harmonic motion is

� � √g/R .

x � (5.00

measured for small angular displacements and three
lengths; in each case, the motion is clocked with a stop-
watch for 50 oscillations. For lengths of 1.000 m, 
0.750 m, and 0.500 m, total times of 99.8 s, 86.6 s, and
71.1 s, respectively, are measured for the 50 oscillations.
(a) Determine the period of motion for each length.
(b) Determine the mean value of g obtained from these
three independent measurements, and compare it with
the accepted value. (c) Plot T 2 versus L, and obtain a
value for g from the slope of your best-fit straight-line
graph. Compare this value with that obtained in part
(b).

33. A physical pendulum in the form of a planar body
moves in simple harmonic motion with a frequency of
0.450 Hz. If the pendulum has a mass of 2.20 kg and the
pivot is located 0.350 m from the center of mass, deter-
mine the moment of inertia of the pendulum.

34. A very light, rigid rod with a length of 0.500 m extends
straight out from one end of a meter stick. The stick is
suspended from a pivot at the far end of the rod and is
set into oscillation. (a) Determine the period of oscilla-
tion. (b) By what percentage does this differ from a
1.00-m-long simple pendulum?

35. Consider the physical pendulum of Figure 13.13. (a) If
ICM is its moment of inertia about an axis that passes
through its center of mass and is parallel to the axis that
passes through its pivot point, show that its period is

where d is the distance between the pivot point and the
center of mass. (b) Show that the period has a mini-
mum value when d satisfies 

36. A torsional pendulum is formed by attaching a wire to
the center of a meter stick with a mass of 2.00 kg. If the
resulting period is 3.00 min, what is the torsion constant
for the wire?

37. A clock balance wheel has a period of oscillation of
0.250 s. The wheel is constructed so that 20.0 g of mass
is concentrated around a rim of radius 0.500 cm. What
are (a) the wheel’s moment of inertia and (b) the tor-
sion constant of the attached spring?

Section 13.5 Comparing Simple Harmonic 
Motion with Uniform Circular Motion

38. While riding behind a car that is traveling at 3.00 m/s,
you notice that one of the car’s tires has a small hemi-
spherical boss on its rim, as shown in Figure P13.38. 
(a) Explain why the boss, from your viewpoint behind
the car, executes simple harmonic motion. (b) If the 
radius of the car’s tires is 0.300 m, what is the boss’s pe-
riod of oscillation?

39. Consider the simplified single-piston engine shown in
Figure P13.39. If the wheel rotates with constant angu-
lar speed, explain why the piston rod oscillates in sim-
ple harmonic motion.

md 2 � ICM .

T � 2�√ ICM � md 2

mgd

WEB
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riod and (b) the amplitude of the motion. (Hint: As-
sume that there is no damping—that is, that 
b � 0—and use Eq. 13.37.)

45. Considering an undamped, forced oscillator 
show that Equation 13.36 is a solution of Equation
13.35, with an amplitude given by Equation 13.37.

46. A weight of 40.0 N is suspended from a spring that has a
force constant of 200 N/m. The system is undamped
and is subjected to a harmonic force with a frequency of
10.0 Hz, which results in a forced-motion amplitude of
2.00 cm. Determine the maximum value of the force.

47. Damping is negligible for a 0.150-kg mass hanging from
a light 6.30-N/m spring. The system is driven by a force
oscillating with an amplitude of 1.70 N. At what fre-
quency will the force make the mass vibrate with an am-
plitude of 0.440 m?

48. You are a research biologist. Before dining at a fine
restaurant, you set your pager to vibrate instead of
beep, and you place it in the side pocket of your suit
coat. The arm of your chair presses the light cloth
against your body at one spot. Fabric with a length of
8.21 cm hangs freely below that spot, with the pager at
the bottom. A co-worker telephones you. The motion of
the vibrating pager makes the hanging part of your coat
swing back and forth with remarkably large amplitude.
The waiter, maître d’, wine steward, and nearby diners
notice immediately and fall silent. Your daughter pipes
up and says, “Daddy, look! Your cockroaches must have
gotten out again!” Find the frequency at which your
pager vibrates.

ADDITIONAL PROBLEMS

49. A car with bad shock absorbers bounces up and down
with a period of 1.50 s after hitting a bump. The car has
a mass of 1 500 kg and is supported by four springs of
equal force constant k. Determine the value of k.

50. A large passenger with a mass of 150 kg sits in the mid-
dle of the car described in Problem 49. What is the new
period of oscillation?

51. A compact mass M is attached to the end of a uniform
rod, of equal mass M and length L , that is pivoted at the
top (Fig. P13.51). (a) Determine the tensions in the rod

(b � 0),

Piston

A

x = �A x(t )

ω

Boss

Figure P13.38

L

P

y

Pivot

y = 0M

Figure P13.39

(Optional)
Section 13.6 Damped Oscillations

40. Show that the time rate of change of mechanical energy
for a damped, undriven oscillator is given by

and hence is always negative. (Hint: Dif-
ferentiate the expression for the mechanical energy of
an oscillator, and use Eq. 13.32.)

41. A pendulum with a length of 1.00 m is released from an
initial angle of 15.0°. After 1 000 s, its amplitude is re-
duced by friction to 5.50°. What is the value of b/2m ?

42. Show that Equation 13.33 is a solution of Equation
13.32 provided that 

(Optional)
Section 13.7 Forced Oscillations

43. A baby rejoices in the day by crowing and jumping up
and down in her crib. Her mass is 12.5 kg, and the crib
mattress can be modeled as a light spring with a force
constant of 4.30 kN/m. (a) The baby soon learns to
bounce with maximum amplitude and minimum effort
by bending her knees at what frequency? (b) She learns
to use the mattress as a trampoline—losing contact
with it for part of each cycle—when her amplitude ex-
ceeds what value?

44. A 2.00-kg mass attached to a spring is driven by an ex-
ternal force F � (3.00 N) cos(2�t). If the force con-
stant of the spring is 20.0 N/m, determine (a) the pe-

b 2 � 4mk.

E � 1
2 mv2 � 1

2 kx2,

dE/dt � �bv2

Figure P13.51
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at the pivot and at the point P when the system is sta-
tionary. (b) Calculate the period of oscillation for small
displacements from equilibrium, and determine this pe-
riod for L � 2.00 m. (Hint: Assume that the mass at the
end of the rod is a point mass, and use Eq. 13.28.)

52. A mass, m1 � 9.00 kg, is in equilibrium while connected
to a light spring of constant k � 100 N/m that is fas-
tened to a wall, as shown in Figure P13.52a. A second
mass, m2 � 7.00 kg, is slowly pushed up against mass
m1 , compressing the spring by the amount A � 0.200 m
(see Fig. P13.52b). The system is then released, and
both masses start moving to the right on the frictionless
surface. (a) When m1 reaches the equilibrium point, m2
loses contact with m1 (see Fig. P13.52c) and moves to
the right with speed v. Determine the value of v. 
(b) How far apart are the masses when the spring is
fully stretched for the first time (D in Fig. P13.52d)?
(Hint: First determine the period of oscillation and the
amplitude of the m1 – spring system after m2 loses con-
tact with m1 .)

in Figure P13.53, and the coefficient of static friction
between the two is �s � 0.600. What maximum ampli-
tude of oscillation can the system have if block B is not
to slip?

54. A large block P executes horizontal simple harmonic
motion as it slides across a frictionless surface with a fre-
quency f. Block B rests on it, as shown in Figure P13.53,
and the coefficient of static friction between the two is
�s . What maximum amplitude of oscillation can the sys-
tem have if the upper block is not to slip?

55. The mass of the deuterium molecule (D2) is twice 
that of the hydrogen molecule (H2). If the vibrational
frequency of H2 is 1.30 � 1014 Hz, what is the vibra-
tional frequency of D2 ? Assume that the “spring con-
stant’’ of attracting forces is the same for the two 
molecules.

56. A solid sphere (radius � R) rolls without slipping in a
cylindrical trough (radius � 5R), as shown in Figure
P13.56. Show that, for small displacements from equilib-
rium perpendicular to the length of the trough, the
sphere executes simple harmonic motion with a period
T � 2� √28R/5g.

WEB
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m1 m2
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57. A light cubical container of volume a3 is initially filled
with a liquid of mass density �. The container is initially
supported by a light string to form a pendulum of
length Li , measured from the center of mass of the
filled container. The liquid is allowed to flow from the
bottom of the container at a constant rate (dM/dt). At
any time t, the level of the liquid in the container is h

53. A large block P executes horizontal simple harmonic
motion as it slides  across a frictionless surface with a
frequency of f � 1.50 Hz. Block B rests on it, as shown

Figure P13.52

Figure P13.53 Problems 53 and 54.

Figure P13.56
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59. A pendulum of length L and mass M has a spring of
force constant k connected to it at a distance h below its
point of suspension (Fig. P13.59). Find the frequency of
vibration of the system for small values of the amplitude
(small �). (Assume that the vertical suspension of
length L is rigid, but neglect its mass.)

60. A horizontal plank of mass m and length L is pivoted at
one end. The plank’s other end is supported by a spring
of force constant k (Fig. P13.60). The moment of iner-
tia of the plank about the pivot is (a) Show that
the plank, after being displaced a small angle � from its
horizontal equilibrium position and released, moves
with simple harmonic motion of angular frequency 

(b) Evaluate the frequency if the mass is
5.00 kg and the spring has a force constant of 100 N/m.
� � √3k/m.

1
3 mL2.

Pivot

θ

k

h
θ

L

k

M

m

(a)

61. One end of a light spring with a force constant of 
100 N/m is attached to a vertical wall. A light string is
tied to the other end of the horizontal spring. The
string changes from horizontal to vertical as it passes
over a 4.00-cm-diameter solid pulley that is free to turn
on a fixed smooth axle. The vertical section of the
string supports a 200-g mass. The string does not slip at
its contact with the pulley. Find the frequency of oscilla-
tion of the mass if the mass of the pulley is (a) negligi-
ble, (b) 250 g, and (c) 750 g.

62. A 2.00-kg block hangs without vibrating at the end of a
spring (k � 500 N/m) that is attached to the ceiling of
an elevator car. The car is rising with an upward acceler-
ation of g/3 when the acceleration suddenly ceases (at

). (a) What is the angular frequency of oscillation
of the block after the acceleration ceases? (b) By what
amount is the spring stretched during the acceleration
of the elevator car? (c) What are the amplitude of the
oscillation and the initial phase angle observed by a
rider in the car? Take the upward direction to be posi-
tive.

63. A simple pendulum with a length of 2.23 m and a mass
of 6.74 kg is given an initial speed of 2.06 m/s at its
equilibrium position. Assume that it undergoes simple
harmonic motion, and determine its (a) period, (b) to-
tal energy, and (c) maximum angular displacement.

t � 0

Figure P13.58 (a) Mass–spring system for Problems 58 and 68.
(b) Bungee-jumping from a bridge. (Telegraph Colour Library/
FPG International)

Figure P13.59

Figure P13.60

(b)

and the length of the pendulum is L (measured relative
to the instantaneous center of mass). (a) Sketch the ap-
paratus and label the dimensions a, h, Li , and L . 
(b) Find the time rate of change of the period as a
function of time t. (c) Find the period as a function of
time.

58. After a thrilling plunge, bungee-jumpers bounce freely
on the bungee cords through many cycles. Your little
brother can make a pest of himself by figuring out the
mass of each person, using a proportion he set up by
solving this problem: A mass m is oscillating freely on a
vertical spring with a period T (Fig. P13.58a). An un-
known mass m on the same spring oscillates with a pe-
riod T . Determine (a) the spring constant k and 
(b) the unknown mass m.
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67. A ball of mass m is connected to two rubber bands of
length L , each under tension T, as in Figure P13.67.
The ball is displaced by a small distance y perpendicular
to the length of the rubber bands. Assuming that the
tension does not change, show that (a) the restoring
force is � (2T/L)y and (b) the system exhibits simple
harmonic motion with an angular frequency
� � √2T/mL .

68. When a mass M, connected to the end of a spring of
mass g and force constant k, is set into simple
harmonic motion, the period of its motion is

A two-part experiment is conducted with the use of vari-
ous masses suspended vertically from the spring, as
shown in Figure P13.58a. (a) Static extensions of 17.0,
29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured for M
values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respec-
tively. Construct a graph of Mg versus x, and perform a
linear least-squares fit to the data. From the slope of
your graph, determine a value for k for this spring. 
(b) The system is now set into simple harmonic motion,
and periods are measured with a stopwatch. With M �
80.0 g, the total time for 10 oscillations is measured to
be 13.41 s. The experiment is repeated with M values of
70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding
times for 10 oscillations of 12.52, 11.67, 10.67, 9.62, and
7.03 s. Compute the experimental value for T for each
of these measurements. Plot a graph of T 2 versus M,
and determine a value for k from the slope of the linear
least-squares fit through the data points. Compare this
value of k with that obtained in part (a). (c) Obtain a
value for ms from your graph, and compare it with the
given value of 7.40 g.

69. A small, thin disk of radius r and mass m is attached
rigidly to the face of a second thin disk of radius R and
mass M, as shown in Figure P13.69. The center of the
small disk is located at the edge of the large disk. The
large disk is mounted at its center on a frictionless axle.
The assembly is rotated through a small angle � from its
equilibrium position and released. (a) Show that the

T � 2�√ M � (ms/3)
k

ms � 7.40

WEB
R

M

θθ

mv

y

L L

x

dx

M

v

Figure P13.66

Figure P13.67

Figure P13.69

64. People who ride motorcycles and bicycles learn to look
out for bumps in the road and especially for washboard-
ing, which is a condition of many equally spaced ridges
worn into the road. What is so bad about washboarding?
A motorcycle has several springs and shock absorbers in
its suspension, but you can model it as a single spring
supporting a mass. You can estimate the spring constant
by thinking about how far the spring compresses when
a big biker sits down on the seat. A motorcyclist travel-
ing at highway speed must be particularly careful of
washboard bumps that are a certain distance apart.
What is the order of magnitude of their separation dis-
tance? State the quantities you take as data and the val-
ues you estimate or measure for them.

65. A wire is bent into the shape of one cycle of a cosine
curve. It is held in a vertical plane so that the height y
of the wire at any horizontal distance x from the center
is given by rad/m)]. A
bead can slide without friction on the stationary wire.
Show that if its excursion away from is never large,
the bead moves with simple harmonic motion. Deter-
mine its angular frequency. (Hint: cos for
small �.)

66. A block of mass M is connected to a spring of mass m
and oscillates in simple harmonic motion on a horizon-
tal, frictionless track (Fig. P13.66). The force constant
of the spring is k, and the equilibrium length is �. Find
(a) the kinetic energy of the system when the block has
a speed v, and (b) the period of oscillation. (Hint: As-
sume that all portions of the spring oscillate in phase
and that the velocity of a segment dx is proportional to
the distance x from the fixed end; that is, /�]v.
Also, note that the mass of a segment of the spring is

�]dx.)dm � [m/

vx � [x

� � 1 � � 2/2

x � 0

y � 20.0 cm[1 � cos(0.160x
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ANSWERS TO QUICK QUIZZES

13.3 No, because in simple harmonic motion, the accelera-
tion is not constant.

13.4 where 
13.5 From Hooke’s law, the spring constant must be

If we substitute this value for k into Equation
13.18, we find that

This is the same as Equation 13.26, which gives the pe-
riod of a simple pendulum. Thus, when an object
stretches a vertically hung spring, the period of the sys-
tem is the same as that of a simple pendulum having a
length equal to the amount of static extension of the
spring.

T � 2�√ m
k

� 2�√ m
mg/L

� 2�√ L
g

k � mg/L .

A � vi/�.x � �A sin �t,

13.1 Because A can never be zero, � must be any value that
results in the cosine function’s being zero at . In
other words, � � cos�1(0). This is true at � � �/2,
3�/2 or,  more generally, � � 	 n�/2, where n is any
nonzero odd integer. If we want to restrict our choices
of � to values between 0 and 2�, we need to know
whether the object was moving to the right or to the left
at . If it was moving with a positive velocity, then 
� � 3�/2. If vi � 0, then � � �/2.

13.2 (d) 4A. From its maximum positive position to the equi-
librium position, it travels a distance A, by definition of
amplitude. It then goes an equal distance past the equi-
librium position to its maximum negative position. It
then repeats these two motions in the reverse direction
to return to its original position and complete one cycle.

t � 0

t � 0

m

(a)

k1 k2

(b)

k1 k2

m

speed of the center of the small disk as it passes through
the equilibrium position is

(b) Show that the period of the motion is

70. Consider the damped oscillator illustrated in Figure
13.19. Assume that the mass is 375 g, the spring con-
stant is 100 N/m, and kg/s. (a) How long
does it takes for the amplitude to drop to half its initial
value? (b) How long does it take for the mechanical en-
ergy to drop to half its initial value? (c) Show that, in
general, the fractional rate at which the amplitude de-
creases in a damped harmonic oscillator is one-half the
fractional rate at which the mechanical energy de-
creases.

71. A mass m is connected to two springs of force constants
k1 and k2 , as shown in Figure P13.71a and b. In each
case, the mass moves on a frictionless table and is dis-
placed from equilibrium and then released. Show that
in the two cases the mass exhibits simple harmonic mo-
tion with periods

(a)

(b)

72. Consider a simple pendulum of length L � 1.20 m that
is displaced from the vertical by an angle �max and then
released. You are to predict the subsequent angular dis-
placements when �max is small and also when it is large.
Set up and carry out a numerical method to integrate

T � 2�√ m
k1 � k2

T � 2�√ m(k1 � k2)
k1k2

b � 0.100

T � 2� � (M � 2m)R2 � mr 2

2mgR �
1/2

v � 2 � Rg(1 � cos �)
(M/m) � (r/R)2 � 2 �

1/2

the equation of motion for the simple pendulum:

Take the initial conditions to be � � �max and d�/dt � 0
at . On one trial choose �max � 5.00°, and on an-
other trial take �max � 100°. In each case, find the dis-
placement � as a function of time. Using the same val-
ues for �max, compare your results for � with those
obtained from �max cos �t . How does the period for the
large value of �max compare with that for the small value
of �max ? Note: Using the Euler method to solve this dif-
ferential equation, you may find that the amplitude
tends to increase with time. The fourth-order
Runge–Kutta method would be a better choice to solve
the differential equation. However, if you choose �t
small enough, the solution that you obtain using Euler’s
method can still be good.

t � 0

d 2�

dt2 � �
g
L

 sin �

Figure P13.71
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13.6 If your goal is simply to stop the bounce from an ab-
sorbed shock as rapidly as possible, you should critically
damp the suspension. Unfortunately, the stiffness of this
design makes for an uncomfortable ride. If you under-
damp the suspension, the ride is more comfortable but
the car bounces. If you overdamp the suspension, the
wheel is displaced from its equilibrium position longer
than it should be. (For example, after hitting a bump,
the spring stays compressed for a short time and the

wheel does not quickly drop back down into contact
with the road after the wheel is past the bump—a dan-
gerous situation.) Because of all these considerations,
automotive engineers usually design suspensions to be
slightly underdamped. This allows the suspension to ab-
sorb a shock rapidly (minimizing the roughness of the
ride) and then return to equilibrium after only one or
two noticeable oscillations.
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The Law of Gravity

P U Z Z L E R

More than 300 years ago, Isaac Newton
realized that the same gravitational force
that causes apples to fall to the Earth
also holds the Moon in its orbit. In recent
years, scientists have used the Hubble
Space Telescope to collect evidence of
the gravitational force acting even far-
ther away, such as at this protoplanetary
disk in the constellation Taurus. What
properties of an object such as a proto-
planet or the Moon determine the
strength of its gravitational attraction to
another object? (Left, Larry West/FPG

International; right, Courtesy of NASA)
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14.8 Energy Considerations in
Planetary and Satellite Motion
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Force Between an Extended
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Force Between a Particle and a
Spherical Mass
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For more information about the Hubble,
visit the Space Telescope Science Institute
at http://www.stsci.edu/
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efore 1687, a large amount of data had been collected on the motions of the
Moon and the planets, but a clear understanding of the forces causing these
motions was not available. In that year, Isaac Newton provided the key that

unlocked the secrets of the heavens. He knew, from his first law, that a net force
had to be acting on the Moon because without such a force the Moon would move
in a straight-line path rather than in its almost circular orbit. Newton reasoned
that this force was the gravitational attraction exerted by the Earth on the Moon.
He realized that the forces involved in the Earth–Moon attraction and in the
Sun–planet attraction were not something special to those systems, but rather
were particular cases of a general and universal attraction between objects. In
other words, Newton saw that the same force of attraction that causes the Moon to
follow its path around the Earth also causes an apple to fall from a tree. As he put
it, “I deduced that the forces which keep the planets in their orbs must be recipro-
cally as the squares of their distances from the centers about which they revolve;
and thereby compared the force requisite to keep the Moon in her orb with the
force of gravity at the surface of the Earth; and found them answer pretty nearly.”

In this chapter we study the law of gravity. We place emphasis on describing
the motion of the planets because astronomical data provide an important test of
the validity of the law of gravity. We show that the laws of planetary motion devel-
oped by Johannes Kepler follow from the law of gravity and the concept of conser-
vation of angular momentum. We then derive a general expression for gravita-
tional potential energy and examine the energetics of planetary and satellite
motion. We close by showing how the law of gravity is also used to determine the
force between a particle and an extended object.

NEWTON’S LAW OF UNIVERSAL GRAVITATION
You may have heard the legend that Newton was struck on the head by a falling ap-
ple while napping under a tree. This alleged accident supposedly prompted him
to imagine that perhaps all bodies in the Universe were attracted to each other in
the same way the apple was attracted to the Earth. Newton analyzed astronomical
data on the motion of the Moon around the Earth. From that analysis, he made
the bold assertion that the force law governing the motion of planets was the same
as the force law that attracted a falling apple to the Earth. This was the first time
that “earthly” and “heavenly” motions were unified. We shall look at the mathe-
matical details of Newton’s analysis in Section 14.5.

In 1687 Newton published his work on the law of gravity in his treatise Mathe-
matical Principles of Natural Philosophy. Newton’s law of universal gravitation
states that

14.1

every particle in the Universe attracts every other particle with a force that is di-
rectly proportional to the product of their masses and inversely proportional to
the square of the distance between them.

B

If the particles have masses m1 and m2 and are separated by a distance r, the mag-
nitude of this gravitational force is

(14.1)Fg � G 
m1m2

r 2The law of gravity
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where G is a constant, called the universal gravitational constant, that has been mea-
sured experimentally. As noted in Example 6.6, its value in SI units is

(14.2)

The form of the force law given by Equation 14.1 is often referred to as an in-
verse-square law because the magnitude of the force varies as the inverse square
of the separation of the particles.1 We shall see other examples of this type of force
law in subsequent chapters. We can express this force in vector form by defining a
unit vector (Fig. 14.1). Because this unit vector is directed from particle 1 to
particle 2, the force exerted by particle 1 on particle 2 is

(14.3)

where the minus sign indicates that particle 2 is attracted to particle 1, and hence
the force must be directed toward particle 1. By Newton’s third law, the force ex-
erted by particle 2 on particle 1, designated F21 , is equal in magnitude to F12 and
in the opposite direction. That is, these forces form an action–reaction pair, and

Several features of Equation 14.3 deserve mention. The gravitational force is a
field force that always exists between two particles, regardless of the medium that
separates them. Because the force varies as the inverse square of the distance be-
tween the particles, it decreases rapidly with increasing separation. We can relate
this fact to the geometry of the situation by noting that the intensity of light ema-
nating from a point source drops off in the same 1/r 2 manner, as shown in Figure
14.2.

Another important point about Equation 14.3 is that the gravitational force
exerted by a finite-size, spherically symmetric mass distribution on a parti-
cle outside the distribution is the same as if the entire mass of the distribu-
tion were concentrated at the center. For example, the force exerted by the

F21 � �F12.

F12 � �G 
m1m2

r 2  r̂12

r̂12

G � 6.673 � 10�11 N�m2/kg2

Properties of the gravitational
force

QuickLab
Inflate a balloon just enough to form
a small sphere. Measure its diameter.
Use a marker to color in a 1-cm
square on its surface. Now continue
inflating the balloon until it reaches
twice the original diameter. Measure
the size of the square you have drawn.
Also note how the color of the
marked area has changed. Have you
verified what is shown in Figure 14.2?

1 An inverse relationship between two quantities x and y is one in which where k is a constant.
A direct proportion between x and y exists when y � kx.

y � k/x,

m1

m2
r

r̂

F21

F12

12

Figure 14.1 The gravitational
force between two particles is at-
tractive. The unit vector is di-
rected from particle 1 to particle 2.
Note that F21 � � F12 .

r̂12

r

2r Figure 14.2 Light radiating from a
point source drops off as 1/r2, a relation-
ship that matches the way the gravita-
tional force depends on distance. When
the distance from the light source is dou-
bled, the light has to cover four times the
area and thus is one fourth as bright.
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Earth on a particle of mass m near the Earth’s surface has the magnitude

(14.4)

where ME is the Earth’s mass and RE its radius. This force is directed toward the
center of the Earth.

We have evidence of the fact that the gravitational force acting on an object is
directly proportional to its mass from our observations of falling objects, discussed
in Chapter 2. All objects, regardless of mass, fall in the absence of air resistance at
the same acceleration g near the surface of the Earth. According to Newton’s sec-
ond law, this acceleration is given by where m is the mass of the falling
object. If this ratio is to be the same for all falling objects, then Fg must be directly
proportional to m, so that the mass cancels in the ratio. If we consider the more
general situation of a gravitational force between any two objects with mass, such
as two planets, this same argument can be applied to show that the gravitational
force is proportional to one of the masses. We can choose either of the masses in
the argument, however; thus, the gravitational force must be directly proportional
to both masses, as can be seen in Equation 14.3.

MEASURING THE GRAVITATIONAL CONSTANT
The universal gravitational constant G was measured in an important experiment
by Henry Cavendish (1731–1810) in 1798. The Cavendish apparatus consists of
two small spheres, each of mass m, fixed to the ends of a light horizontal rod sus-
pended by a fine fiber or thin metal wire, as illustrated in Figure 14.3. When two
large spheres, each of mass M, are placed near the smaller ones, the attractive
force between smaller and larger spheres causes the rod to rotate and twist the
wire suspension to a new equilibrium orientation. The angle of rotation is mea-
sured by the deflection of a light beam reflected from a mirror attached to the ver-
tical suspension. The deflection of the light is an effective technique for amplify-
ing the motion. The experiment is carefully repeated with different masses at
various separations. In addition to providing a value for G, the results show experi-
mentally that the force is attractive, proportional to the product mM, and inversely
proportional to the square of the distance r.

14.2

g � Fg/m,

Fg � G 
MEm
R E 

2

Billiards, Anyone?EXAMPLE 14.1
Solution First we calculate separately the individual forces
on the cue ball due to the other two balls, and then we find
the vector sum to get the resultant force. We can see graphi-
cally that this force should point upward and toward the

Three 0.300-kg billiard balls are placed on a table at the cor-
ners of a right triangle, as shown in Figure 14.4. Calculate the
gravitational force on the cue ball (designated m1) resulting
from the other two balls.

Mirror

r
m

M

Light
source

Figure 14.3 Schematic diagram of the Cavendish ap-
paratus for measuring G. As the small spheres of mass m
are attracted to the large spheres of mass M, the rod be-
tween the two small spheres rotates through a small an-
gle. A light beam reflected from a mirror on the rotating
apparatus measures the angle of rotation. The dashed
line represents the original position of the rod.
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FREE-FALL ACCELERATION AND THE
GRAVITATIONAL FORCE

In Chapter 5, when defining mg as the weight of an object of mass m, we referred
to g as the magnitude of the free-fall acceleration. Now we are in a position to ob-
tain a more fundamental description of g. Because the force acting on a freely
falling object of mass m near the Earth’s surface is given by Equation 14.4, we can
equate mg to this force to obtain

(14.5)

Now consider an object of mass m located a distance h above the Earth’s sur-
face or a distance r from the Earth’s center, where The magnitude of
the gravitational force acting on this object is

The gravitational force acting on the object at this position is also where
g� is the value of the free-fall acceleration at the altitude h. Substituting this expres-

Fg � mg�,

Fg � G 
MEm

r 2 � G 
MEm

(R E � h)2

r � R E � h.

 g � G 
ME

R E 

2  

mg � G 
MEm
R E 

2

14.3

right. We locate our coordinate axes as shown in Figure 14.4,
placing our origin at the position of the cue ball.

The force exerted by m2 on the cue ball is directed up-
ward and is given by

F21 � G 
m2m1

r21 

2  j 
This result shows that the gravitational forces between every-
day objects have extremely small magnitudes. The force ex-
erted by m3 on the cue ball is directed to the right:

Therefore, the resultant force on the cue ball is

and the magnitude of this force is

Exercise Find the direction of F.

Answer 29.3° counterclockwise from the positive x axis.

 � 7.65 � 10�11 N

F � √F21 

2 � F31 

2 � √(3.75)2 � (6.67)2 � 10�11

(3.75j � 6.67i) � 10�11 NF � F21 � F31 �

 � 6.67 � 10�11 i N 

 � �6.67 � 10�11 
N�m2

kg2 � 
(0.300 kg)(0.300 kg)

(0.300 m)2  i

F31 � G 
m3m1

r31 

2  i 

 � 3.75 � 10�11 j N 

 � �6.67 � 10�11 
N�m2

kg2 � 
(0.300 kg)(0.300 kg)

(0.400 m)2  j

0.400 m

m2

0.500 m

m1 0.300 m m3

F21
F

F31y

x

Figure 14.4 The resultant gravitational force acting on the cue
ball is the vector sum F21 � F31 .

Free-fall acceleration near the
Earth’s surface
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sion for Fg into the last equation shows that g� is

(14.6)

Thus, it follows that g� decreases with increasing altitude. Because the weight of a
body is mg�, we see that as its weight approaches zero.r : �,

g� �
GME

r 2 �
GME

(R E � h)2

Variation of g with Altitude hEXAMPLE 14.2
The International Space Station is designed to operate at an
altitude of 350 km. When completed, it will have a weight
(measured at the Earth’s surface) of 4.22 � 106 N. What is its
weight when in orbit?

Solution Because the station is above the surface of the
Earth, we expect its weight in orbit to be less than its weight
on Earth, 4.22 � 106 N. Using Equation 14.6 with h �
350 km, we obtain

Because g�/g � 8.83/9.80 � 0.901, we conclude that the
weight of the station at an altitude of 350 km is 90.1% of 
the value at the Earth’s surface. So the station’s weight in or-
bit is 

(0.901)(4.22 � 106 N) �

Values of g� at other altitudes are listed in Table 14.1.

3.80 � 106 N

 � 8.83 m/s2 

 �
(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)

(6.37 � 106 m � 0.350 � 106 m)2

g� �
GME

(R E � h)2  

The Density of the EarthEXAMPLE 14.3
Because this value is about twice the density of most rocks at
the Earth’s surface, we conclude that the inner core of the
Earth has a density much higher than the average value. It is
most amazing that the Cavendish experiment, which deter-
mines G (and can be done on a tabletop), combined with
simple free-fall measurements of g, provides information
about the core of the Earth.

Using the fact that g � 9.80 m/s2 at the Earth’s surface, find
the average density of the Earth.

Solution Using g � 9.80 m/s2 and we
find from Equation 14.5 that From this
result, and using the definition of density from Chapter 1, we
obtain

5.50 � 103 kg/m3�

�	 �

	

V	
�


	
4
3�R E 

3 �
5.96 � 1024 kg

4
3�(6.37 � 106 m)3

ME � 5.96 � 1024 kg.
R E � 6.37 � 106 m,

Variation of g with altitude

web
The official web site for the International
Space Station is www.station.nasa.gov

TABLE 14.1 Free-Fall Acceleration g �
at Various Altitudes
Above the Earth’s Surface

Altitude h (km) g� (m/s2)

1 000 7.33
2 000 5.68
3 000 4.53
4 000 3.70
5 000 3.08
6 000 2.60
7 000 2.23
8 000 1.93
9 000 1.69

10 000 1.49
50 000 0.13

� 0



14.4 Kepler’s Laws 429

KEPLER’S LAWS
People have observed the movements of the planets, stars, and other celestial bod-
ies for thousands of years. In early history, scientists regarded the Earth as the cen-
ter of the Universe. This so-called geocentric model was elaborated and formalized
by the Greek astronomer Claudius Ptolemy (c. 100–c. 170) in the second century
A.D. and was accepted for the next 1 400 years. In 1543 the Polish astronomer
Nicolaus Copernicus (1473–1543) suggested that the Earth and the other planets
revolved in circular orbits around the Sun (the heliocentric model).

The Danish astronomer Tycho Brahe (1546–1601) wanted to determine how
the heavens were constructed, and thus he developed a program to determine the
positions of both stars and planets. It is interesting to note that those observations
of the planets and 777 stars visible to the naked eye were carried out with only a
large sextant and a compass. (The telescope had not yet been invented.)

The German astronomer Johannes Kepler was Brahe’s assistant for a short
while before Brahe’s death, whereupon he acquired his mentor’s astronomical
data and spent 16 years trying to deduce a mathematical model for the motion of
the planets. Such data are difficult to sort out because the Earth is also in motion
around the Sun. After many laborious calculations, Kepler found that Brahe’s data
on the revolution of Mars around the Sun provided the answer.

14.4

Astronauts F. Story Musgrave and Jeffrey A. Hoffman, along with the Hubble Space Telescope
and the space shuttle Endeavor, are all falling around the Earth.

Johannes Kepler German as-
tronomer (1571 – 1630) The German
astronomer Johannes Kepler is best
known for developing the laws of
planetary motion based on the careful
observations of Tycho Brahe. (Art Re-
source)

For more information about Johannes
Kepler, visit our Web site at 
www.saunderscollege.com/physics/
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Kepler’s analysis first showed that the concept of circular orbits around the
Sun had to be abandoned. He eventually discovered that the orbit of Mars could
be accurately described by an ellipse. Figure 14.5 shows the geometric description
of an ellipse. The longest dimension is called the major axis and is of length 2a,
where a is the semimajor axis. The shortest dimension is the minor axis, of
length 2b, where b is the semiminor axis. On either side of the center is a focal
point, a distance c from the center, where The Sun is located at one
of the focal points of Mars’s orbit. Kepler generalized his analysis to include the
motions of all planets. The complete analysis is summarized in three statements
known as Kepler’s laws:

a2 � b2 � c 2.

1. All planets move in elliptical orbits with the Sun at one focal point.
2. The radius vector drawn from the Sun to a planet sweeps out equal areas in

equal time intervals.
3. The square of the orbital period of any planet is proportional to the cube of

the semimajor axis of the elliptical orbit.

Most of the planetary orbits are close to circular in shape; for example, the
semimajor and semiminor axes of the orbit of Mars differ by only 0.4%. Mercury
and Pluto have the most elliptical orbits of the nine planets. In addition to the
planets, there are many asteroids and comets orbiting the Sun that obey Kepler’s
laws. Comet Halley is such an object; it becomes visible when it is close to the Sun
every 76 years. Its orbit is very elliptical, with a semiminor axis 76% smaller than its
semimajor axis.

Although we do not prove it here, Kepler’s first law is a direct consequence of
the fact that the gravitational force varies as 1/r 2. That is, under an inverse-square
gravitational-force law, the orbit of a planet can be shown mathematically to be an
ellipse with the Sun at one focal point. Indeed, half a century after Kepler devel-
oped his laws, Newton demonstrated that these laws are a consequence of the grav-
itational force that exists between any two masses. Newton’s law of universal gravi-
tation, together with his development of the laws of motion, provides the basis for
a full mathematical solution to the motion of planets and satellites.

THE LAW OF GRAVITY AND
THE MOTION OF PLANETS

In formulating his law of gravity, Newton used the following reasoning, which sup-
ports the assumption that the gravitational force is proportional to the inverse
square of the separation between the two interacting bodies. He compared the ac-
celeration of the Moon in its orbit with the acceleration of an object falling near
the Earth’s surface, such as the legendary apple (Fig. 14.6). Assuming that both ac-
celerations had the same cause—namely, the gravitational attraction of the
Earth—Newton used the inverse-square law to reason that the acceleration of the
Moon toward the Earth (centripetal acceleration) should be proportional to
1/rM

2, where rM is the distance between the centers of the Earth and the Moon.
Furthermore, the acceleration of the apple toward the Earth should be propor-
tional to 1/RE

2, where RE is the radius of the Earth, or the distance between the
centers of the Earth and the apple. Using the values m andrM � 3.84 � 108

14.5

Kepler’s laws

a

c b

F2F1

Figure 14.5 Plot of an ellipse.
The semimajor axis has a length a,
and the semiminor axis has a
length b. The focal points are lo-
cated at a distance c from the cen-
ter, where a2 � b2 � c 2.
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m, Newton predicted that the ratio of the Moon’s acceleration
aM to the apple’s acceleration g would be

Therefore, the centripetal acceleration of the Moon is

Newton also calculated the centripetal acceleration of the Moon from a knowl-
edge of its mean distance from the Earth and its orbital period, days �
2.36 � 106 s. In a time T, the Moon travels a distance 2�rM , which equals the cir-
cumference of its orbit. Therefore, its orbital speed is 2�rM/T and its centripetal
acceleration is

In other words, because the Moon is roughly 60 Earth radii away, the gravitational
acceleration at that distance should be about 1/602 of its value at the Earth’s sur-
face. This is just the acceleration needed to account for the circular motion of the
Moon around the Earth. The nearly perfect agreement between this value and the
value Newton obtained using g provides strong evidence of the inverse-square na-
ture of the gravitational force law.

Although these results must have been very encouraging to Newton, he was
deeply troubled by an assumption he made in the analysis. To evaluate the acceler-
ation of an object at the Earth’s surface, Newton treated the Earth as if its mass
were all concentrated at its center. That is, he assumed that the Earth acted as a
particle as far as its influence on an exterior object was concerned. Several years
later, in 1687, on the basis of his pioneering work in the development of calculus,
Newton proved that this assumption was valid and was a natural consequence of
the law of universal gravitation.

 � 2.72 � 10�3 m/s2 �
9.80 m/s2

602  

aM �
v2

rM
�

(2�rM/T)2

rM
�

4�2rM

T 2 �
4�2(3.84 � 108 m)

(2.36 � 106 s)2

T � 27.32

aM � (2.75 � 10�4)(9.80 m/s2) � 2.70 � 10�3 m/s2

aM

g
�

(1/rM)2

(1/R E)2 � � R E

rM
�

2
� � 6.37 � 106 m

3.84 � 108 m �
2

� 2.75 � 10�4

R E � 6.37 � 106

Acceleration of the Moon

RE

Moon

v

aM

rM

Earth

g Figure 14.6 As it revolves around the
Earth, the Moon experiences a cen-
tripetal acceleration aM directed toward
the Earth. An object near the Earth’s
surface, such as the apple shown here,
experiences an acceleration g. (Dimen-
sions are not to scale.)
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Kepler’s Third Law

It is informative to show that Kepler’s third law can be predicted from the inverse-
square law for circular orbits.2 Consider a planet of mass Mp moving around the
Sun of mass MS in a circular orbit, as shown in Figure 14.7. Because the gravita-
tional force exerted by the Sun on the planet is a radially directed force that keeps
the planet moving in a circle, we can apply Newton’s second law to the
planet:

Because the orbital speed v of the planet is simply 2�r/T, where T is its period of
revolution, the preceding expression becomes

(14.7)

where KS is a constant given by

Equation 14.7 is Kepler’s third law. It can be shown that the law is also valid
for elliptical orbits if we replace r with the length of the semimajor axis a. Note
that the constant of proportionality KS is independent of the mass of the planet.
Therefore, Equation 14.7 is valid for any planet.3 Table 14.2 contains a collection
of useful planetary data. The last column verifies that T 2/r 3 is a constant. The
small variations in the values in this column reflect uncertainties in the measured
values of the periods and semimajor axes of the planets.

If we were to consider the orbit around the Earth of a satellite such as the
Moon, then the proportionality constant would have a different value, with the
Sun’s mass replaced by the Earth’s mass.

K S �
4�2

GMS
� 2.97 � 10�19 s2/m3

T 2 � � 4�2

GMS
� r 3 � K Sr 3

GMS

r 2 �
(2�r/T)2

r

GMSMp

r 2 �
Mpv2

r

(�F � ma)

The Mass of the SunEXAMPLE 14.4

In Example 14.3, an understanding of gravitational forces en-
abled us to find out something about the density of the
Earth’s core, and now we have used this understanding to de-
termine the mass of the Sun.

1.99 � 1030 kg�
Calculate the mass of the Sun using the fact that the period
of the Earth’s orbit around the Sun is 3.156 � 107 s and its
distance from the Sun is 1.496 � 1011 m.

Solution Using Equation 14.7, we find that

MS �
4�2r 3

GT 2 �
4�2(1.496 � 1011 m)3

(6.67 � 10�11 N�m2/kg2)(3.156 � 107 s)2

2 The orbits of all planets except Mercury and Pluto are very close to being circular; hence, we do not
introduce much error with this assumption. For example, the ratio of the semiminor axis to the semi-
major axis for the Earth’s orbit is 
3 Equation 14.7 is indeed a proportion because the ratio of the two quantities T 2 and r 3 is a constant.
The variables in a proportion are not required to be limited to the first power only.

b/a � 0.999 86.

Kepler’s third law

r

MS

Mp

v

Figure 14.7 A planet of mass Mp
moving in a circular orbit around
the Sun. The orbits of all planets
except Mercury and Pluto are
nearly circular.
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Kepler’s Second Law and Conservation of Angular Momentum

Consider a planet of mass Mp moving around the Sun in an elliptical orbit (Fig.
14.8). The gravitational force acting on the planet is always along the radius vector,
directed toward the Sun, as shown in Figure 14.9a. When a force is directed to-
ward or away from a fixed point and is a function of r only, it is called a central
force. The torque acting on the planet due to this force is clearly zero; that is, be-
cause F is parallel to r,

(You may want to revisit Section 11.2 to refresh your memory on the vector prod-
uct.) Recall from Equation 11.19, however, that torque equals the time rate of
change of angular momentum: Therefore, because the gravitational� � d L/dt.

� � r � F � r � F r̂ � 0

TABLE 14.2 Useful Planetary Data

Mean Period of
Radius Revolution Mean Distance

Body Mass (kg) (m) (s) from Sun (m)

Mercury 3.18 � 1023 2.43 � 106 7.60 � 106 5.79 � 1010 2.97 � 10�19

Venus 4.88 � 1024 6.06 � 106 1.94 � 107 1.08 � 1011 2.99 � 10�19

Earth 5.98 � 1024 6.37 � 106 3.156 � 107 1.496 � 1011 2.97 � 10�19

Mars 6.42 � 1023 3.37 � 106 5.94 � 107 2.28 � 1011 2.98 � 10�19

Jupiter 1.90 � 1027 6.99 � 107 3.74 � 108 7.78 � 1011 2.97 � 10�19

Saturn 5.68 � 1026 5.85 � 107 9.35 � 108 1.43 � 1012 2.99 � 10�19

Uranus 8.68 � 1025 2.33 � 107 2.64 � 109 2.87 � 1012 2.95 � 10�19

Neptune 1.03 � 1026 2.21 � 107 5.22 � 109 4.50 � 1012 2.99 � 10�19

Pluto � 1.4 � 1022 � 1.5 � 106 7.82 � 109 5.91 � 1012 2.96 � 10�19

Moon 7.36 � 1022 1.74 � 106 — — —
Sun 1.991 � 1030 6.96 � 108 — — —

D

C

A

B
S

Sun

Figure 14.8 Kepler’s second law
is called the law of equal areas.
When the time interval required
for a planet to travel from A to B is
equal to the time interval required
for it to go from C to D, the two ar-
eas swept out by the planet’s radius
vector are equal. Note that in order
for this to be true, the planet must
be moving faster between C and D
than between A and B.

Separate views of Jupiter and of Periodic Comet
Shoemaker–Levy 9—both taken with the Hubble
Space Telescope about two months before Jupiter
and the comet collided in July 1994—were put to-
gether with the use of a computer. Their relative
sizes and distances were altered. The black spot
on Jupiter is the shadow of its moon Io.

T 2

r3  (s2/m3)
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It is important to recognize that this result, which is Kepler’s second law, is a con-
sequence of the fact that the force of gravity is a central force, which in turn im-
plies that angular momentum is constant. Therefore, Kepler’s second law applies
to any situation involving a central force, whether inverse-square or not.

force exerted by the Sun on a planet results in no torque on the planet, the
angular momentum L of the planet is constant:

(14.8)

Because L remains constant, the planet’s motion at any instant is restricted to the
plane formed by r and v.

We can relate this result to the following geometric consideration. The radius
vector r in Figure 14.9b sweeps out an area dA in a time dt. This area equals one-
half the area of the parallelogram formed by the vectors r and dr (see
Section 11.2). Because the displacement of the planet in a time dt is we
can say that

(14.9)

where L and Mp are both constants. Thus, we conclude that

dA
dt

�
L

2Mp
� constant

dA � 1
2� r � dr � � 1

2� r � v dt � �
L

2Mp
 dt

dr � vdt,
� r � dr �

L � r � p � r � Mpv � Mpr � v � constant

the radius vector from the Sun to a planet sweeps out equal areas in equal time
intervals.

Motion in an Elliptical OrbitEXAMPLE 14.5
14.10), and the maximum distance is called the apogee (indi-
cated by a). If the speed of the satellite at p is vp , what is its
speed at a?

Solution As the satellite moves from perigee toward
apogee, it is moving farther from the Earth. Thus, a compo-
nent of the gravitational force exerted by the Earth on the
satellite is opposite the velocity vector. Negative work is done
on the satellite, which causes it to slow down, according to
the work–kinetic energy theorem. As a result, we expect the
speed at apogee to be lower than the speed at perigee.

The angular momentum of the satellite relative to the
Earth is At the points a and p, v is perpen-
dicular to r. Therefore, the magnitude of the angular mo-
mentum at these positions is and Be-
cause angular momentum is constant, we see that

rp

ra
 vpva �

mvara � mvprp 

Lp � mvprp .La � mvara

mr � v.r � mv �

A satellite of mass m moves in an elliptical orbit around the
Earth (Fig. 14.10). The minimum distance of the satellite
from the Earth is called the perigee (indicated by p in Fig.

Sun
r

MS

Fg

Mp

v

(a)

Sun

(b)

r

dA

dr = vdt

Figure 14.9 (a) The gravitational
force acting on a planet is directed
toward the Sun, along the radius
vector. (b) As a planet orbits the
Sun, the area swept out by the ra-
dius vector in a time dt is equal to
one-half the area of the parallelo-
gram formed by the vectors r and
d r � vdt.

va

ra

vpp

a

rp

Figure 14.10 As a satellite moves around the Earth in an elliptical or-
bit, its angular momentum is constant. Therefore, 
where the subscripts a and p represent apogee and perigee, respectively.

mvara � mvprp ,
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How would you explain the fact that Saturn and Jupiter have periods much greater than
one year?

THE GRAVITATIONAL FIELD
When Newton published his theory of universal gravitation, it was considered a
success because it satisfactorily explained the motion of the planets. Since 1687
the same theory has been used to account for the motions of comets, the deflec-
tion of a Cavendish balance, the orbits of binary stars, and the rotation of galaxies.
Nevertheless, both Newton’s contemporaries and his successors found it difficult
to accept the concept of a force that acts through a distance, as mentioned in Sec-
tion 5.1. They asked how it was possible for two objects to interact when they were
not in contact with each other. Newton himself could not answer that question.

An approach to describing interactions between objects that are not in contact
came well after Newton’s death, and it enables us to look at the gravitational inter-
action in a different way. As described in Section 5.1, this alternative approach uses
the concept of a gravitational field that exists at every point in space. When a
particle of mass m is placed at a point where the gravitational field is g, the particle
experiences a force In other words, the field exerts a force on the parti-
cle. Hence, the gravitational field g is defined as

(14.10)

That is, the gravitational field at a point in space equals the gravitational force ex-
perienced by a test particle placed at that point divided by the mass of the test parti-
cle. Notice that the presence of the test particle is not necessary for the field to ex-
ist—the Earth creates the gravitational field. We call the object creating the field
the source particle (although the Earth is clearly not a particle; we shall discuss
shortly the fact that we can approximate the Earth as a particle for the purpose of
finding the gravitational field that it creates). We can detect the presence of the
field and measure its strength by placing a test particle in the field and noting the
force exerted on it.

Although the gravitational force is inherently an interaction between two ob-
jects, the concept of a gravitational field allows us to “factor out” the mass of one
of the objects. In essence, we are describing the “effect” that any object (in this
case, the Earth) has on the empty space around itself in terms of the force that
would be present if a second object were somewhere in that space.4

As an example of how the field concept works, consider an object of mass m
near the Earth’s surface. Because the gravitational force acting on the object has a
magnitude GMEm/r 2 (see Eq. 14.4), the field g at a distance r from the center of
the Earth is

(14.11)

where is a unit vector pointing radially outward from the Earth and the minusr̂

g �
Fg

m
� �

GME

r 2  r̂

g � 
Fg

m

Fg � mg.

14.6

Quick Quiz 14.1

Gravitational field

4 We shall return to this idea of mass affecting the space around it when we discuss Einstein’s theory of
gravitation in Chapter 39.
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sign indicates that the field points toward the center of the Earth, as illustrated in
Figure 14.11a. Note that the field vectors at different points surrounding the Earth
vary in both direction and magnitude. In a small region near the Earth’s surface,
the downward field g is approximately constant and uniform, as indicated in Fig-
ure 14.11b. Equation 14.11 is valid at all points outside the Earth’s surface, assum-
ing that the Earth is spherical. At the Earth’s surface, where g has a magni-
tude of 9.80 N/kg.

GRAVITATIONAL POTENTIAL ENERGY
In Chapter 8 we introduced the concept of gravitational potential energy, which is
the energy associated with the position of a particle. We emphasized that the gravi-
tational potential energy function is valid only when the particle is near
the Earth’s surface, where the gravitational force is constant. Because the gravita-
tional force between two particles varies as 1/r 2, we expect that a more general po-
tential energy function—one that is valid without the restriction of having to be
near the Earth’s surface—will be significantly different from 

Before we calculate this general form for the gravitational potential energy
function, let us first verify that the gravitational force is conservative. (Recall from Sec-
tion 8.2 that a force is conservative if the work it does on an object moving be-
tween any two points is independent of the path taken by the object.) To do this,
we first note that the gravitational force is a central force. By definition, a central
force is any force that is directed along a radial line to a fixed center and has a
magnitude that depends only on the radial coordinate r. Hence, a central force
can be represented by where is a unit vector directed from the origin to
the particle, as shown in Figure 14.12.

Consider a central force acting on a particle moving along the general path P
to Q in Figure 14.12. The path from P to Q can be approximated by a series of

r̂F(r)r̂,

U � mgy.

U � mgy

14.7

r � R E ,

(a) (b)

Figure 14.11 (a) The gravitational field vectors in the vicinity of a uniform spherical mass such
as the Earth vary in both direction and magnitude. The vectors point in the direction of the ac-
celeration a particle would experience if it were placed in the field. The magnitude of the field
vector at any location is the magnitude of the free-fall acceleration at that location. (b) The gravi-
tational field vectors in a small region near the Earth’s surface are uniform in both direction and
magnitude.
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steps according to the following procedure. In Figure 14.12, we draw several thin
wedges, which are shown as dashed lines. The outer boundary of our set of wedges
is a path consisting of short radial line segments and arcs (gray in the figure). We
select the length of the radial dimension of each wedge such that the short arc at
the wedge’s wide end intersects the actual path of the particle. Then we can ap-
proximate the actual path with a series of zigzag movements that alternate be-
tween moving along an arc and moving along a radial line.

By definition, a central force is always directed along one of the radial seg-
ments; therefore, the work done by F along any radial segment is

You should recall that, by definition, the work done by a force that is perpendicu-
lar to the displacement is zero. Hence, the work done in moving along any arc is
zero because F is perpendicular to the displacement along these segments. There-
fore, the total work done by F is the sum of the contributions along the radial seg-
ments:

where the subscripts i and f refer to the initial and final positions. Because the in-
tegrand is a function only of the radial position, this integral depends only on the
initial and final values of r. Thus, the work done is the same over any path from P
to Q. Because the work done is independent of the path and depends only on the
end points, we conclude that any central force is conservative. We are now assured
that a potential energy function can be obtained once the form of the central
force is specified.

Recall from Equation 8.2 that the change in the gravitational potential energy
associated with a given displacement is defined as the negative of the work done by
the gravitational force during that displacement:

(14.12)

We can use this result to evaluate the gravitational potential energy function. Con-
sider a particle of mass m moving between two points P and Q above the Earth’s
surface (Fig. 14.13). The particle is subject to the gravitational force given by
Equation 14.1. We can express this force as

where the negative sign indicates that the force is attractive. Substituting this ex-
pression for F(r) into Equation 14.12, we can compute the change in the gravita-

F(r) � �
GMEm

r 2  

U � Uf � Ui � ��rf

ri

F(r) dr

W � �rf

ri

F(r) dr

dW � F � dr � F(r) dr

Work done by a central force

O

r i

P

Q

r f

F

r̂

r̂

Radial segment

Arc

Figure 14.12 A particle moves
from P to Q while acted on by a
central force F, which is directed
radially. The path is broken into a
series of radial segments and arcs.
Because the work done along the
arcs is zero, the work done is inde-
pendent of the path and depends
only on rf and ri .

Figure 14.13 As a particle of mass m moves from P to
Q above the Earth’s surface, the gravitational potential
energy changes according to Equation 14.12.

P

Fg

Fg Q

m

rf

ri

ME
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tional potential energy function:

(14.13)

As always, the choice of a reference point for the potential energy is completely ar-
bitrary. It is customary to choose the reference point where the force is zero. Tak-
ing at we obtain the important result

(14.14)

This expression applies to the Earth–particle system where the two masses are sep-
arated by a distance r, provided that The result is not valid for particles in-
side the Earth, where (The situation in which is treated in Section
14.10.) Because of our choice of Ui , the function U is always negative (Fig. 14.14).

Although Equation 14.14 was derived for the particle–Earth system, it can be
applied to any two particles. That is, the gravitational potential energy associated
with any pair of particles of masses m1 and m2 separated by a distance r is

(14.15)

This expression shows that the gravitational potential energy for any pair of parti-
cles varies as 1/r, whereas the force between them varies as 1/r 2. Furthermore, the
potential energy is negative because the force is attractive and we have taken the
potential energy as zero when the particle separation is infinite. Because the force
between the particles is attractive, we know that an external agent must do positive
work to increase the separation between them. The work done by the external
agent produces an increase in the potential energy as the two particles are sepa-
rated. That is, U becomes less negative as r increases.

When two particles are at rest and separated by a distance r, an external agent
has to supply an energy at least equal to � Gm1m2/r in order to separate the parti-
cles to an infinite distance. It is therefore convenient to think of the absolute value
of the potential energy as the binding energy of the system. If the external agent
supplies an energy greater than the binding energy, the excess energy of the sys-
tem will be in the form of kinetic energy when the particles are at an infinite sepa-
ration.

We can extend this concept to three or more particles. In this case, the total
potential energy of the system is the sum over all pairs of particles.5 Each pair con-
tributes a term of the form given by Equation 14.15. For example, if the system
contains three particles, as in Figure 14.15, we find that

(14.16)

The absolute value of Utotal represents the work needed to separate the particles by
an infinite distance.

U total � U12 � U13 � U23 � �G � m1m2

r12
�

m1m3

r13
�

m2m3

r23
�

U � �
Gm1m2

r

r � R Er � R E .
r � R E .

U � �
GMEm

r

ri � �,Ui � 0

Uf � Ui � �GMEm� 1
rf

�
1
ri
�

Uf � Ui � GMEm �rf

ri

 
dr
r 2 � GMEm��

1
r �

rf

ri

5 The fact that potential energy terms can be added for all pairs of particles stems from the experimen-
tal fact that gravitational forces obey the superposition principle.

Gravitational potential energy of
the Earth–particle system for
r � R E

Change in gravitational potential
energy

Earth

R E

O

GME m

U

r

R E

ME

–

Figure 14.14 Graph of the gravi-
tational potential energy U versus r
for a particle above the Earth’s sur-
face. The potential energy goes to
zero as r approaches infinity.

1

2

3r 13

r 12 r 23

Figure 14.15 Three interacting
particles.
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ENERGY CONSIDERATIONS IN PLANETARY
AND SATELLITE MOTION

Consider a body of mass m moving with a speed v in the vicinity of a massive body
of mass M, where The system might be a planet moving around the Sun, a
satellite in orbit around the Earth, or a comet making a one-time flyby of the Sun.
If we assume that the body of mass M is at rest in an inertial reference frame, then
the total mechanical energy E of the two-body system when the bodies are sepa-
rated by a distance r is the sum of the kinetic energy of the body of mass m and the
potential energy of the system, given by Equation 14.15:6

(14.17)

This equation shows that E may be positive, negative, or zero, depending on the
value of v. However, for a bound system,7 such as the Earth–Sun system, E is neces-
sarily less than zero because we have chosen the convention that as 

We can easily establish that for the system consisting of a body of mass m
moving in a circular orbit about a body of mass (Fig. 14.16). Newton’s sec-
ond law applied to the body of mass m gives

GMm
r 2 � ma �

mv2

r

M W m
E � 0

r : �.U : 0

E � 1
2mv2 �

GMm
r

E � K � U 

M W m.

14.8

The Change in Potential EnergyEXAMPLE 14.6
If both the initial and final positions of the particle are close
to the Earth’s surface, then and (Re-
call that r is measured from the center of the Earth.) There-
fore, the change in potential energy becomes

where we have used the fact that (Eq. 14.5).
Keep in mind that the reference point is arbitrary because it
is the change in potential energy that is meaningful.

g � GME/R E 

2

U �
GMEm

R E 

2  y � mg y

rir f � R E 

2.rf � ri � y
A particle of mass m is displaced through a small vertical dis-
tance y near the Earth’s surface. Show that in this situation
the general expression for the change in gravitational poten-
tial energy given by Equation 14.13 reduces to the familiar re-
lationship 

Solution We can express Equation 14.13 in the form

U � �GMEm � 1
rf

�
1
ri
� � GMEm � rf � ri

r i r f
�

U � mg y.

6 You might recognize that we have ignored the acceleration and kinetic energy of the larger body. To
see that this simplification is reasonable, consider an object of mass m falling toward the Earth. Because
the center of mass of the object–Earth system is effectively stationary, it follows that Thus,
the Earth acquires a kinetic energy equal to

where K is the kinetic energy of the object. Because this result shows that the kinetic energy
of the Earth is negligible.
7 Of the three examples provided at the beginning of this section, the planet moving around the Sun
and a satellite in orbit around the Earth are bound systems—the Earth will always stay near the Sun,
and the satellite will always stay near the Earth. The one-time comet flyby represents an unbound
system—the comet interacts once with the Sun but is not bound to it. Thus, in theory the comet can
move infinitely far away from the Sun.

ME W m,

1
2ME vE 

2 � 1
2 

m2

ME
 v2 �

m
ME

 K

mv � ME vE .

r

M

m

v

Figure 14.16 A body of mass m
moving in a circular orbit about a
much larger body of mass M.
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Multiplying both sides by r and dividing by 2 gives

(14.18)

Substituting this into Equation 14.17, we obtain

(14.19)

This result clearly shows that the total mechanical energy is negative in the
case of circular orbits. Note that the kinetic energy is positive and equal to
one-half the absolute value of the potential energy. The absolute value of E is
also equal to the binding energy of the system, because this amount of energy
must be provided to the system to move the two masses infinitely far apart.

The total mechanical energy is also negative in the case of elliptical orbits. The
expression for E for elliptical orbits is the same as Equation 14.19 with r replaced
by the semimajor axis length a. Furthermore, the total energy is constant if we as-
sume that the system is isolated. Therefore, as the body of mass m moves from P to
Q in Figure 14.13, the total energy remains constant and Equation 14.17 gives

(14.20)

Combining this statement of energy conservation with our earlier discussion of
conservation of angular momentum, we see that both the total energy and the
total angular momentum of a gravitationally bound, two-body system are
constants of the motion.

E � 1
2mvi 

2 �
GMm

ri
� 1

2mvf 

2 �
GMm

rf

E � �
GMm

2r
  

E �
GMm

2r
�

GMm
r

1
2mv2 �

GMm
2r

Changing the Orbit of a SatelliteEXAMPLE 14.7
We must also determine the initial radius (not the altitude

above the Earth’s surface) of the satellite’s orbit when it was
still in the shuttle’s cargo bay. This is simply

Now, applying Equation 14.19, we obtain, for the total initial
and final energies,

The energy required from the engine to boost the satellite is

1.19 � 1010 J�

� � 1
4.23 � 107 m

�
1

6.65 � 106 m �
 � �

(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)(470 kg)
2

Eengine � Ef � Ei � �
GMEm

2
 � 1

R f
�

1
R i

� 

Ei � �
GMEm

2R i
  Ef � �

GMEm
2R f

R E � 280 km � 6.65 � 106 m � R i

The space shuttle releases a 470-kg communications satellite
while in an orbit that is 280 km above the surface of the
Earth. A rocket engine on the satellite boosts it into a geosyn-
chronous orbit, which is an orbit in which the satellite stays
directly over a single location on the Earth. How much en-
ergy did the engine have to provide?

Solution First we must determine the radius of a geosyn-
chronous orbit. Then we can calculate the change in energy
needed to boost the satellite into orbit.

The period of the orbit T must be one day (86 400 s), so
that the satellite travels once around the Earth in the same
time that the Earth spins once on its axis. Knowing the pe-
riod, we can then apply Kepler’s third law (Eq. 14.7) to find
the radius, once we replace KS with 

This is a little more than 26 000 mi above the Earth’s surface. 

 r � √3 T 2

K E
� √3 (86 400 s)2

9.89 � 10�14 s2/m3 � 4.23 � 107 m � R f

T 2 � K Er 3 

9.89 � 10�14 s2/m3:
K E � 4�2/GME �

Total energy for circular orbits
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Escape Speed

Suppose an object of mass m is projected vertically upward from the Earth’s sur-
face with an initial speed vi , as illustrated in Figure 14.17. We can use energy con-
siderations to find the minimum value of the initial speed needed to allow the ob-
ject to escape the Earth’s gravitational field. Equation 14.17 gives the total energy
of the object at any point. At the surface of the Earth, and 
When the object reaches its maximum altitude, and Be-
cause the total energy of the system is constant, substituting these conditions into
Equation 14.20 gives

Solving for gives

(14.21)

Therefore, if the initial speed is known, this expression can be used to calculate
the maximum altitude h because we know that

We are now in a position to calculate escape speed, which is the minimum
speed the object must have at the Earth’s surface in order to escape from the influ-
ence of the Earth’s gravitational field. Traveling at this minimum speed, the object
continues to move farther and farther away from the Earth as its speed asymptoti-
cally approaches zero. Letting in Equation 14.21 and taking , we
obtain

(14.22)

Note that this expression for vesc is independent of the mass of the object. In 
other words, a spacecraft has the same escape speed as a molecule. Further-
more, the result is independent of the direction of the velocity and ignores air 
resistance.

If the object is given an initial speed equal to vesc , its total energy is equal to
zero. This can be seen by noting that when the object’s kinetic energy and
its potential energy are both zero. If vi is greater than vesc , the total energy is
greater than zero and the object has some residual kinetic energy as r : �.

r : �,

vesc � √ 2GME

R E

vi � vescrmax : �

h � rmax � R E

vi 

2 � 2GME � 1
R E

�
1

rmax
�

vi 

2

1
2mvi 

2 �
GMEm

R E
� �

GMEm
rmax

r � rf � rmax .v � vf � 0
r � ri � R E .v � vi

This is the energy equivalent of 89 gal of gasoline. NASA en-
gineers must account for the changing mass of the spacecraft
as it ejects burned fuel, something we have not done here.
Would you expect the calculation that includes the effect of
this changing mass to yield a greater or lesser amount of en-
ergy required from the engine?

If we wish to determine how the energy is distributed 
after the engine is fired, we find from Equation 14.18 
that the change in kinetic energy is 

(a decrease),(GMEm/2)(1/R f � 1/R i) � �1.19 � 1010 J
K �

and the corresponding change in potential energy is
(an increase).

Thus, the change in mechanical energy of the system is
as we already calculated.

The firing of the engine results in an increase in the total me-
chanical energy of the system. Because an increase in poten-
tial energy is accompanied by a decrease in kinetic energy, we
conclude that the speed of an orbiting satellite decreases as
its altitude increases.

1.19 � 1010 J,E � K � U �

U � �GMEm(1/R f � 1/R i) � 2.38 � 1010 J

h

m

v i

rmax

vf = 0

M E

R E

Figure 14.17 An object of mass
m projected upward from the
Earth’s surface with an initial speed
vi reaches a maximum altitude h.

Escape speed
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Equations 14.21 and 14.22 can be applied to objects projected from any
planet. That is, in general, the escape speed from the surface of any planet of mass
M and radius R is

Escape speeds for the planets, the Moon, and the Sun are provided in Table
14.3. Note that the values vary from 1.1 km/s for Pluto to about 618 km/s for the
Sun. These results, together with some ideas from the kinetic theory of gases (see
Chapter 21), explain why some planets have atmospheres and others do not. As we
shall see later, a gas molecule has an average kinetic energy that depends on the
temperature of the gas. Hence, lighter molecules, such as hydrogen and helium,
have a higher average speed than heavier species at the same temperature. When
the average speed of the lighter molecules is not much less than the escape speed
of a planet, a significant fraction of them have a chance to escape from the planet.

This mechanism also explains why the Earth does not retain hydrogen mole-
cules and helium atoms in its atmosphere but does retain heavier molecules, such
as oxygen and nitrogen. On the other hand, the very large escape speed for
Jupiter enables that planet to retain hydrogen, the primary constituent of its at-
mosphere.

If you were a space prospector and discovered gold on an asteroid, it probably would not be
a good idea to jump up and down in excitement over your find. Why?

Figure 14.18 is a drawing by Newton showing the path of a stone thrown from a mountain-
top. He shows the stone landing farther and farther away when thrown at higher and higher
speeds (at points D, E, F, and G), until finally it is thrown all the way around the Earth. Why
didn’t Newton show the stone landing at B and A before it was going fast enough to com-
plete an orbit?

Quick Quiz 14.3

Quick Quiz 14.2

vesc � √ 2GM
R

Escape Speed of a RocketEXAMPLE 14.8

This corresponds to about 25 000 mi/h.
The kinetic energy of the spacecraft is

This is equivalent to about 2 300 gal of gasoline.

3.14 � 1011 J�

K � 1
2mv2

esc � 1
2(5.00 � 103 kg)(1.12 � 104 m/s)2

1.12 � 104 m/s�
Calculate the escape speed from the Earth for a 5 000-kg
spacecraft, and determine the kinetic energy it must have at
the Earth’s surface in order to escape the Earth’s gravita-
tional field.

Solution Using Equation 14.22 gives

 � √ 2(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)
6.37 � 106 m

vesc � √ 2GME

R E
 

TABLE 14.3
Escape Speeds from the
Surfaces of the Planets,
Moon, and Sun

Body vesc (km/s)

Mercury 4.3
Venus 10.3
Earth 11.2
Moon 2.3
Mars 5.0
Jupiter 60
Saturn 36
Uranus 22
Neptune 24
Pluto 1.1
Sun 618
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Optional Section

THE GRAVITATIONAL FORCE BETWEEN AN
EXTENDED OBJECT AND A PARTICLE

We have emphasized that the law of universal gravitation given by Equation 14.3 is
valid only if the interacting objects are treated as particles. In view of this, how can
we calculate the force between a particle and an object having finite dimensions?
This is accomplished by treating the extended object as a collection of particles
and making use of integral calculus. We first evaluate the potential energy func-
tion, and then calculate the gravitational force from that function.

We obtain the potential energy associated with a system consisting of a particle
of mass m and an extended object of mass M by dividing the object into many ele-
ments, each having a mass Mi (Fig. 14.19). The potential energy associated with
the system consisting of any one element and the particle is 
where ri is the distance from the particle to the element Mi . The total potential
energy of the overall system is obtained by taking the sum over all elements as 
Mi : 0. In this limit, we can express U in integral form as

(14.23)

Once U has been evaluated, we obtain the force exerted by the extended object
on the particle by taking the negative derivative of this scalar function (see Section
8.6). If the extended object has spherical symmetry, the function U depends only
on r, and the force is given by � dU/dr. We treat this situation in Section 14.10. In
principle, one can evaluate U for any geometry; however, the integration can be
cumbersome.

An alternative approach to evaluating the gravitational force between a parti-
cle and an extended object is to perform a vector sum over all mass elements of
the object. Using the procedure outlined in evaluating U and the law of universal
gravitation in the form shown in Equation 14.3, we obtain, for the total force ex-
erted on the particle

(14.24)

where is a unit vector directed from the element dM toward the particle (see Fig.
14.19) and the minus sign indicates that the direction of the force is opposite that
of This procedure is not always recommended because working with a vector
function is more difficult than working with the scalar potential energy function.
However, if the geometry is simple, as in the following example, the evaluation of
F can be straightforward.

r̂.

r̂

Fg � �Gm � 
dM
r 2  r̂

U � �Gm � 
dM
r

U � �Gm Mi/ri ,

14.9

Figure 14.18 “The greater the velocity . . . with which [a
stone] is projected, the farther it goes before it falls to the Earth.
We may therefore suppose the velocity to be so increased, that it
would describe an arc of 1, 2, 5, 10, 100, 1000 miles before it ar-
rived at the Earth, till at last, exceeding the limits of the Earth, it
should pass into space without touching.” Sir Isaac Newton, System
of the World.

M

∆Mi

r i

m

r̂

Figure 14.19 A particle of mass
m interacting with an extended ob-
ject of mass M. The total gravita-
tional force exerted by the object
on the particle can be obtained by
dividing the object into numerous
elements, each having a mass Mi ,
and then taking a vector sum over
the forces exerted by all elements.

Total force exerted on a particle by
an extended object
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Optional Section

THE GRAVITATIONAL FORCE BETWEEN A
PARTICLE AND A SPHERICAL MASS

We have already stated that a large sphere attracts a particle outside it as if the to-
tal mass of the sphere were concentrated at its center. We now describe the force
acting on a particle when the extended object is either a spherical shell or a solid
sphere, and then apply these facts to some interesting systems.

Spherical Shell

Case 1. If a particle of mass m is located outside a spherical shell of mass M at,
for instance, point P in Figure 14.21a, the shell attracts the particle as though the
mass of the shell were concentrated at its center. We can show this, as Newton did,
with integral calculus. Thus, as far as the gravitational force acting on a particle
outside the shell is concerned, a spherical shell acts no differently from the solid
spherical distributions of mass we have seen.

Case 2. If the particle is located inside the shell (at point P in Fig. 14.21b), the
gravitational force acting on it can be shown to be zero.

We can express these two important results in the following way:

(14.25a)

(14.25b)

The gravitational force as a function of the distance r is plotted in Figure 14.21c. 

Fg � 0  for r � R 

Fg � �
GMm

r 2  r̂  for r � R

14.10

Gravitational Force Between a Particle and a BarEXAMPLE 14.9
of lengths dx/L, and so In this problem, the
variable r in Equation 14.24 is the distance x shown in Figure
14.20, the unit vector is and the force acting on the
particle is to the right; therefore, Equation 14.24 gives us

We see that the force exerted on the particle is in the positive
x direction, which is what we expect because the gravitational
force is attractive.

Note that in the limit L : 0, the force varies as 1/h2,
which is what we expect for the force between two point
masses. Furthermore, if the force also varies as 1/h2.
This can be seen by noting that the denominator of the ex-
pression for Fg can be expressed in the form 
which is approximately equal to h2 when Thus, when
bodies are separated by distances that are great relative to
their characteristic dimensions, they behave like particles.

h W L .
h2(1 �  L/h),

h W L,

GmM
h(h � L)

 i Fg �
GmM

L
 ��

1
x �

h�L

h
 i �

Fg � �Gm �h�L

h
 
Mdx

L
 

1
x2  (� i) � Gm 

M
L

 �h�L

h
 
dx
x2  i

r̂ � � i,r̂

dM � (M/L) dx.The left end of a homogeneous bar of length L and mass M
is at a distance h from a particle of mass m (Fig. 14.20). Calcu-
late the total gravitational force exerted by the bar on the
particle.

Solution The arbitrary segment of the bar of length dx
has a mass dM. Because the mass per unit length is constant,
it follows that the ratio of masses dM/M is equal to the ratio

Force on a particle due to a
spherical shell

x
O

mm

y

h L

dx

x

Figure 14.20 The gravitational force exerted by the bar on the
particle is directed to the right. Note that the bar is not equivalent to
a particle of mass M located at the center of mass of the bar.
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The shell does not act as a gravitational shield, which means that a particle in-
side a shell may experience forces exerted by bodies outside the shell.

Solid Sphere

Case 1. If a particle of mass m is located outside a homogeneous solid sphere of
mass M (at point P in Fig. 14.22), the sphere attracts the particle as though the

(a)

M Q

Q ′

P

m
FQ ′P

FQP

M

P m

FTop, P

FBottom, P

(b)

(c)

O
r

R

Fg

Figure 14.21 (a) The nonradial components of the gravitational forces exerted on a particle of
mass m located at point P outside a spherical shell of mass M cancel out. (b) The spherical shell
can be broken into rings. Even though point P is closer to the top ring than to the bottom ring,
the bottom ring is larger, and the gravitational forces exerted on the particle at P by the matter
in the two rings cancel each other. Thus, for a particle located at any point P inside the shell,
there is no gravitational force exerted on the particle by the mass M of the shell. (c) The magni-
tude of the gravitational force versus the radial distance r from the center of the shell.
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mass of the sphere were concentrated at its center. We have used this notion at sev-
eral places in this chapter already, and we can argue it from Equation 14.25a. A
solid sphere can be considered to be a collection of concentric spherical shells.
The masses of all of the shells can be interpreted as being concentrated at their
common center, and the gravitational force is equivalent to that due to a particle
of mass M located at that center.

Case 2. If a particle of mass m is located inside a homogeneous solid sphere of
mass M (at point Q in Fig. 14.22), the gravitational force acting on it is due only to
the mass M� contained within the sphere of radius shown in Figure 14.22.
In other words,

(14.26a)

(14.26b)

This also follows from spherical-shell Case 1 because the part of the sphere that is

Fg � �
GmM �

r 2  r̂  for r � R

Fg � �
GmM

r 2  r̂  for r � R

r � R,

Force on a particle due to a solid
sphere

m

P

R

M

Q
r

M ′

r

RO

Fg

Fg

Figure 14.22 The gravitational force acting on a particle when it is outside a uniform solid
sphere is GMm/r2 and is directed toward the center of the sphere. The gravitational force acting
on the particle when it is inside such a sphere is proportional to r and goes to zero at the center.
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farther from the center than Q can be treated as a series of concentric spherical
shells that do not exert a net force on the particle because the particle is inside
them. Because the sphere is assumed to have a uniform density, it follows that the
ratio of masses M�/M is equal to the ratio of volumes V �/V, where V is the total vol-
ume of the sphere and V � is the volume within the sphere of radius r only:

Solving this equation for M� and substituting the value obtained into Equation
14.26b, we have

(14.27)

This equation tells us that at the center of the solid sphere, where the gravi-
tational force goes to zero, as we intuitively expect. The force as a function of r is
plotted in Figure 14.22.

Case 3. If a particle is located inside a solid sphere having a density � that is
spherically symmetric but not uniform, then M� in Equation 14.26b is given by an
integral of the form where the integration is taken over the volume
contained within the sphere of radius r in Figure 14.22. We can evaluate this inte-
gral if the radial variation of � is given. In this case, we take the volume element dV
as the volume of a spherical shell of radius r and thickness dr, and thus

For example, if � where A is a constant, it is left to a problem
(Problem 63) to show that 

Hence, we see from Equation 14.26b that F is proportional to r2 in this case and is
zero at the center.

A particle is projected through a small hole into the interior of a spherical shell. Describe

Quick Quiz 14.4

M� � �Ar 4.
� Ar,dV � 4�r 2 dr.

M� � � � dV,

r � 0,

Fg � �
GmM

R3  r r̂  for r � R

M�

M
�

V�

V
�

4
3�r 3

4
3 �R3 �

r 3

R3

A Free Ride, Thanks to GravityEXAMPLE 14.10
The y component of the gravitational force on the object

is balanced by the normal force exerted by the tunnel wall,
and the x component is

Because the x coordinate of the object is we can
write

Applying Newton’s second law to the motion along the x di-
rection gives

Fx � �
GmME

R E 

3  x � max

Fx � �
GmME

R E 

3  x

x � r cos �,

Fx � �
GmME

R E 

3  r cos �

An object of mass m moves in a smooth, straight tunnel dug
between two points on the Earth’s surface (Fig. 14.23). Show
that the object moves with simple harmonic motion, and find
the period of its motion. Assume that the Earth’s density is
uniform.

Solution The gravitational force exerted on the object
acts toward the Earth’s center and is given by Equation 14.27:

We receive our first indication that this force should result in
simple harmonic motion by comparing it to Hooke’s law, first
seen in Section 7.3. Because the gravitational force on the ob-
ject is linearly proportional to the displacement, the object
experiences a Hooke’s law force.

Fg � �
GmM

R3  r r̂
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the motion of the particle inside the shell.

SUMMARY

Newton’s law of universal gravitation states that the gravitational force of at-
traction between any two particles of masses m1 and m2 separated by a distance r
has the magnitude

(14.1)

where is the universal gravitational constant. This
equation enables us to calculate the force of attraction between masses under a
wide variety of circumstances.

An object at a distance h above the Earth’s surface experiences a gravitational
force of magnitude mg�, where g� is the free-fall acceleration at that elevation:

(14.6)g � �
GME

r 2 �
GME

(R E � h)2

G � 6.673 � 10�11 N�m2/kg2

Fg � G 
m1m2

r 2

y

x

θ

x

O

r

mFg

Figure 14.23 An object moves along a tunnel dug through the
Earth. The component of the gravitational force Fg along the x axis is
the driving force for the motion. Note that this component always
acts toward O.

Solving for ax , we obtain

If we use the symbol �2 for the coefficient of x —GME /RE
3 �

— we see that

an expression that matches the mathematical form of Equa-
tion 13.9, which gives the acceleration of a particle in simple
harmonic motion: Therefore, Equation (1),ax � ��2x.

(1)  ax � ��2x

�2

ax � �
GME

R E 

3  x

which we have derived for the acceleration of our object in
the tunnel, is the acceleration equation for simple harmonic
motion at angular speed � with

Thus, the object in the tunnel moves in the same way as a
block hanging from a spring! The period of oscillation is

This period is the same as that of a satellite traveling in a cir-
cular orbit just above the Earth’s surface (ignoring any trees,
buildings, or other objects in the way). Note that the result is
independent of the length of the tunnel.

A proposal has been made to operate a mass-transit system
between any two cities, using the principle described in this
example. A one-way trip would take about 42 min. A more
precise calculation of the motion must account for the fact
that the Earth’s density is not uniform. More important,
there are many practical problems to consider. For instance,
it would be impossible to achieve a frictionless tunnel, and so
some auxiliary power source would be required. Can you
think of other problems?

84.3 min � 5.06 � 103 s �

 � 2� √ (6.37 � 106 m)3

(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)

T �
2�

�
� 2� √ R E 

3

GME
 

� � √ GME

R E 

3



Summary 449

In this expression, ME is the mass of the Earth and RE is its radius. Thus, the weight
of an object decreases as the object moves away from the Earth’s surface.

Kepler’s laws of planetary motion state that

1. All planets move in elliptical orbits with the Sun at one focal point.
2. The radius vector drawn from the Sun to a planet sweeps out equal areas in

equal time intervals.
3. The square of the orbital period of any planet is proportional to the cube of the

semimajor axis of the elliptical orbit.

Kepler’s third law can be expressed as

(14.7)

where MS is the mass of the Sun and r is the orbital radius. For elliptical orbits,
Equation 14.7 is valid if r is replaced by the semimajor axis a. Most planets have
nearly circular orbits around the Sun. 

The gravitational field at a point in space equals the gravitational force expe-
rienced by any test particle located at that point divided by the mass of the test 
particle:

(14.10)

The gravitational force is conservative, and therefore a potential energy func-
tion can be defined. The gravitational potential energy associated with two par-
ticles separated by a distance r is

(14.15)

where U is taken to be zero as The total potential energy for a system of
particles is the sum of energies for all pairs of particles, with each pair represented
by a term of the form given by Equation 14.15.

If an isolated system consists of a particle of mass m moving with a speed v in
the vicinity of a massive body of mass M, the total energy E of the system is the sum
of the kinetic and potential energies:

(14.17)

The total energy is a constant of the motion. If the particle moves in a circular or-
bit of radius r around the massive body and if the total energy of the sys-
tem is

(14.19)

The total energy is negative for any bound system.
The escape speed for an object projected from the surface of the Earth is

(14.22)vesc � √ 2GME

R E

E � �
GMm

2r

M W m,

E � 1
2mv2�

GMm
r

r : �.

U � �
Gm1m2

r

g �
Fg

m

T 2 � � 4�2

GMS
�r 3
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PROBLEMS

mote ones) can the 50.0-kg mass be placed so as to ex-
perience a net force of zero?

3. Three equal masses are located at three corners of a
square of edge length �, as shown in Figure P14.3. Find
the gravitational field g at the fourth corner due to
these masses.

4. Two objects attract each other with a gravitational force
of magnitude 1.00 � 10�8 N when separated by 
20.0 cm. If the total mass of the two objects is 5.00 kg,
what is the mass of each?

5. Three uniform spheres of masses 2.00 kg, 4.00 kg, and
6.00 kg are placed at the corners of a right triangle, as
illustrated in Figure P14.5. Calculate the resultant gravi-

Section 14.1 Newton’s Law of Universal Gravitation
Section 14.2 Measuring the Gravitational Constant
Section 14.3 Free-Fall Acceleration and the 
Gravitational Force

1. Determine the order of magnitude of the gravitational
force that you exert on another person 2 m away. In
your solution, state the quantities that you measure or
estimate and their values.

2. A 200-kg mass and a 500-kg mass are separated by 
0.400 m. (a) Find the net gravitational force exerted by
these masses on a 50.0-kg mass placed midway between
them. (b) At what position (other than infinitely re-

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

QUESTIONS

tional force is acting on the planet. What is the net work
done on a planet during each revolution as it moves
around the Sun in an elliptical orbit?

11. Explain why the force exerted on a particle by a uniform
sphere must be directed toward the center of the sphere.
Would this be the case if the mass distribution of the
sphere were not spherically symmetric?

12. Neglecting the density variation of the Earth, what would
be the period of a particle moving in a smooth hole dug
between opposite points on the Earth’s surface, passing
through its center?

13. At what position in its elliptical orbit is the speed of a
planet a maximum? At what position is the speed a mini-
mum?

14. If you were given the mass and radius of planet X, how
would you calculate the free-fall acceleration on the sur-
face of this planet?

15. If a hole could be dug to the center of the Earth, do you
think that the force on a mass m would still obey Equa-
tion 14.1 there? What do you think the force on m would
be at the center of the Earth?

16. In his 1798 experiment, Cavendish was said to have
“weighed the Earth.” Explain this statement.

17. The gravitational force exerted on the Voyager spacecraft
by Jupiter accelerated it toward escape speed from the
Sun. How is this possible?

18. How would you find the mass of the Moon?
19. The Apollo 13 spaceship developed trouble in the oxygen

system about halfway to the Moon. Why did the spaceship
continue on around the Moon and then return home,
rather than immediately turn back to Earth?

1. Use Kepler’s second law to convince yourself that the
Earth must move faster in its orbit during December,
when it is closest to the Sun, than during June, when it is
farthest from the Sun.

2. The gravitational force that the Sun exerts on the Moon
is about twice as great as the gravitational force that the
Earth exerts on the Moon. Why doesn’t the Sun pull the
Moon away from the Earth during a total eclipse of the
Sun?

3. If a system consists of five particles, how many terms ap-
pear in the expression for the total potential energy? How
many terms appear if the system consists of N particles?

4. Is it possible to calculate the potential energy function as-
sociated with a particle and an extended body without
knowing the geometry or mass distribution of the ex-
tended body?

5. Does the escape speed of a rocket depend on its mass?
Explain.

6. Compare the energies required to reach the Moon for a
105-kg spacecraft and a 103-kg satellite.

7. Explain why it takes more fuel for a spacecraft to travel
from the Earth to the Moon than for the return trip. Esti-
mate the difference.

8. Why don’t we put a geosynchronous weather satellite in
orbit around the 45th parallel? Wouldn’t this be more
useful for the United States than such a satellite in orbit
around the equator?

9. Is the potential energy associated with the Earth–Moon
system greater than, less than, or equal to the kinetic en-
ergy of the Moon relative to the Earth?

10. Explain why no work is done on a planet as it moves in a
circular orbit around the Sun, even though a gravita-
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tational force on the 4.00-kg mass, assuming that the
spheres are isolated from the rest of the Universe.

6. The free-fall acceleration on the surface of the Moon is
about one-sixth that on the surface of the Earth. If the
radius of the Moon is about 0.250RE , find the ratio of
their average densities, �Moon/�Earth .

7. During a solar eclipse, the Moon, Earth, and Sun all lie
on the same line, with the Moon between the Earth and
the Sun. (a) What force is exerted by the Sun on the
Moon? (b) What force is exerted by the Earth on the
Moon? (c) What force is exerted by the Sun on the
Earth?

8. The center-to-center distance between the Earth and
the Moon is 384 400 km. The Moon completes an orbit
in 27.3 days. (a) Determine the Moon’s orbital speed.
(b) If gravity were switched off, the Moon would move
along a straight line tangent to its orbit, as described by
Newton’s first law. In its actual orbit in 1.00 s, how far
does the Moon fall below the tangent line and toward
the Earth?

9. When a falling meteoroid is at a distance above the
Earth’s surface of 3.00 times the Earth’s radius, what is
its acceleration due to the Earth’s gravity?

10. Two ocean liners, each with a mass of 40 000 metric
tons, are moving on parallel courses, 100 m apart. What
is the magnitude of the acceleration of one of the liners
toward the other due to their mutual gravitational at-
traction? (Treat the ships as point masses.)

11. A student proposes to measure the gravitational con-
stant G by suspending two spherical masses from the
ceiling of a tall cathedral and measuring the deflection
of the cables from the vertical. Draw a free-body dia-
gram of one of the masses. If two 100.0-kg masses are
suspended at the end of 45.00-m-long cables, and the
cables are attached to the ceiling 1.000 m apart, what is
the separation of the masses?

12. On the way to the Moon, the Apollo astronauts reached
a point where the Moon’s gravitational pull became
stronger than the Earth’s. (a) Determine the distance of
this point from the center of the Earth. (b) What is the
acceleration due to the Earth’s gravity at this point?

Section 14.4 Kepler’s Laws
Section 14.5 The Law of Gravity and the 
Motion of Planets

13. A particle of mass m moves along a straight line with
constant speed in the x direction, a distance b from the
x axis (Fig. P14.13). Show that Kepler’s second law is
satisfied by demonstrating that the two shaded triangles
in the figure have the same area when t4 � t3 � t2 � t1 .

�

O
xm

m�

y

m

y

2.00 kg

F24

(0, 3.00) m

x
O

6.00 kg

(– 4.00, 0) m

F64 4.00 kg

x

t 1 t 2 t 3 t 4

y

b

O

v0

m

Figure P14.3

Figure P14.5

Figure P14.13

14. A communications satellite in geosynchronous orbit re-
mains above a single point on the Earth’s equator as the
planet rotates on its axis. (a) Calculate the radius of its
orbit. (b) The satellite relays a radio signal from a trans-
mitter near the north pole to a receiver, also near the
north pole. Traveling at the speed of light, how long is
the radio wave in transit?

15. Plaskett’s binary system consists of two stars that revolve
in a circular orbit about a center of mass midway be-
tween them. This means that the masses of the two stars
are equal (Fig. P14.15). If the orbital velocity of each
star is 220 km/s and the orbital period of each is 
14.4 days, find the mass M of each star. (For compari-
son, the mass of our Sun is 1.99 � 1030 kg.)

16. Plaskett’s binary system consists of two stars that revolve
in a circular orbit about a center of gravity midway be-
tween them. This means that the masses of the two stars
are equal (see Fig. P14.15). If the orbital speed of each
star is v and the orbital period of each is T, find the
mass M of each star.

WEB
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17. The Explorer VIII satellite, placed into orbit November 3,
1960, to investigate the ionosphere, had the following
orbit parameters: perigee, 459 km; apogee, 2 289 km
(both distances above the Earth’s surface); and period,
112.7 min. Find the ratio vp /va of the speed at perigee
to that at apogee.

18. Comet Halley (Fig. P14.18) approaches the Sun to
within 0.570 AU, and its orbital period is 75.6 years (AU
is the symbol for astronomical unit, where 1 AU �
1.50 � 1011 m is the mean Earth–Sun distance). How
far from the Sun will Halley’s comet travel before it
starts its return journey?

20. Two planets, X and Y, travel counterclockwise in circular
orbits about a star, as shown in Figure P14.20. The radii
of their orbits are in the ratio 3:1. At some time, they
are aligned as in Figure P14.20a, making a straight line
with the star. During the next five years, the angular dis-
placement of planet X is 90.0°, as shown in Figure
P14.20b. Where is planet Y at this time?

WEB

Figure P14.15 Problems 15 and 16.

21. A synchronous satellite, which always remains above the
same point on a planet’s equator, is put in orbit around
Jupiter so that scientists can study the famous red spot.
Jupiter rotates once every 9.84 h. Use the data in Table
14.2 to find the altitude of the satellite.

22. Neutron stars are extremely dense objects that are
formed from the remnants of supernova explosions.
Many rotate very rapidly. Suppose that the mass of a cer-
tain spherical neutron star is twice the mass of the Sun
and that its radius is 10.0 km. Determine the greatest
possible angular speed it can have for the matter at the
surface of the star on its equator to be just held in orbit
by the gravitational force.

23. The Solar and Heliospheric Observatory (SOHO)
spacecraft has a special orbit, chosen so that its view of
the Sun is never eclipsed and it is always close enough
to the Earth to transmit data easily. It moves in a near-
circle around the Sun that is smaller than the Earth’s
circular orbit. Its period, however, is not less than 1 yr
but is just equal to 1 yr. It is always located between the
Earth and the Sun along the line joining them. Both ob-
jects exert gravitational forces on the observatory. Show
that the spacecraft’s distance from the Earth must be
between 1.47 � 109 m and 1.48 � 109 m. In 1772
Joseph Louis Lagrange determined theoretically the
special location that allows this orbit. The SOHO space-
craft took this position on February 14, 1996. (Hint: Use
data that are precise to four digits. The mass of the
Earth is 5.983 � 1024 kg.)

Section 14.6 The Gravitational Field
24. A spacecraft in the shape of a long cylinder has a length

of 100 m, and its mass with occupants is 1 000 kg. It has

19. Io, a satellite of Jupiter, has an orbital period of 
1.77 days and an orbital radius of 4.22 � 105 km. From
these data, determine the mass of Jupiter.

220 km/s

M

220 km/s

M

CM

Sun

0.570 AU

2a

x

(a)

Y X

Y

X

(b)

Figure P14.18

Figure P14.20
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strayed too close to a 1.0-m-radius black hole having a
mass 100 times that of the Sun (Fig. P14.24). The nose
of the spacecraft is pointing toward the center of the
black hole, and the distance between the nose and the
black hole is 10.0 km. (a) Determine the total force on
the spacecraft. (b) What is the difference in the gravita-
tional fields acting on the occupants in the nose of the
ship and on those in the rear of the ship, farthest from
the black hole?

25. Compute the magnitude and direction of the gravita-
tional field at a point P on the perpendicular bisector of
two equal masses separated by a distance 2a, as shown in
Figure P14.25.

equal to the radius of the Earth. Calculate (a) the aver-
age density of the white dwarf, (b) the acceleration due
to gravity at its surface, and (c) the gravitational poten-
tial energy associated with a 1.00-kg object at its surface.

30. At the Earth’s surface a projectile is launched straight
up at a speed of 10.0 km/s. To what height will it rise?
Ignore air resistance.

31. A system consists of three particles, each of mass 5.00 g,
located at the corners of an equilateral triangle with
sides of 30.0 cm. (a) Calculate the potential energy of
the system. (b) If the particles are released simultane-
ously, where will they collide?

32. How much work is done by the Moon’s gravitational
field as a 1 000-kg meteor comes in from outer space
and impacts the Moon’s surface?

Section 14.8 Energy Considerations in 
Planetary and Satellite Motion

33. A 500-kg satellite is in a circular orbit at an altitude of
500 km above the Earth’s surface. Because of air fric-
tion, the satellite is eventually brought to the Earth’s
surface, and it hits the Earth with a speed of 2.00 km/s.
How much energy was transformed to internal energy
by means of friction?

34. (a) What is the minimum speed, relative to the Sun, that
is necessary for a spacecraft to escape the Solar System if
it starts at the Earth’s orbit? (b) Voyager 1 achieved a max-
imum speed of 125 000 km/h on its way to photograph
Jupiter. Beyond what distance from the Sun is this speed
sufficient for a spacecraft to escape the Solar System?

35. A satellite with a mass of 200 kg is placed in Earth orbit
at a height of 200 km above the surface. (a) Assuming a
circular orbit, how long does the satellite take to com-
plete one orbit? (b) What is the satellite’s speed? 
(c) What is the minimum energy necessary to place this
satellite in orbit (assuming no air friction)?

36. A satellite of mass m is placed in Earth orbit at an altitude
h. (a) Assuming a circular orbit, how long does the satel-
lite take to complete one orbit? (b) What is the satellite’s
speed? (c) What is the minimum energy necessary to
place this satellite in orbit (assuming no air friction)?

37. A spaceship is fired from the Earth’s surface with an ini-
tial speed of 2.00 � 104 m/s. What will its speed be
when it is very far from the Earth? (Neglect friction.)

38. A 1 000-kg satellite orbits the Earth at a constant alti-
tude of 100 km. How much energy must be added to
the system to move the satellite into a circular orbit at
an altitude of 200 km?

39. A “treetop satellite” moves in a circular orbit just above
the surface of a planet, which is assumed to offer no air
resistance. Show that its orbital speed v and the escape
speed from the planet are related by the expression

40. The planet Uranus has a mass about 14 times the
Earth’s mass, and its radius is equal to about 3.7 Earth

vesc � √2v.

WEB

26. Find the gravitational field at a distance r along the axis
of a thin ring of mass M and radius a.

Section 14.7 Gravitational Potential Energy
Note: Assume that as 

27. A satellite of the Earth has a mass of 100 kg and is at an
altitude of 2.00 � 106 m. (a) What is the potential en-
ergy of the satellite–Earth system? (b) What is the mag-
nitude of the gravitational force exerted by the Earth
on the satellite? (c) What force does the satellite exert
on the Earth?

28. How much energy is required to move a 1 000-kg mass
from the Earth’s surface to an altitude twice the Earth’s
radius?

29. After our Sun exhausts its nuclear fuel, its ultimate fate
may be to collapse to a white-dwarf state, in which it has
approximately the same mass it has now but a radius

r : �.U � 0

10.0 km100 m

Black hole

a

M

Pr

M

Figure P14.24

Figure P14.25
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radii. (a) By setting up ratios with the corresponding
Earth values, find the acceleration due to gravity at the
cloud tops of Uranus. (b) Ignoring the rotation of the
planet, find the minimum escape speed from Uranus.

41. Determine the escape velocity for a rocket on the far
side of Ganymede, the largest of Jupiter’s moons. The
radius of Ganymede is 2.64 � 106 m, and its mass is
1.495 � 1023 kg. The mass of Jupiter is 1.90 � 1027 kg,
and the distance between Jupiter and Ganymede is
1.071 � 109 m. Be sure to include the gravitational ef-
fect due to Jupiter, but you may ignore the motions of
Jupiter and Ganymede as they revolve about their cen-
ter of mass (Fig. P14.41).

(Optional)
Section 14.10 The Gravitational Force Between 
a Particle and a Spherical Mass

46. (a) Show that the period calculated in Example 14.10
can be written as

where g is the free-fall acceleration on the surface of the
Earth. (b) What would this period be if tunnels were
made through the Moon? (c) What practical problem
regarding these tunnels on Earth would be removed if
they were built on the Moon?

47. A 500-kg uniform solid sphere has a radius of 0.400 m.
Find the magnitude of the gravitational force exerted
by the sphere on a 50.0-g particle located (a) 1.50 m
from the center of the sphere, (b) at the surface of the
sphere, and (c) 0.200 m from the center of the sphere.

48. A uniform solid sphere of mass m1 and radius R1 is in-
side and concentric with a spherical shell of mass m2
and radius R 2 (Fig. P14.48). Find the gravitational force
exerted by the spheres on a particle of mass m located
at (a) (b) and (c) where r is mea-
sured from the center of the spheres.

r � c,r � b,r � a,

T � 2�√ R E

g

42. In Robert Heinlein’s The Moon is a Harsh Mistress, the
colonial inhabitants of the Moon threaten to launch
rocks down onto the Earth if they are not given inde-
pendence (or at least representation). Assuming that a
rail gun could launch a rock of mass m at twice the lu-
nar escape speed, calculate the speed of the rock as it
enters the Earth’s atmosphere. (By lunar escape speed we
mean the speed required to escape entirely from a sta-
tionary Moon alone in the Universe.)

43. Derive an expression for the work required to move an
Earth satellite of mass m from a circular orbit of radius
2RE to one of radius 3RE .

(Optional)
Section 14.9 The Gravitational Force Between 
an Extended Object and a Particle

44. Consider two identical uniform rods of length L and
mass m lying along the same line and having their clos-
est points separated by a distance d (Fig. P14.44). Show
that the mutual gravitational force between these rods
has a magnitude

45. A uniform rod of mass M is in the shape of a semicircle
of radius R (Fig. P14.45). Calculate the force on a point
mass m placed at the center of the semicircle.

F �
Gm2

L2  ln � (L � d)2

d(2L � d) �

d
LL

mm

Ganymede

v

Jupiter

m 2

c
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R 2

R 1

m 1

m
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R

Figure P14.41

Figure P14.44

Figure P14.45

Figure P14.48
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ADDITIONAL PROBLEMS

49. Let gM represent the difference in the gravitational
fields produced by the Moon at the points on the
Earth’s surface nearest to and farthest from the Moon.
Find the fraction gM/g, where g is the Earth’s gravita-
tional field. (This difference is responsible for the oc-
currence of the lunar tides on the Earth.)

50. Two spheres having masses M and 2M and radii R and
3R, respectively, are released from rest when the dis-
tance between their centers is 12R. How fast will each
sphere be moving when they collide? Assume that the
two spheres interact only with each other.

51. In Larry Niven’s science-fiction novel Ringworld, a rigid
ring of material rotates about a star (Fig. P14.51). The
rotational speed of the ring is 1.25 � 106 m/s, and its
radius is 1.53 � 1011 m. (a) Show that the centripetal
acceleration of the inhabitants is 10.2 m/s2. (b) The in-
habitants of this ring world experience a normal con-
tact force n. Acting alone, this normal force would pro-
duce an inward acceleration of 9.90 m/s2. Additionally,
the star at the center of the ring exerts a gravitational
force on the ring and its inhabitants. The difference be-
tween the total acceleration and the acceleration pro-
vided by the normal force is due to the gravitational at-
traction of the central star. Show that the mass of the
star is approximately 1032 kg.

(c) Evaluate this difference for m, a typical
height for a two-story building.

53. A particle of mass m is located inside a uniform solid
sphere of radius R and mass M, at a distance r from its
center. (a) Show that the gravitational potential energy
of the system is 
(b) Write an expression for the amount of work done
by the gravitational force in bringing the particle from
the surface of the sphere to its center.

54. Voyagers 1 and 2 surveyed the surface of Jupiter’s moon
Io and photographed active volcanoes spewing liquid
sulfur to heights of 70 km above the surface of this
moon. Find the speed with which the liquid sulfur left
the volcano. Io’s mass is 8.9 � 1022 kg, and its radius is 
1 820 km.

55. As an astronaut, you observe a small planet to be spheri-
cal. After landing on the planet, you set off, walking al-
ways straight ahead, and find yourself returning to your
spacecraft from the opposite side after completing a lap
of 25.0 km. You hold a hammer and a falcon feather at
a height of 1.40 m, release them, and observe that they
fall together to the surface in 29.2 s. Determine the
mass of the planet.

56. A cylindrical habitat in space, 6.00 km in diameter and
30 km long, was proposed by G. K. O’Neill in 1974.
Such a habitat would have cities, land, and lakes on the
inside surface and air and clouds in the center. All of
these would be held in place by the rotation of the
cylinder about its long axis. How fast would the cylinder
have to rotate to imitate the Earth’s gravitational field at
the walls of the cylinder?

57. In introductory physics laboratories, a typical Cavendish
balance for measuring the gravitational constant G uses
lead spheres with masses of 1.50 kg and 15.0 g whose
centers are separated by about 4.50 cm. Calculate the
gravitational force between these spheres, treating each
as a point mass located at the center of the sphere.

58. Newton’s law of universal gravitation is valid for dis-
tances covering an enormous range, but it is thought to
fail for very small distances, where the structure of space
itself is uncertain. The crossover distance, far less than
the diameter of an atomic nucleus,  is called the Planck
length. It is determined by a combination of the con-
stants G, c, and h, where c is the speed of light in vac-
uum and h is Planck’s constant (introduced briefly in
Chapter 11 and discussed in greater detail in Chapter
40) with units of angular momentum. (a) Use dimen-
sional analysis to find a combination of these three uni-
versal constants that has units of length. (b) Determine
the order of magnitude of the Planck length. (Hint: You
will need to consider noninteger powers of the con-
stants.)

59. Show that the escape speed from the surface of a planet
of uniform density is directly proportional to the radius
of the planet.

60. (a) Suppose that the Earth (or another object) has den-
sity �(r), which can vary with radius but is spherically

U � (GmM/2R3)r 2 � 3GmM/2R.

h � 6.00

WEB

52. (a) Show that the rate of change of the free-fall acceler-
ation with distance above the Earth’s surface is

This rate of change over distance is called a gradient.
(b) If h is small compared to the radius of the Earth,
show that the difference in free-fall acceleration be-
tween two points separated by vertical distance h is
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Figure P14.51



456 C H A P T E R  1 4 The Law of Gravity

symmetric. Show that at any particular radius r inside
the Earth, the gravitational field strength g(r) will in-
crease as r increases, if and only if the density there ex-
ceeds 2/3 the average density of the portion of the
Earth inside the radius r. (b) The Earth as a whole has
an average density of 5.5 g/cm3, while the density at the
surface is 1.0 g/cm3 on the oceans and about 3 g/cm3

on land. What can you infer from this?
61. Two hypothetical planets of masses m1 and m2 and radii

r1 and r2 , respectively, are nearly at rest when they are
an infinite distance apart. Because of their gravitational
attraction, they head toward each other on a collision
course. (a) When their center-to-center separation is d,
find expressions for the speed of each planet and their
relative velocity. (b) Find the kinetic energy of each
planet just before they collide, if m1 � 2.00 � 1024 kg,
m2 � 8.00 � 1024 kg, r1 � 3.00 � 106 m, and r2 �
5.00 � 106 m. (Hint: Both energy and momentum are
conserved.)

62. The maximum distance from the Earth to the Sun (at
our aphelion) is 1.521 � 1011 m, and the distance of
closest approach (at perihelion) is 1.471 � 1011 m. If
the Earth’s orbital speed at perihelion is 30.27 km/s,
determine (a) the Earth’s orbital speed at aphelion, 
(b) the kinetic and potential energies at perihelion,
and (c) the kinetic and potential energies at aphelion.
Is the total energy constant? (Neglect the effect of the
Moon and other planets.)

63. A sphere of mass M and radius R has a nonuniform
density that varies with r, the distance from its center,
according to the expression � � Ar, for 0 � r � R. 
(a) What is the constant A in terms of M and R ? 
(b) Determine an expression for the force exerted on a
particle of mass m placed outside the sphere. (c) Deter-
mine an expression for the force exerted on the parti-
cle if it is inside the sphere. (Hint: See Section 14.10
and note that the distribution is spherically symmetric.)

64. (a) Determine the amount of work (in joules) that must
be done on a 100-kg payload to elevate it to a height of
1 000 km above the Earth’s surface. (b) Determine the
amount of additional work that is required to put the
payload into circular orbit at this elevation.

65. X-ray pulses from Cygnus X-1, a celestial x-ray source,
have been recorded during high-altitude rocket flights.
The signals can be interpreted as originating when a
blob of ionized matter orbits a black hole with a period
of 5.0 ms. If the blob is in a circular orbit about a black
hole whose mass is 20MSun , what is the orbital radius?

66. Studies of the relationship of the Sun to its galaxy—the
Milky Way—have revealed that the Sun is located near
the outer edge of the galactic disk, about 30 000
lightyears from the center. Furthermore, it has been
found that the Sun has an orbital speed of approxi-
mately 250 km/s around the galactic center. (a) What is
the period of the Sun’s galactic motion? (b) What is the
order of magnitude of the mass of the Milky Way
galaxy? Suppose that the galaxy is made mostly of stars,

of which the Sun is typical. What is the order of magni-
tude of the number of stars in the Milky Way?

67. The oldest artificial satellite in orbit is Vanguard I,
launched March 3, 1958. Its mass is 1.60 kg. In its initial
orbit, its minimum distance from the center of the
Earth was 7.02 Mm, and its speed at this perigee point
was 8.23 km/s. (a) Find its total energy. (b) Find the
magnitude of its angular momentum. (c) Find its speed
at apogee and its maximum (apogee) distance from the
center of the Earth. (d) Find the semimajor axis of its
orbit. (e) Determine its period.

68. A rocket is given an initial speed vertically upward of
at the surface of the Earth, which has radius R

and surface free-fall acceleration g. The rocket motors are
quickly cut off, and thereafter the rocket coasts under the
action of gravitational forces only. (Ignore atmospheric
friction and the Earth’s rotation.) Derive an expression
for the subsequent speed v as a function of the distance r
from the center of the Earth in terms of g, R, and r.

69. Two stars of masses M and m, separated by a distance d,
revolve in circular orbits about their center of mass
(Fig. P14.69). Show that each star has a period given by

(Hint: Apply Newton’s second law to each star, and note
that the center-of-mass condition requires that

where r1 � r2 � d.)Mr2 � mr1 ,

T 2 �
4�2d3

G(M � m)

vi � 2√Rg

WEB

Figure P14.69
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70. (a) A 5.00-kg mass is released 1.20 � 107 m from the
center of the Earth. It moves with what acceleration rel-
ative to the Earth? (b) A 2.00 � 1024 kg mass is released
1.20 � 107 m from the center of the Earth. It moves
with what acceleration relative to the Earth? Assume
that the objects behave as pairs of particles, isolated
from the rest of the Universe.

71. The acceleration of an object moving in the gravita-
tional field of the Earth is

a � �
GME

r 3 r
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14.4 The gravitational force is zero inside the shell (Eq.
14.25b). Because the force on it is zero, the particle
moves with constant velocity in the direction of its origi-
nal motion outside the shell until it hits the wall oppo-
site the entry hole. Its path thereafter depends on the
nature of the collision and on the particle’s original di-
rection.

14.1 Kepler’s third law (Eq. 14.7), which applies to all the
planets, tells us that the period of a planet is propor-
tional to r3/2. Because Saturn and Jupiter are farther
from the Sun than the Earth is, they have longer peri-
ods. The Sun’s gravitational field is much weaker at Sat-
urn and Jupiter than it is at the Earth. Thus, these plan-
ets experience much less centripetal acceleration than
the Earth does, and they have correspondingly longer
periods.

14.2 The mass of the asteroid might be so small that you
would be able to exceed escape velocity by leg power
alone. You would jump up, but you would never come
back down!

14.3 Kepler’s first law applies not only to planets orbiting the
Sun but also to any relatively small object orbiting an-
other under the influence of gravity. Any elliptical path
that does not touch the Earth before reaching point G
will continue around the other side to point V in a com-
plete orbit (see figure in next column).

where r is the position vector directed from the center
of the Earth to the object. Choosing the origin at the
center of the Earth and assuming that the small object
is moving in the xy plane, we find that the rectangular
(cartesian) components of its acceleration are

Use a computer to set up and carry out a numerical pre-

ax � �
GMEx

(x2 � y2)3/2   ay � �
GMEy

(x2 � y2)3/2

diction of the motion of the object, according to Euler’s
method. Assume that the initial position of the object is

and where RE is the radius of the Earth.
Give the object an initial velocity of 5 000 m/s in the x
direction. The time increment should be made as small
as practical. Try 5 s. Plot the x and y coordinates of the
object as time goes on. Does the object hit the Earth?
Vary the initial velocity until you find a circular orbit.

y � 2R E ,x � 0



APPENDIX A • Tables

TABLE A.1 Conversion Factors

Length

m cm km in. ft mi

1 meter 1 102 10�3 39.37 3.281 6.214 � 10�4

1 centimeter 10�2 1 10�5 0.393 7 3.281 � 10�2 6.214 � 10�6

1 kilometer 103 105 1 3.937 � 104 3.281 � 103 0.621 4
1 inch 2.540 � 10�2 2.540 2.540 � 10�5 1 8.333 � 10�2 1.578 � 10�5

1 foot 0.304 8 30.48 3.048 � 10�4 12 1 1.894 � 10�4

1 mile 1 609 1.609 � 105 1.609 6.336 � 104 5 280 1

Mass

kg g slug u

1 kilogram 1 103 6.852 � 10�2 6.024 � 1026

1 gram 10�3 1 6.852 � 10�5 6.024 � 1023

1 slug 14.59 1.459 � 104 1 8.789 � 1027

1 atomic mass unit 1.660 � 10�27 1.660 � 10�24 1.137 � 10�28 1

Note: 1 metric ton � 1 000 kg.

Time

s min h day yr

1 second 1 1.667 � 10�2 2.778 � 10�4 1.157 � 10�5 3.169 � 10�8

1 minute 60 1 1.667 � 10�2 6.994 � 10�4 1.901 � 10�6

1 hour 3 600 60 1 4.167 � 10�2 1.141 � 10�4

1 day 8.640 � 104 1 440 24 1 2.738 � 10�5

1 year 3.156 � 107 5.259 � 105 8.766 � 103 365.2 1

Speed

m/s cm/s ft/s mi/h

1 meter per second 1 102 3.281 2.237
1 centimeter per second 10�2 1 3.281 � 10�2 2.237 � 10�2

1 foot per second 0.304 8 30.48 1 0.681 8
1 mile per hour 0.447 0 44.70 1.467 1

Note: 1 mi/min � 60 mi/h � 88 ft/s.
continued
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A.2 A P P E N D I X A

TABLE A.1 Continued

Force

N lb

1 newton 1 0.224 8
1 pound 4.448 1

Work, Energy, Heat

J ft lb eV

1 joule 1 0.737 6 6.242 � 1018

1 ft lb 1.356 1 8.464 � 1018

1 eV 1.602 � 10�19 1.182 � 10�19 1
1 cal 4.186 3.087 2.613 � 1019

1 Btu 1.055 � 103 7.779 � 102 6.585 � 1021

1 kWh 3.600 � 106 2.655 � 106 2.247 � 1025

cal Btu kWh

1 joule 0.238 9 9.481 � 10�4 2.778 � 10�7

1 ft lb 0.323 9 1.285 � 10�3 3.766 � 10�7

1 eV 3.827 � 10�20 1.519 � 10�22 4.450 � 10�26

1 cal 1 3.968 � 10�3 1.163 � 10�6

1 Btu 2.520 � 102 1 2.930 � 10�4

1 kWh 8.601 � 105 3.413 � 102 1

Pressure

Pa atm

1 pascal 1 9.869 � 10�6

1 atmosphere 1.013 � 105 1
1 centimeter mercurya 1.333 � 103 1.316 � 10�2

1 pound per inch2 6.895 � 103 6.805 � 10�2

1 pound per foot2 47.88 4.725 � 10�4

cm Hg lb/in.2 lb/ft2

1 newton per meter2 7.501 � 10�4 1.450 � 10�4 2.089 � 10�2

1 atmosphere 76 14.70 2.116 � 103

1 centimeter mercurya 1 0.194 3 27.85
1 pound per inch2 5.171 1 144
1 pound per foot2 3.591 � 10�2 6.944 � 10�3 1

a At 0°C and at a location where the acceleration due to gravity has its “standard” value, 
9.806 65 m/s2.
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Appendix A A.3

TABLE A.2 Symbols, Dimensions, and Units of Physical Quantities

Common Unit in Terms of
Quantity Symbol Unita Dimensionsb Base SI Units

Acceleration a m/s2 L/T 2 m/s2

Amount of substance n mole mol
Angle �, � radian (rad) 1
Angular acceleration � rad/s2 T�2 s�2

Angular frequency � rad/s T�1 s�1

Angular momentum L kg m2/s ML2/T kg m2/s
Angular velocity � rad/s T�1 s�1

Area A m2 L2 m2

Atomic number Z
Capacitance C farad (F) Q2T2/ML2 A2 s4/kg m2

Charge q, Q , e coulomb (C) Q A s
Charge density

Line � C/m Q /L A s/m
Surface 	 C/m2 Q /L2 A s/m2

Volume 
 C/m3 Q /L3 A s/m3

Conductivity 	 1/� m Q2T/ML3 A2 s3/kg m3

Current I AMPERE Q /T A
Current density J A/m2 Q /T 2 A/m2

Density 
 kg/m3 M/L3 kg/m3

Dielectric constant �
Displacement r, s METER L m

Distance d, h
Length , L

Electric dipole moment p C m QL A s m
Electric field E V/m ML/QT 2 kg m/A s3

Electric flux E V m ML3/QT 2 kg m3/A s3

Electromotive force � volt (V) ML2/QT 2 kg m2/A s3

Energy E, U, K joule (J) ML2/T 2 kg m2/s2

Entropy S J/K ML2/T 2 K kg m2/s2 K
Force F newton (N) ML/T2 kg m/s2

Frequency f hertz (Hz) T�1 s�1

Heat Q joule ( J) ML2/T2 kg m2/s2

Inductance L henry (H) ML2/Q2 kg m2/A2 s2

Magnetic dipole moment � N m/T QL2/T A m2

Magnetic field B tesla (T)( Wb/m2) M/QT kg/A s2

Magnetic flux B weber (Wb) ML2/QT kg m2/A s2

Mass m, M KILOGRAM M kg
Molar specific heat C J/mol K kg m2/s2 mol K
Moment of inertia I kg m2 ML2 kg m2

Momentum p kg m/s ML/T kg m/s
Period T s T s
Permeability of space �0 N/A2( H/m) ML/Q2T kg m/A2 s2

Permittivity of space �0 C2/N m2( F/m) Q2T2/ML3 A2 s4/kg m3

Potential V volt (V)( J/C) ML2/QT2 kg m2/A s3

Power watt (W)( J/s) ML2/T3 kg m2/s3
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A.4 A P P E N D I X A

TABLE A.2 Continued

Common Unit in Terms of
Quantity Symbol Unita Dimensionsb Base SI Units

Pressure P pascal (Pa) � (N/m2) M/LT 2 kg/m s2

Resistance R ohm (�)( V/A) ML2/Q2T kg m2/A2 s3

Specific heat c J/kg K L2/T2 K m2/s2 K
Speed v m/s L/T m/s
Temperature T KELVIN K K
Time t SECOND T s
Torque � N m ML2/T 2 kg m2/s2

Volume V m3 L3 m3

Wavelength � m L m
Work W joule ( J)( N m) ML2/T2 kg m2/s2

a The base SI units are given in uppercase letters.
b The symbols M, L, T, and Q denote mass, length, time, and charge, respectively.

���

��

���
���

�

TABLE A.3 Table of Atomic Massesa

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

0 (Neutron) n 1* 1.008 665 10.4 min
1 Hydrogen H 1.007 9 1 1.007 825 99.985

Deuterium D 2 2.014 102 0.015
Tritium T 3* 3.016 049 12.33 yr

2 Helium He 4.002 60 3 3.016 029 0.000 14
4 4.002 602 99.999 86
6* 6.018 886 0.81 s

3 Lithium Li 6.941 6 6.015 121 7.5
7 7.016 003 92.5
8* 8.022 486 0.84 s

4 Beryllium Be 9.012 2 7* 7.016 928 53.3 days
9 9.012 174 100

10* 10.013 534 1.5 � 106 yr
5 Boron B 10.81 10 10.012 936 19.9

11 11.009 305 80.1
12* 12.014 352 0.020 2 s

6 Carbon C 12.011 10* 10.016 854 19.3 s
11* 11.011 433 20.4 min
12 12.000 000 98.90
13 13.003 355 1.10
14* 14.003 242 5 730 yr
15* 15.010 599 2.45 s

7 Nitrogen N 14.006 7 12* 12.018 613 0.011 0 s
13* 13.005 738 9.96 min
14 14.003 074 99.63
15 15.000 108 0.37
16* 16.006 100 7.13 s
17* 17.008 450 4.17 s



Appendix A A.5

TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

8 Oxygen O 15.999 4 14* 14.008 595 70.6 s
15* 15.003 065 122 s
16 15.994 915 99.761
17 16.999 132 0.039
18 17.999 160 0.20
19* 19.003 577 26.9 s

9 Fluorine F 18.998 40 17* 17.002 094 64.5 s
18* 18.000 937 109.8 min
19 18.998 404 100
20* 19.999 982 11.0 s
21* 20.999.950 4.2 s

10 Neon Ne 20.180 18* 18.005 710 1.67 s
19* 19.001 880 17.2 s
20 19.992 435 90.48
21 20.993 841 0.27
22 21.991 383 9.25
23* 22.994 465 37.2 s

11 Sodium Na 22.989 87 21* 20.997 650 22.5 s
22* 21.994 434 2.61 yr
23 22.989 770 100
24* 23.990 961 14.96 h

12 Magnesium Mg 24.305 23* 22.994 124 11.3 s
24 23.985 042 78.99
25 24.985 838 10.00
26 25.982 594 11.01
27* 26.984 341 9.46 min

13 Aluminum Al 26.981 54 26* 25.986 892 7.4 � 105 yr
27 26.981 538 100
28* 27.981 910 2.24 min

14 Silicon Si 28.086 28 27.976 927 92.23
29 28.976 495 4.67
30 29.973 770 3.10
31* 30.975 362 2.62 h
32* 31.974 148 172 yr

15 Phosphorus P 30.973 76 30* 29.978 307 2.50 min
31 30.973 762 100
32* 31.973 908 14.26 days
33* 32.971 725 25.3 days

16 Sulfur S 32.066 32 31.972 071 95.02
33 32.971 459 0.75
34 33.967 867 4.21
35* 34.969 033 87.5 days
36 35.967 081 0.02

17 Chlorine Cl 35.453 35 34.968 853 75.77
36* 35.968 307 3.0 � 105 yr
37 36.965 903 24.23

continued



A.6 A P P E N D I X A

TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

18 Argon Ar 39.948 36 35.967 547 0.337
37* 36.966 776 35.04 days
38 37.962 732 0.063
39* 38.964 314 269 yr
40 39.962 384 99.600
42* 41.963 049 33 yr

19 Potassium K 39.098 3 39 38.963 708 93.258 1
40* 39.964 000 0.011 7 1.28 � 109 yr
41 40.961 827 6.730 2

20 Calcium Ca 40.08 40 39.962 591 96.941
41* 40.962 279 1.0 � 105 yr
42 41.958 618 0.647
43 42.958 767 0.135
44 43.955 481 2.086
46 45.953 687 0.004
48 47.952 534 0.187

21 Scandium Sc 44.955 9 41* 40.969 250 0.596 s
45 44.955 911 100

22 Titanium Ti 47.88 44* 43.959 691 49 yr
46 45.952 630 8.0
47 46.951 765 7.3
48 47.947 947 73.8
49 48.947 871 5.5
50 49.944 792 5.4

23 Vanadium V 50.941 5 48* 47.952 255 15.97 days
50* 49.947 161 0.25 1.5 � 1017 yr
51 50.943 962 99.75

24 Chromium Cr 51.996 48* 47.954 033 21.6 h
50 49.946 047 4.345
52 51.940 511 83.79
53 52.940 652 9.50
54 53.938 883 2.365

25 Manganese Mn 54.938 05 54* 53.940 361 312.1 days
55 54.938 048 100

26 Iron Fe 55.847 54 53.939 613 5.9
55* 54.938 297 2.7 yr
56 55.934 940 91.72
57 56.935 396 2.1
58 57.933 278 0.28
60* 59.934 078 1.5 � 106 yr

27 Cobalt Co 58.933 20 59 58.933 198 100
60* 59.933 820 5.27 yr

28 Nickel Ni 58.693 58 57.935 346 68.077
59* 58.934 350 7.5 � 104 yr
60 59.930 789 26.223
61 60.931 058 1.140
62 61.928 346 3.634
63* 62.929 670 100 yr
64 63.927 967 0.926
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

29 Copper Cu 63.54 63 62.929 599 69.17
65 64.927 791 30.83

30 Zinc Zn 65.39 64 63.929 144 48.6
66 65.926 035 27.9
67 66.927 129 4.1
68 67.924 845 18.8
70 69.925 323 0.6

31 Gallium Ga 69.723 69 68.925 580 60.108
71 70.924 703 39.892

32 Germanium Ge 72.61 70 69.924 250 21.23
72 71.922 079 27.66
73 72.923 462 7.73
74 73.921 177 35.94
76 75.921 402 7.44

33 Arsenic As 74.921 6 75 74.921 594 100
34 Selenium Se 78.96 74 73.922 474 0.89

76 75.919 212 9.36
77 76.919 913 7.63
78 77.917 307 23.78
79* 78.918 497 � 6.5 � 104 yr
80 79.916 519 49.61
82* 81.916 697 8.73 1.4 � 1020 yr

35 Bromine Br 79.904 79 78.918 336 50.69
81 80.916 287 49.31

36 Krypton Kr 83.80 78 77.920 400 0.35
80 79.916 377 2.25
81* 80.916 589 2.1 � 105 yr
82 81.913 481 11.6
83 82.914 136 11.5
84 83.911 508 57.0
85* 84.912 531 10.76 yr
86 85.910 615 17.3

37 Rubidium Rb 85.468 85 84.911 793 72.17
87* 86.909 186 27.83 4.75 � 1010 yr

38 Strontium Sr 87.62 84 83.913 428 0.56
86 85.909 266 9.86
87 86.908 883 7.00
88 87.905 618 82.58
90* 89.907 737 29.1 yr

39 Yttrium Y 88.905 8 89 88.905 847 100
40 Zirconium Zr 91.224 90 89.904 702 51.45

91 90.905 643 11.22
92 91.905 038 17.15
93* 92.906 473 1.5 � 106 yr
94 93.906 314 17.38
96 95.908 274 2.80

continued
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

41 Niobium Nb 92.906 4 91* 90.906 988 6.8 � 102 yr
92* 91.907 191 3.5 � 107 yr
93 92.906 376 100
94* 93.907 280 2 � 104 yr

42 Molybdenum Mo 95.94 92 91.906 807 14.84
93* 92.906 811 3.5 � 103 yr
94 93.905 085 9.25
95 94.905 841 15.92
96 95.904 678 16.68
97 96.906 020 9.55
98 97.905 407 24.13

100 99.907 476 9.63
43 Technetium Tc 97* 96.906 363 2.6 � 106 yr

98* 97.907 215 4.2 � 106 yr
99* 98.906 254 2.1 � 105 yr

44 Ruthenium Ru 101.07 96 95.907 597 5.54
98 97.905 287 1.86
99 98.905 939 12.7

100 99.904 219 12.6
101 100.905 558 17.1
102 101.904 348 31.6
104 103.905 428 18.6

45 Rhodium Rh 102.905 5 103 102.905 502 100
46 Palladium Pd 106.42 102 101.905 616 1.02

104 103.904 033 11.14
105 104.905 082 22.33
106 105.903 481 27.33
107* 106.905 126 6.5 � 106 yr
108 107.903 893 26.46
110 109.905 158 11.72

47 Silver Ag 107.868 107 106.905 091 51.84
109 108.904 754 48.16

48 Cadmium Cd 112.41 106 105.906 457 1.25
108 107.904 183 0.89
109* 108.904 984 462 days
110 109.903 004 12.49
111 110.904 182 12.80
112 111.902 760 24.13
113* 112.904 401 12.22 9.3 � 1015 yr
114 113.903 359 28.73
116 115.904 755 7.49

49 Indium In 114.82 113 112.904 060 4.3
115* 114.903 876 95.7 4.4 � 1014 yr

50 Tin Sn 118.71 112 111.904 822 0.97
114 113.902 780 0.65
115 114.903 345 0.36
116 115.901 743 14.53
117 116.902 953 7.68
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

(50) (Tin) 118 117.901 605 24.22
119 118.903 308 8.58
120 119.902 197 32.59
121* 120.904 237 55 yr
122 121.903 439 4.63
124 123.905 274 5.79

51 Antimony Sb 121.76 121 120.903 820 57.36
123 122.904 215 42.64
125* 124.905 251 2.7 yr

52 Tellurium Te 127.60 120 119.904 040 0.095
122 121.903 052 2.59
123* 122.904 271 0.905 1.3 � 1013 yr
124 123.902 817 4.79
125 124.904 429 7.12
126 125.903 309 18.93
128* 127.904 463 31.70 � 8 � 1024 yr
130* 129.906 228 33.87 � 1.25 � 1021 yr

53 Iodine I 126.904 5 127 126.904 474 100
129* 128.904 984 1.6 � 107 yr

54 Xenon Xe 131.29 124 123.905 894 0.10
126 125.904 268 0.09
128 127.903 531 1.91
129 128.904 779 26.4
130 129.903 509 4.1
131 130.905 069 21.2
132 131.904 141 26.9
134 133.905 394 10.4
136* 135.907 215 8.9 � 2.36 � 1021 yr

55 Cesium Cs 132.905 4 133 132.905 436 100
134* 133.906 703 2.1 yr
135* 134.905 891 2 � 106 yr
137* 136.907 078 30 yr

56 Barium Ba 137.33 130 129.906 289 0.106
132 131.905 048 0.101
133* 132.905 990 10.5 yr
134 133.904 492 2.42
135 134.905 671 6.593
136 135.904 559 7.85
137 136.905 816 11.23
138 137.905 236 71.70

57 Lanthanum La 138.905 137* 136.906 462 6 � 104 yr
138* 137.907 105 0.090 2 1.05 � 1011 yr
139 138.906 346 99.909 8

58 Cerium Ce 140.12 136 135.907 139 0.19
138 137.905 986 0.25
140 139.905 434 88.43
142* 141.909 241 11.13 � 5 � 1016 yr

59 Praseodymium Pr 140.907 6 141 140.907 647 100
continued
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

60 Neodymium Nd 144.24 142 141.907 718 27.13
143 142.909 809 12.18
144* 143.910 082 23.80 2.3 � 1015 yr
145 144.912 568 8.30
146 145.913 113 17.19
148 147.916 888 5.76
150* 149.920 887 5.64 � 1 � 1018 yr

61 Promethium Pm 143* 142.910 928 265 days
145* 144.912 745 17.7 yr
146* 145.914 698 5.5 yr
147* 146.915 134 2.623 yr

62 Samarium Sm 150.36 144 143.911 996 3.1
146* 145.913 043 1.0 � 108 yr
147* 146.914 894 15.0 1.06 � 1011 yr
148* 147.914 819 11.3 7 � 1015 yr
149* 148.917 180 13.8 � 2 � 1015 yr
150 149.917 273 7.4
151* 150.919 928 90 yr
152 151.919 728 26.7
154 153.922 206 22.7

63 Europium Eu 151.96 151 150.919 846 47.8
152* 151.921 740 13.5 yr
153 152.921 226 52.2
154* 153.922 975 8.59 yr
155* 154.922 888 4.7 yr

64 Gadolinium Gd 157.25 148* 147.918 112 75 yr
150* 149.918 657 1.8 � 106 yr
152* 151.919 787 0.20 1.1 � 1014 yr
154 153.920 862 2.18
155 154.922 618 14.80
156 155.922 119 20.47
157 156.923 957 15.65
158 157.924 099 24.84
160 159.927 050 21.86

65 Terbium Tb 158.925 3 159 158.925 345 100
66 Dysprosium Dy 162.50 156 155.924 277 0.06

158 157.924 403 0.10
160 159.925 193 2.34
161 160.926 930 18.9
162 161.926 796 25.5
163 162.928 729 24.9
164 163.929 172 28.2

67 Holmium Ho 164.930 3 165 164.930 316 100
166* 165.932 282 1.2 � 103 yr

68 Erbium Er 167.26 162 161.928 775 0.14
164 163.929 198 1.61
166 165.930 292 33.6
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

(68) (Erbium) 167 166.932 047 22.95
168 167.932 369 27.8
170 169.935 462 14.9

69 Thulium Tm 168.934 2 169 168.934 213 100
171* 170.936 428 1.92 yr

70 Ytterbium Yb 173.04 168 167.933 897 0.13
170 169.934 761 3.05
171 170.936 324 14.3
172 171.936 380 21.9
173 172.938 209 16.12
174 173.938 861 31.8
176 175.942 564 12.7

71 Lutecium Lu 174.967 173* 172.938 930 1.37 yr
175 174.940 772 97.41
176* 175.942 679 2.59 3.78 � 1010 yr

72 Hafnium Hf 178.49 174* 173.940 042 0.162 2.0 � 1015 yr
176 175.941 404 5.206
177 176.943 218 18.606
178 177.943 697 27.297
179 178.945 813 13.629
180 179.946 547 35.100

73 Tantalum Ta 180.947 9 180 179.947 542 0.012
181 180.947 993 99.988

74 Tungsten W 183.85 180 179.946 702 0.12
(Wolfram) 182 181.948 202 26.3

183 182.950 221 14.28
184 183.950 929 30.7
186 185.954 358 28.6

75 Rhenium Re 186.207 185 184.952 951 37.40
187* 186.955 746 62.60 4.4 � 1010 yr

76 Osmium Os 190.2 184 183.952 486 0.02
186* 185.953 834 1.58 2.0 � 1015 yr
187 186.955 744 1.6
188 187.955 832 13.3
189 188.958 139 16.1
190 189.958 439 26.4
192 191.961 468 41.0
194* 193.965 172 6.0 yr

77 Iridium Ir 192.2 191 190.960 585 37.3
193 192.962 916 62.7

78 Platinum Pt 195.08 190* 189.959 926 0.01 6.5 � 1011 yr
192 191.961 027 0.79
194 193.962 655 32.9
195 194.964 765 33.8
196 195.964 926 25.3
198 197.967 867 7.2

79 Gold Au 196.966 5 197 196.966 543 100
continued
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

80 Mercury Hg 200.59 196 195.965 806 0.15
198 197.966 743 9.97
199 198.968 253 16.87
200 199.968 299 23.10
201 200.970 276 13.10
202 201.970 617 29.86
204 203.973 466 6.87

81 Thallium Tl 204.383 203 202.972 320 29.524
204* 203.973 839 3.78 yr
205 204.974 400 70.476

(Ra E�) 206* 205.976 084 4.2 min
(Ac C �) 207* 206.977 403 4.77 min
(Th C �) 208* 207.981 992 3.053 min
(Ra C�) 210* 209.990 057 1.30 min

82 Lead Pb 207.2 202* 201.972 134 5 � 104 yr
204* 203.973 020 1.4 � 1.4 � 1017 yr
205* 204.974 457 1.5 � 107 yr
206 205.974 440 24.1
207 206.975 871 22.1
208 207.976 627 52.4

(Ra D) 210* 209.984 163 22.3 yr
(Ac B) 211* 210.988 734 36.1 min
(Th B) 212* 211.991 872 10.64 h
(Ra B) 214* 213.999 798 26.8 min

83 Bismuth Bi 208.980 3 207* 206.978 444 32.2 yr
208* 207.979 717 3.7 � 105 yr
209 208.980 374 100

(Ra E) 210* 209.984 096 5.01 days
(Th C) 211* 210.987 254 2.14 min

212* 211.991 259 60.6 min
(Ra C) 214* 213.998 692 19.9 min

215* 215.001 836 7.4 min
84 Polonium Po 209* 208.982 405 102 yr

(Ra F) 210* 209.982 848 138.38 days
(Ac C �) 211* 210.986 627 0.52 s
(Th C �) 212* 211.988 842 0.30 �s
(Ra C�) 214* 213.995 177 164 �s
(Ac A) 215* 214.999 418 0.001 8 s
(Th A) 216* 216.001 889 0.145 s
(Ra A) 218* 218.008 965 3.10 min

85 Astatine At 215* 214.998 638 � 100 �s
218* 218.008 685 1.6 s
219* 219.011 294 0.9 min

86 Radon Rn
(An) 219* 219.009 477 3.96 s
(Tn) 220* 220.011 369 55.6 s
(Rn) 222* 222.017 571 3.823 days

87 Francium Fr
(Ac K) 223* 223.019 733 22 min
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TABLE A.3 Continued

Mass
Number Half-Life

Atomic Chemical (* Indicates (If
Number Atomic Radioactive) Atomic Percent Radioactive)

Z Element Symbol Mass (u) A Mass (u) Abundance T1/2

88 Radium Ra
(Ac X) 223* 223.018 499 11.43 days
(Th X) 224* 224.020 187 3.66 days
(Ra) 226* 226.025 402 1 600 yr
(Ms Th1) 228* 228.031 064 5.75 yr

89 Actinium Ac 227* 227.027 749 21.77 yr
(Ms Th2) 228* 228.031 015 6.15 h

90 Thorium Th 232.038 1
(Rd Ac) 227* 227.027 701 18.72 days
(Rd Th) 228* 228.028 716 1.913 yr

229* 229.031 757 7 300 yr
(Io) 230* 230.033 127 75.000 yr
(UY) 231* 231.036 299 25.52 h
(Th) 232* 232.038 051 100 1.40 � 1010 yr
(UX1) 234* 234.043 593 24.1 days

91 Protactinium Pa 231* 231.035 880 32.760 yr
(Uz) 234* 234.043 300 6.7 h

92 Uranium U 238.028 9 232* 232.037 131 69 yr
233* 233.039 630 1.59 � 105 yr
234* 234.040 946 0.005 5 2.45 � 105 yr

(Ac U) 235* 235.043 924 0.720 7.04 � 108 yr
236* 236.045 562 2.34 � 107 yr

(UI) 238* 238.050 784 99.274 5 4.47 � 109 yr
93 Neptunium Np 235* 235.044 057 396 days

236* 236.046 560 1.15 � 105 yr
237* 237.048 168 2.14 � 106 yr

94 Plutonium Pu 236* 236.046 033 2.87 yr
238* 238.049 555 87.7 yr
239* 239.052 157 2.412 � 104 yr
240* 240.053 808 6 560 yr
241* 241.056 846 14.4 yr
242* 242.058 737 3.73 � 106 yr
244* 244.064 200 8.1 � 107 yr

a The masses in the sixth column are atomic masses, which include the mass of Z electrons. Data are from the National Nuclear Data Center,
Brookhaven National Laboratory, prepared by Jagdish K. Tuli, July 1990. The data are based on experimental results reported in Nuclear Data
Sheets and Nuclear Physics and also from Chart of the Nuclides, 14th ed. Atomic masses are based on those by A. H. Wapstra, G. Audi, and R. Hoek-
stra. Isotopic abundances are based on those by N. E. Holden.
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APPENDIX B • Mathematics Review

These appendices in mathematics are intended as a brief review of operations and
methods. Early in this course, you should be totally familiar with basic algebraic
techniques, analytic geometry, and trigonometry. The appendices on differential
and integral calculus are more detailed and are intended for those students who
have difficulty applying calculus concepts to physical situations.

SCIENTIFIC NOTATION
Many quantities that scientists deal with often have very large or very small 
values. For example, the speed of light is about 300 000 000 m/s, and the 
ink required to make the dot over an i in this textbook has a mass of about 
0.000 000 001 kg. Obviously, it is very cumbersome to read, write, and keep track
of numbers such as these. We avoid this problem by using a method dealing with
powers of the number 10:

and so on. The number of zeros corresponds to the power to which 10 is raised,
called the exponent of 10. For example, the speed of light, 300 000 000 m/s, can
be expressed as 3 � 108 m/s.

In this method, some representative numbers smaller than unity are

10�5 �
1

10 � 10 � 10 � 10 � 10
� 0.000 01

10�4 �
1

10 � 10 � 10 � 10
� 0.000 1

10�3 �
1

10 � 10 � 10
� 0.001 

10�2 �
1

10 � 10
� 0.01 

10�1 �
1
10

� 0.1 

105 � 10 � 10 � 10 � 10 � 10 � 100 000

104 � 10 � 10 � 10 � 10 � 10 000 

103 � 10 � 10 � 10 � 1000 

102 � 10 � 10 � 100 

101 � 10 

100 � 1 

B.1
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In these cases, the number of places the decimal point is to the left of the digit 1
equals the value of the (negative) exponent. Numbers expressed as some power of
10 multiplied by another number between 1 and 10 are said to be in scientific no-
tation. For example, the scientific notation for 5 943 000 000 is 5.943 � 109 and
that for 0.000 083 2 is 8.32 � 10�5.

When numbers expressed in scientific notation are being multiplied, the fol-
lowing general rule is very useful:

(B.1)

where n and m can be any numbers (not necessarily integers). For example,
The rule also applies if one of the exponents is negative:

When dividing numbers expressed in scientific notation, note that

(B.2)

EXERCISES

With help from the above rules, verify the answers to the following:

1. 86 400 � 8.64 � 104

2. 9 816 762.5 � 9.816 762 5 � 106

3. 0.000 000 039 8 � 3.98 � 10�8

4. (4 � 108)(9 � 109) � 3.6 � 1018

5. (3 � 107)(6 � 10�12) � 1.8 � 10�4

6.

7.

ALGEBRA

Some Basic Rules

When algebraic operations are performed, the laws of arithmetic apply. Symbols
such as x, y, and z are usually used to represent quantities that are not specified,
what are called the unknowns.

First, consider the equation

If we wish to solve for x, we can divide (or multiply) each side of the equation by
the same factor without destroying the equality. In this case, if we divide both sides
by 8, we have

 x � 4 

8x
8

�
32
8

8x � 32

B.2

(3 � 106)(8 � 10�2)
(2 � 1017)(6 � 105)

� 2 � 10�18

75 � 10�11

5 � 10�3 � 1.5 � 10�7

10n

10m � 10n � 10�m � 10n�m

103 � 10�8 � 10�5.
102 � 105 � 107.

10n � 10m � 10n�m



B.2 Algebra A.17

Next consider the equation

In this type of expression, we can add or subtract the same quantity from each
side. If we subtract 2 from each side, we get

In general, if then 
Now consider the equation

If we multiply each side by 5, we are left with x on the left by itself and 45 on the
right:

In all cases, whatever operation is performed on the left side of the equality must also be per-
formed on the right side.

The following rules for multiplying, dividing, adding, and subtracting frac-
tions should be recalled, where a, b, and c are three numbers:

 x � 45 

� x
5 � (5) � 9 � 5

x
5

� 9

x � b � a.x � a � b,

 x � 6 

x � 2 � 2 � 8 � 2

x � 2 � 8

Rule Example

Multiplying

Dividing

Adding
2
3

�
4
5

�
(2)(5) � (4)(3)

(3)(5)
� �

2
15

a
b

�
c
d

�
ad � bc

bd

2/3
4/5

�
(2)(5)
(4)(3)

�
10
12

(a/b)
(c/d)

�
ad
bc

� 2
3 � � 4

5 � �
8
15� a

b � � c
d � �

ac
bd

EXERCISES

In the following exercises, solve for x :

Answers

1.

2.

3.

4.

Powers

When powers of a given quantity x are multiplied, the following rule applies:

(B.3)xnxm � xn�m

x � �
11
7

5
2x � 6

�
3

4x � 8

x �
7

a � b
ax � 5 � bx � 2

x � 63x � 5 � 13

x �
1 � a

a
a �

1
1 � x
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For example, 
When dividing the powers of a given quantity, the rule is

(B.4)

For example, 
A power that is a fraction, such as corresponds to a root as follows:

(B.5)

For example, (A scientific calculator is useful for such calcula-
tions.)

Finally, any quantity xn raised to the mth power is

(B.6)

Table B.1 summarizes the rules of exponents.

EXERCISES

Verify the following:

1.
2.
3.
4. (Use your calculator.)
5. (Use your calculator.)
6.

Factoring

Some useful formulas for factoring an equation are

Quadratic Equations

The general form of a quadratic equation is

(B.7)

where x is the unknown quantity and a, b, and c are numerical factors referred to
as coefficients of the equation. This equation has two roots, given by

(B.8)

If the roots are real.b2 � 4ac,

x �
�b � !b2 � 4ac

2a

ax2 � bx � c � 0

a2 � b2 � (a � b)(a � b)  differences of squares

a2 � 2ab � b2 � (a � b)2  perfect square 

ax � ay � az � a(x � y � x)  common factor 

(x4)3 � x12
601/4 � 2.783 158
51/3 � 1.709 975
x10/x�5 � x15
x5x�8 � x�3
32 � 33 � 243

(xn)m � xnm

41/3 � !3 4 � 1.5874.

x1/n � !
n

x

1
3 ,

x8/x2 � x8�2 � x6.

xn

xm � xn�m

x2x4 � x2�4 � x6.

TABLE B.1
Rules of Exponents

(xn)m � xnm
x1/n � !

n
x

xn/xm � xn�m
xnxm � xn�m

x1 � x
x0 � 1
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EXERCISES

Solve the following quadratic equations:

Answers

1.
2.
3.

Linear Equations

A linear equation has the general form

(B.9)

where m and b are constants. This equation is referred to as being linear because
the graph of y versus x is a straight line, as shown in Figure B.1. The constant b,
called the y-intercept, represents the value of y at which the straight line intersects
the y axis. The constant m is equal to the slope of the straight line and is also
equal to the tangent of the angle that the line makes with the x axis. If any two
points on the straight line are specified by the coordinates (x1 , y1) and (x2 , y2), as
in Figure B.1, then the slope of the straight line can be expressed as

(B.10)

Note that m and b can have either positive or negative values. If the
straight line has a positive slope, as in Figure B1. If the straight line has a
negative slope. In Figure B.1, both m and b are positive. Three other possible situa-
tions are shown in Figure B.2.

EXERCISES

1. Draw graphs of the following straight lines:
(a) (b) (c)

2. Find the slopes of the straight lines described in Exercise 1.

Answers (a) 5 (b) � 2 (c) � 3

y � �3x � 6y � �2x � 4y � 5x � 3

m � 0,
m � 0,

Slope �
y2 � y1

x2 � x1
�

	y
	x

� tan 


y � mx � b

x� � 1 � !22/2x� � 1 � !22/22x2 � 4x � 9 � 0
x� � 1

2x� � 22x2 � 5x � 2 � 0
x� � �3x� � 1x2 � 2x � 3 � 0

EXAMPLE 1
The equation has the following roots corresponding to the two signs of
the square-root term:

where x� refers to the root corresponding to the positive sign and x� refers to the root
corresponding to the negative sign.

�4x� �
�5 � 3

2
��1x� �

�5 � 3
2

�

 x �
�5 � !52 � (4)(1)(4)

2(1)
�

�5 � !9
2

�
�5 � 3

2

x2 � 5x � 4 � 0

y

(x1, y1)
θ

(x2, y2)

∆y

∆x(0, b)

θ
(0, 0) x

y
(1)

(2)

(3)

m > 0
b < 0

m < 0
b > 0

m < 0
b < 0

x

Figure B.1

Figure B.2



A.20 A P P E N D I X B

3. Find the slopes of the straight lines that pass through the following sets of
points:
(a) (0, � 4) and (4, 2), (b) (0, 0) and (2, � 5), and (c) (� 5, 2) and (4, � 2)

Answers (a) 3/2 (b) � 5/2 (c) � 4/9

Solving Simultaneous Linear Equations

Consider the equation which has two unknowns, x and y. Such an
equation does not have a unique solution. For example, note that (

and are all solutions to this equation.
If a problem has two unknowns, a unique solution is possible only if we have

two equations. In general, if a problem has n unknowns, its solution requires n
equations. In order to solve two simultaneous equations involving two unknowns,
x and y, we solve one of the equations for x in terms of y and substitute this expres-
sion into the other equation.

(x � 2, y � 9/5)(x � 5, y � 0),
x � 0, y � 3),

3x � 5y � 15,

EXAMPLE 2
Alternate Solution Multiply each term in (1) by the
factor 2 and add the result to (2):

�3 y � x � 2 �

 x � �1 

 12x � �12 

 2x � 2y � 4 

10x � 2y � �16 

Solve the following two simultaneous equations:

(1)

(2)

Solution From (2), Substitution of this into (1)
gives

�1x � y � 2 �

 y � �3 

 6y � �18 

5(y � 2) � y � �8 

x � y � 2.

2x � 2y � 4

5x � y � �8

Two linear equations containing two unknowns can also be solved by a graphi-
cal method. If the straight lines corresponding to the two equations are plotted in
a conventional coordinate system, the intersection of the two lines represents the
solution. For example, consider the two equations

These are plotted in Figure B.3. The intersection of the two lines has the coordi-
nates This represents the solution to the equations. You should check
this solution by the analytical technique discussed above.

EXERCISES

Solve the following pairs of simultaneous equations involving two unknowns:

Answers

1.
x � y � 2

x � 5, y � 3x � y � 8

x � 5, y � 3.

x � 2y � �1

 x � y � 2 

5
4
3
2
1

x – 2y = –1

1 2 3 4 5 6

(5, 3)

x

x – y = 2

y

Figure B.3



B.3 Geometry A.21

2.

3.

Logarithms

Suppose that a quantity x is expressed as a power of some quantity a:

(B.11)

The number a is called the base number. The logarithm of x with respect to the
base a is equal to the exponent to which the base must be raised in order to satisfy
the expression 

(B.12)

Conversely, the antilogarithm of y is the number x :

(B.13)

In practice, the two bases most often used are base 10, called the common loga-
rithm base, and base . . . , called Euler’s constant or the natural loga-
rithm base. When common logarithms are used,

(B.14)

When natural logarithms are used,

(B.15)

For example, log10 52 � 1.716, so that antilog10 1.716 � 101.716 � 52. Likewise, 
lne 52 � 3.951, so antilne 3.951 � e 3.951 � 52.

In general, note that you can convert between base 10 and base e with the
equality

(B.16)

Finally, some useful properties of logarithms are

GEOMETRY
The distance d between two points having coordinates (x1 , y1) and (x2 , y2) is

(B.17)d � !(x2 � x1)2 � (y2 � y1)2

B.3

log(ab) � log a � log b
log(a/b) � log a � log b
log(an) � n log a
ln e � 1
ln ea � a

ln� 1
a � � � ln a

lne x � (2.302 585) log10 x

y � lne x  (or x � e y)

y � log10 x  (or x � 10y)

e � 2.718

x � antiloga y

y � loga x

x � a y :

x � a y

8x � 4y � 28
x � 2, y � �36x � 2y � 6

T � 49 � 5a
T � 65, a � 3.2798 � T � 10a
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Radian measure: The arc length s of a circular arc (Fig. B.4) is proportional
to the radius r for a fixed value of 
 (in radians):

(B.18)

Table B.2 gives the areas and volumes for several geometric shapes used through-
out this text:

s � r



 �
s
r

TABLE B.2 Useful Information for Geometry

Shape Area or Volume Shape Area or Volume

Rectangle

w

r

Circle

Triangle

h

Sphere

r

Cylinder

Rectangular box

r

�

Volume = πr 2�

Surface area = 4πr 2

     Area =
2(�h + �w + hw)
Volume = �whw

h

Area = πr 2

(Circumference = 2πr)

Area = �w

b �

�

Area =   bh1
2

Volume = 4πr3

3

π
π

π

π
π

Lateral surface
area = 2πr �π

The equation of a straight line (Fig. B.5) is

(B.19)

where b is the y-intercept and m is the slope of the line.
The equation of a circle of radius R centered at the origin is

(B.20)

The equation of an ellipse having the origin at its center (Fig. B.6) is

(B.21)

where a is the length of the semi-major axis (the longer one) and b is the length of
the semi-minor axis (the shorter one).

x2

a2 �
y2

b2 � 1

x2 � y2 � R2

y � mx � b

r
θ

s

Figure B.4

b

0

y

m = slope = tan

θ

x

θ

Figure B.5

y

0

b

a
x

Figure B.6
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The equation of a parabola the vertex of which is at (Fig. B.7) is

(B.22)

The equation of a rectangular hyperbola (Fig. B.8) is

(B.23)

TRIGONOMETRY
That portion of mathematics based on the special properties of the right triangle is
called trigonometry. By definition, a right triangle is one containing a 90° angle. Con-
sider the right triangle shown in Figure B.9, where side a is opposite the angle 
, side b
is adjacent to the angle 
, and side c is the hypotenuse of the triangle. The three basic
trigonometric functions defined by such a triangle are the sine (sin), cosine (cos), and
tangent (tan) functions. In terms of the angle 
, these functions are defined by

The Pythagorean theorem provides the following relationship between the
sides of a right triangle:

(B.27)

From the above definitions and the Pythagorean theorem, it follows that

The cosecant, secant, and cotangent functions are defined by

The relationships below follow directly from the right triangle shown in Figure B.9:

Some properties of trigonometric functions are

The following relationships apply to any triangle, as shown in Figure B.10:

� � � �  � 180�

tan (�
) � � tan 


cos (�
) � cos 


sin (�
) � �sin 


cot 
 � tan(90� � 
)

cos 
 � sin(90� � 
)

sin 
 � cos(90� � 
)

csc 
 �
1

sin 

  sec 
 �

1
cos 


  cot 
 �
1

tan 


 tan 
 �
sin 

cos 


 

sin2 
 � cos2 
 � 1

c 2 � a2 � b 2

(B.24)

(B.25)

(B.26)

sin 
 �
side opposite 


hypotenuse
�

a
c

cos 
 �
side adjacent to 


hypotenuse
�

b
c

tan 
 �
side opposite 


side adjacent to 

�

a
b

B.4

xy � constant

y � ax2 � b

y � b y

b

0
x

Figure B.7

0

y

x

Figure B.8

a = opposite side
b = adjacent side
c = hypotenuse

90°–θc
a

b

90°
θ

θ

Figure B.9
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Law of cosines

Law of sines

Table B.3 lists a number of useful trigonometric identities.

a
sin �

�
b

sin �
�

c
sin 

a2 � b 2 � c 2 � 2bc cos �
b 2 � a2 � c 2 � 2ac cos �
c 2 � a2 � b 2 � 2ab cos 

a = 2
c

θ
b = 5

Figure B.11

TABLE B.3 Some Trigonometric Identities

cos(A � B) � cos A cos B � sin A sin B
sin(A � B) � sin A cos B � cos A sin B

tan 



2
�! 1 � cos 


1 � cos 

tan 2
 �

2 tan 

1 � tan2 


1 � cos 
 � 2 sin2 



2
cos 2
 � cos2 
 � sin2 


cos2 



2
� 1

2(1 � cos 
)sin 2
 � 2 sin 
 cos 


sin2 



2
� 1

2(1 � cos 
)sec2 
 � 1 � tan2 


csc2 
 � 1 � cot2 
sin2 
 � cos2 
 � 1

EXAMPLE 3
where tan�1 (0.400) is the notation for “angle whose tangent
is 0.400,” sometimes written as arctan (0.400).

Consider the right triangle in Figure B.11, in which 
and c is unknown. From the Pythagorean theorem, we

have

To find the angle 
, note that

From a table of functions or from a calculator, we have

21.8�
 � tan�1 (0.400) �

tan 
 �
a
b

�
2
5

� 0.400

5.39 c � !29 �

c 2 � a2 � b 2 � 22 � 52 � 4 � 25 � 29

b � 5,
a � 2,

EXERCISES

1. In Figure B.12, identify (a) the side opposite 
 and (b) the side adjacent to �
and then find (c) cos 
, (d) sin �, and (e) tan �.

Answers (a) 3, (b) 3, (c) (d) and (e)

2. In a certain right triangle, the two sides that are perpendicular to each other
are 5 m and 7 m long. What is the length of the third side?

Answer 8.60 m

4
3

4
5 ,4

5 ,

a b

c

β α

γ

Figure B.10

5

4

3

θ

φ

Figure B.12
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3. A right triangle has a hypotenuse of length 3 m, and one of its angles is 30°.
What is the length of (a) the side opposite the 30° angle and (b) the side adja-
cent to the 30° angle?

Answers (a) 1.5 m, (b) 2.60 m

SERIES EXPANSIONS

x in radians

For the following approximations can be used1:

DIFFERENTIAL CALCULUS
In various branches of science, it is sometimes necessary to use the basic tools of
calculus, invented by Newton, to describe physical phenomena. The use of calcu-
lus is fundamental in the treatment of various problems in Newtonian mechanics,
electricity, and magnetism. In this section, we simply state some basic properties
and “rules of thumb” that should be a useful review to the student.

First, a function must be specified that relates one variable to another (such
as a coordinate as a function of time). Suppose one of the variables is called y (the
dependent variable), the other x (the independent variable). We might have a
function relationship such as

If a, b, c, and d are specified constants, then y can be calculated for any value of x.
We usually deal with continuous functions, that is, those for which y varies
“smoothly” with x.

y(x) � ax3 � bx2 � cx � d

B.6

ln(1 � x) � �x  tan x � x

ex � 1 � x  cos x � 1

(1 � x)n � 1 � nx  sin x � x

x V 1,

tan x � x �
x3

3
�

2x5

15
� ���  � x � � �/2 

cos x � 1 �
x2

2!
�

x4

4!
� ��� 

sin x � x �
x3

3!
�

x5

5!
� ��� 

ln(1 � x) � �x � 1
2x2 � 1

3x3 � ��� 

ex � 1 � x �
x2

2!
�

x3

3!
� ��� 

(1 � x)n � 1 � nx �
n(n � 1)

2!
 x2 � ��� 

(a � b)n � an �
n
1!

 an�1b �
n(n � 1)

2!
 an�2b2 � ��� 

B.5

1 The approximations for the functions sin x, cos x, and tan x are for x � 0.1 rad.
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The derivative of y with respect to x is defined as the limit, as 	x approaches
zero, of the slopes of chords drawn between two points on the y versus x curve.
Mathematically, we write this definition as

(B.28)

where 	y and 	x are defined as and (Fig. B.13). It is
important to note that dy/dx does not mean dy divided by dx, but is simply a nota-
tion of the limiting process of the derivative as defined by Equation B.28.

A useful expression to remember when where a is a constant and n
is any positive or negative number (integer or fraction), is

(B.29)

If y(x) is a polynomial or algebraic function of x, we apply Equation B.29 to
each term in the polynomial and take d[constant]/dx � 0. In Examples 4 through
7, we evaluate the derivatives of several functions.

dy
dx

� naxn�1

y(x) � axn,

	y � y2 � y1	x � x2 � x1

dy
dx

� lim
	x:0

 
	y
	x

� lim
	x:0

 
y(x � 	x) � y(x)

	x

EXAMPLE 4
so

Substituting this into Equation B.28 gives

3ax2 � b 
dy
dx

�

dy
dx

� lim
	x:0

 
	y
	x

� lim
	x:0

 [3ax2 � 3x	x � 	x2] � b

 � b	x 

	y � y(x � 	x) � y(x) � a(3x2	x � 3x	x2 � 	x3)

Suppose y(x) (that is, y as a function of x) is given by

where a and b are constants. Then it follows that

 � b(x � 	x) � c 

y(x � 	x) � a(x3 � 3x2	x � 3x	x2 � 	x3)

 � b(x � 	x) � c 

y(x � 	x) � a(x � 	x)3 

y(x) � ax3 � bx � c

EXAMPLE 5

40x4 � 12x2 � 2
dy
dx

�

Solution Applying Equation B.29 to each term indepen-
dently, and remembering that d/dx (constant) � 0, we have

dy
dx

� 8(5)x4 � 4(3)x2 � 2(1)x0 � 0

y(x) � 8x5 � 4x3 � 2x � 7

Special Properties of the Derivative

A. Derivative of the product of two functions If a function f (x) is given by the
product of two functions, say, g(x) and h(x), then the derivative of f(x) is defined
as

(B.30)
d
dx

 f(x) �
d
dx

[g(x)h(x)] � g 
dh
dx

� h 
dg
dx

y

y2

y1

x1 x2
x

∆x

∆y

Figure B.13
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B. Derivative of the sum of two functions If a function f (x) is equal to the sum
of two functions, then the derivative of the sum is equal to the sum of the deriv-
atives:

(B.31)

C. Chain rule of differential calculus If y � f (x) and x � g(z), then dy/dz can
be written as the product of two derivatives:

(B.32)

D. The second derivative The second derivative of y with respect to x is defined
as the derivative of the function dy/dx (the derivative of the derivative). It is
usually written

(B.33)
d2y
dx2 �

d
dx

 � dy
dx �

dy
dz

�
dy
dx

 
dx
dz

d
dx

 f(x) �
d
dx

[g(x) � h(x)] �
dg
dx

�
dh
dx

EXAMPLE 6

dy
dx

�
3x2

(x � 1)2 �
2x3

(x � 1)3  

 � (x � 1)�23x2 � x3(�2)(x � 1)�3 Find the derivative of y(x) � x3/(x � 1)2 with respect to x.

Solution We can rewrite this function as y(x) �
x3(x � 1)�2 and apply Equation B.30:

dy
dx

� (x � 1)�2 
d
dx

 (x3) � x3
 

d
dx

 (x � 1)�2

EXAMPLE 7

 �
h 

dg
dx

� g 
dh
dx

h2 

 � �gh�2 
dh
dx

� h�1 
dg
dx

 

d
dx

 � g
h � �

d
dx

 (gh�1) � g 
d
dx

 (h�1) � h�1 
d
dx

 (g)
A useful formula that follows from Equation B.30 is the deriv-
ative of the quotient of two functions. Show that

Solution We can write the quotient as gh�1 and then apply
Equations B.29 and B.30:

d
dx

 � g(x)
h(x) � �

h 
dg
dx

� g 
dh
dx

h2

Some of the more commonly used derivatives of functions are listed in Table
B.4.

INTEGRAL CALCULUS
We think of integration as the inverse of differentiation. As an example, consider
the expression

(B.34)

which was the result of differentiating the function

y(x) � ax 3 � bx � c

f(x) �
dy
dx

� 3ax2 � b

B.7
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in Example 4. We can write Equation B.34 as and ob-
tain y(x) by “summing” over all values of x. Mathematically, we write this inverse
operation

For the function f(x) given by Equation B.34, we have

where c is a constant of the integration. This type of integral is called an indefinite
integral because its value depends on the choice of c.

A general indefinite integral I(x) is defined as

(B.35)

where f(x) is called the integrand and 

For a general continuous function f(x), the integral can be described as the area
under the curve bounded by f(x) and the x axis, between two specified values of x,
say, x1 and x2 , as in Figure B.14.

The area of the blue element is approximately If we sum all these
area elements from x1 and x2 and take the limit of this sum as we obtain
the true area under the curve bounded by f(x) and x, between the limits x1 and x2 :

(B.36)

Integrals of the type defined by Equation B.36 are called definite integrals.

Area � lim
	xi:0

 �
i

 f(x i) 	x i � 	x 2

x 1

 f(x) dx

	x i : 0,
f(x i)	x i .

f(x) �
dI(x)

dx
 .

I(x) � 	 f(x) dx

y(x) � 	 (3ax2 � b) dx � ax 3 � bx � c

y(x) � 	 f(x) dx

dy � f(x) dx � (3ax2 � b) dx

∆xi

x2

f(xi)

f(x)

x1

Figure B.14

One common integral that arises in practical situations has the form

(B.37)

This result is obvious, being that differentiation of the right-hand side with respect
to x gives directly. If the limits of the integration are known, this integral
becomes a definite integral and is written

(B.38)	x 2

x 1

 xn dx �
x2 

n�1 � x1 

n�1

n � 1
  (n � �1)

f(x) � xn

	 xn dx �
xn�1

n � 1
� c  (n � �1)

TABLE B.4
Derivatives for Several
Functions

Note: The letters a and n are con-
stants.

d
dx

 (ln ax) �
1
x

d
dx

 (csc x) � �cot x csc x

d
dx

 (sec x) � tan x sec x

d
dx

 (cot ax) � �a csc2 ax

d
dx

 (tan ax) � a sec2 ax

d
dx

 (cos ax) � �a sin ax

d
dx

 (sin ax) � a cos ax

d
dx

 (e ax) � ae ax

d
dx

 (axn) � naxn�1

d
dx

 (a) � 0
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EXAMPLES

1.

2.

3.

Partial Integration

Sometimes it is useful to apply the method of partial integration (also called “inte-
grating by parts”) to evaluate certain integrals. The method uses the property that

(B.39)

where u and v are carefully chosen so as to reduce a complex integral to a simpler
one. In many cases, several reductions have to be made. Consider the function

This can be evaluated by integrating by parts twice. First, if we choose 
we get

Now, in the second term, choose which gives

or

The Perfect Differential

Another useful method to remember is the use of the perfect differential, in which
we look for a change of variable such that the differential of the function is the dif-
ferential of the independent variable appearing in the integrand. For example,
consider the integral

This becomes easy to evaluate if we rewrite the differential as 
The integral then becomes

If we now change variables, letting we obtain

	 cos2 x sin x dx � �	 y2dy � �
y3

3
� c � �

cos3 x
3

� c

y � cos x,

	 cos2 x sin x dx � �	 cos2 x d(cos x)

d(cos x) � �sin x dx.

I(x) � 	 cos2 x sin x dx

	 x2ex dx � x2ex � 2xex � 2ex � c2 

	 x2ex dx � x2ex � 2xex � 2 	 ex dx � c1

v � ex,u � x,

	 x2ex dx � 	 x2 d(ex) � x2ex � 2 	 exx dx � c1

v � ex,
u � x2,

I(x) � 	 x2ex dx

	 u dv � uv � 	 v du

	5

3
 x dx �

x2

2 �
5

3
�

52 � 32

2
� 8

	b

0
 x 3/2 dx �

x 5/2

5/2 �
b

0
�

2
5

 b 5/2

	a

0
 x2 dx �

x 3

3 �
a

0
�

a3

3
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Table B.5 lists some useful indefinite integrals. Table B.6 gives Gauss’s proba-
bility integral and other definite integrals. A more complete list can be found in
various handbooks, such as The Handbook of Chemistry and Physics, CRC Press.

TABLE B.5 Some Indefinite Integrals (An arbitrary constant should be added to each of these integrals.)

	 
x dx

(x2 � a2)3/2 � �
1

!x2 � a2	 eax dx �
1
a

 eax

	 
dx

(x2 � a2)3/2 �
x

a2!x2 � a2	 x(!x2 � a2) dx � 1
3 (x2 � a2)3/2

	 cos�1 ax dx � x(cos�1 ax) �
!1 � a2x2

a
	 !x2 � a2 dx � 1

2 [x!x2 � a2 � a2 ln(x � !x2 � a2)]

	 sin�1 ax dx � x(sin�1 ax) �
!1 � a2x2

a
	 x!a2 � x2 dx � �1

3 (a2 � x2)3/2

	 cot2 ax dx � �
1
a

 (cot ax) � x	 !a2 � x2 dx � 1
2 �x!a2 � x2 � a2 sin�1 

x
a �

	 tan2 ax dx �
1
a

 (tan ax) � x	 
x dx

!x2 � a2
� !x2 � a2

	 
dx

cos2 ax
�

1
a

 tan ax	 
x dx

!a2 � x2
� �!a2 � x2

	 
dx

sin2 ax
� �

1
a

 cot ax	 
dx

!x2 � a2
� ln(x � !x2 � a2)

	 cos2 ax dx �
x
2

�
sin 2 ax

4a
	 

dx

!a2 � x2
� sin�1 x

a
� �cos�1 

x
a

    (a2 � x2 � 0)

	 sin2 ax dx �
x
2

�
sin 2 ax

4a
	 

x dx
a2 � x2 � �1

2 ln(a2 � x2)

	 csc ax dx �  
1
a

 ln(csc ax � cot ax) �
1
a

 ln�tan 
ax
2 �	 

dx
x2 � a2 �

1
2a

 ln x � a
x � a

    (x2 � a2 � 0)

	 sec ax dx �  
1
a

 ln(sec ax � tan ax) �
1
a

 ln�tan� ax
2

�
�

4 ��	 
dx

a2 � x2 �
1
2a

 ln a � x
a � x

    (a2 � x2 � 0)

	 cot ax dx �  
1
a

 ln(sin ax)	 
dx

a2 � x2 �
1
a

 tan�1 x
a

	 tan ax dx �  
1
a

 ln(cos ax) �
1
a

 ln(sec ax)	 
dx

(a � bx)2 � �
1

b(a � bx)

	 cos ax dx �  
1
a

 sin ax	 
dx

x(x � a)
� �

1
a

 ln 
x � a

x

	 sin ax dx � �
1
a

 cos ax	 
x dx

a � bx
�

x
b

�
a
b2 ln(a � bx)

	 
dx

a � becx �
x
a

�
1
ac

 ln(a � becx)	 
dx

a � bx
�

1
b

 ln(a � bx)

	 xeax dx �
eax

a2  (ax � 1)	 
dx
x

� 	 x�1 dx � ln x

	 ln ax dx � (x ln ax) � x	 xn dx �
xn�1

n � 1
    (provided n � �1)
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TABLE B.6 Gauss’s Probability Integral and Other
Definite Integrals

(Gauss’s probability integral)

I2n�1 � (�1)n 
dn

dan  I1

I2n � (�1)n 
dn

dan  I0

�
�
�

I5 � 	�

0
 x5e�ax2

 dx �
d2I1

da2 �
1
a3

I4 � 	�

0
 x4e�ax2

 dx �
d2I0

da2 �
3
8

 ! �

a5

I3 � 	�

0
 x3e�ax2

 dx � �
dI1

da
�

1
2a2

I2 � 	�

0
 x2e�ax2

 dx � �
dI0

da
�

1
4

 ! �

a3

I1 � 	�

0
 xe�ax2

 dx �
1

2a

I0 � 	�

0
 e�ax2

 dx �
1
2

 ! �

a
    

	�

0
 xn e�ax dx �

n!
an�1
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APPENDIX C • Periodic Table of the Elements

*Lanthanide series

**Actinide series

Atomic numberSymbol

Electron configuration

20Ca
Atomic mass †

58

90

57

89

3

11

19

37

55

87

20

38

56

88

21

39

57-71*

89-103**

22

40

72

104

23

41

73

105

24

42

74

106

25

43

75

107

26

44

76

108

27

45

77

109

4

12

59 60 61 62

94939291

1

Li

Na

K

Rb

Cs

Fr

Ca

Sr

Ba

Ra

Sc

Y

Ti

Zr

Hf

Rf

V

Nb

Ta

Db

Cr

Mo

W

Sg

Mn

Tc

Re

Bh

Fe

Ru

Os

Hs

Co

Rh

Ir

Mt

Be

Mg

Ce Pr Nd Pm Sm

PuNpUPaTh

H

La

Ac

4s2

5f 66d 07s25f 46d 17s25f 36d17s25f 26d17s26d 27s26d17s2

4f 66s24f 56s24f 46s24f 36s25d14f 16s25d16s2

6d 37s26d 27s27s27s1

5d 76s25d 66s25d 56s25d 46s25d 36s25d 26s26s26s1

4d 85s14d 75s14d 55s24d 55s14d 45s14d 25s24d15s25s25s1

3d 74s23d 64s23d 54s23d 54s13d 34s23d 24s23d14s24s24s1

3s23s1

2s22s1

1s1

(261) (262) (263) (262) (265) (266)

6.94 9.012

1.008 0

22.99

39.102

85.47

132.91

(223)

40.08

87.62

137.34

(226)

44.96

88.906

47.90

91.22

178.49

50.94

92.91

180.95

51.996

95.94

183.85

54.94

(99)

186.2

55.85

101.1

190.2

58.93

102.91

192.2

24.31

140.12 140.91 144.24 (147) 150.4

(239)(239)(238)(231)(232)

40.08

138.91

(227)

Group
I

Group
II Transition elements

     Atomic mass values given are averaged over isotopes in the percentages in which they exist in nature.
    † For an unstable element, mass number of the most stable known isotope is given in parentheses.
  †† Elements 110, 111, 112, and 114  have not yet been named.
††† For a description of the atomic data, visit physics.nist.gov/atomic
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1.008 0

26.98 28.09 30.97 32.06 35.453 39.948

58.71

106.4

195.09

63.54

107.87

196.97

65.37

112.40

200.59

114.82

204.37

118.69

207.2

121.75

208.98

127.60

(210)

126.90

(218)

131.30

(222)

162.50 164.93 167.26 168.93 173.04

(255)(255)(253)(254)(249)

158.92

(247)

157.25

(245)

152.0

(243)

69.72 72.59 74.92 78.96 79.91 83.80

10.81 12.011 14.007 15.999 18.998 20.18

4.002 6

174.97

(257)

1

13 14 15 16 17 18

28

46

78

29

47

79

30

48

80

49

81 82 83

52

84

53

85

54

86

66  67 68 69 70

1021011009998

65

97

64

96

63

95

31 33 34 35 36

5 6 7 8 9 10

2

50 51

32

71

103

In

Ga

H

Al Si P S Cl Ar

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg Tl Pb Bi

Te

Po

I

At

Xe

Rn

Dy Ho Er Tm Yb

NoMdFmEsCf

Tb

Bk

Gd

Cm

Eu

Am

As Se Br Kr

B C N O F Ne

He

Sn Sb

Ge

Lu

Lr

Group
III

Group
IV

Group
V

Group
VI

Group
VII

Group
0

6d17s26d 07s25f 136d 07s25f 126d 07s25f 106d 07s25f 86d17s25f 76d17s25f 76d 07s2

5d14f 146s24f 146s24f 136s24f 126s24f 116s24f 106s25d14f 86s25d 14f 76s24f 76s2

6p66p56p46p36p26p15d106s25d106s15d 96s1
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APPENDIX D • SI Units

TABLE D.1 SI Units

SI Base Unit

Base Quantity Name Symbol

Length Meter m
Mass Kilogram kg
Time Second s
Electric current Ampere A
Temperature Kelvin K
Amount of substance Mole mol
Luminous intensity Candela cd

TABLE D.2 Some Derived SI Units

Expression in Expression in
Terms of Base Terms of Other

Quantity Name Symbol Units SI Units

Plane angle radian rad m/m
Frequency hertz Hz s�1

Force newton N kg m/s2 J/m
Pressure pascal Pa kg/m s2 N/m2

Energy; work joule J kg m2/s2 N m
Power watt W kg m2/s3 J/s
Electric charge coulomb C A s
Electric potential volt V kg m2/A s3 W/A
Capacitance farad F A2 s4/kg m2 C/V
Electric resistance ohm � kg m2/A2 s3 V/A
Magnetic flux weber Wb kg m2/A s2 V s
Magnetic field intensity tesla T kg/A s2

Inductance henry H kg m2/A2 s2 T m2/A���
�

���
��
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�
�
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APPENDIX E • Nobel Prizes

All Nobel Prizes in physics are listed (and marked with a P), as well as relevant
Nobel Prizes in Chemistry (C). The key dates for some of the scientific work are
supplied; they often antedate the prize considerably.

1901 (P) Wilhelm Roentgen for discovering x-rays (1895).
1902 (P) Hendrik A. Lorentz for predicting the Zeeman effect and Pieter Zeeman

for discovering the Zeeman effect, the splitting of spectral lines in mag-
netic fields.

1903 (P) Antoine-Henri Becquerel for discovering radioactivity (1896) and Pierre
and Marie Curie for studying radioactivity.

1904 (P) Lord Rayleigh for studying the density of gases and discovering argon.
(C) William Ramsay for discovering the inert gas elements helium, neon,
xenon, and krypton, and placing them in the periodic table.

1905 (P) Philipp Lenard for studying cathode rays, electrons (1898–1899).
1906 (P) J. J. Thomson for studying electrical discharge through gases and dis-

covering the electron (1897).
1907 (P) Albert A. Michelson for inventing optical instruments and measuring

the speed of light (1880s).
1908 (P) Gabriel Lippmann for making the first color photographic plate, using

interference methods (1891).
(C) Ernest Rutherford for discovering that atoms can be broken apart by al-
pha rays and for studying radioactivity.

1909 (P) Guglielmo Marconi and Carl Ferdinand Braun for developing wireless
telegraphy.

1910 (P) Johannes D. van der Waals for studying the equation of state for gases
and liquids (1881).

1911 (P) Wilhelm Wien for discovering Wien’s law giving the peak of a black-
body spectrum (1893).
(C) Marie Curie for discovering radium and polonium (1898) and isolat-
ing radium.

1912 (P) Nils Dalén for inventing automatic gas regulators for lighthouses.
1913 (P) Heike Kamerlingh Onnes for the discovery of superconductivity and liq-

uefying helium (1908).
1914 (P) Max T. F. von Laue for studying x-rays from their diffraction by crys-

tals, showing that x-rays are electromagnetic waves (1912).
(C) Theodore W. Richards for determining the atomic weights of sixty ele-
ments, indicating the existence of isotopes.

1915 (P) William Henry Bragg and William Lawrence Bragg, his son, for studying
the diffraction of x-rays in crystals.

1917 (P) Charles Barkla for studying atoms by x-ray scattering (1906).
1918 (P) Max Planck for discovering energy quanta (1900).
1919 (P) Johannes Stark, for discovering the Stark effect, the splitting of spectral

lines in electric fields (1913).
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1920 (P) Charles-Édouard Guillaume for discovering invar, a nickel-steel alloy with
low coefficient of expansion.
(C) Walther Nernst for studying heat changes in chemical reactions and for-
mulating the third law of thermodynamics (1918).

1921 (P) Albert Einstein for explaining the photoelectric effect and for his ser-
vices to theoretical physics (1905).
(C) Frederick Soddy for studying the chemistry of radioactive substances and
discovering isotopes (1912).

1922 (P) Niels Bohr for his model of the atom and its radiation (1913).
(C) Francis W. Aston for using the mass spectrograph to study atomic
weights, thus discovering 212 of the 287 naturally occurring isotopes.

1923 (P) Robert A. Millikan for measuring the charge on an electron (1911) and
for studying the photoelectric effect experimentally (1914).

1924 (P) Karl M. G. Siegbahn for his work in x-ray spectroscopy.
1925 (P) James Franck and Gustav Hertz for discovering the Franck-Hertz effect in

electron-atom collisions.
1926 (P) Jean-Baptiste Perrin for studying Brownian motion to validate the discon-

tinuous structure of matter and measure the size of atoms.
1927 (P) Arthur Holly Compton for discovering the Compton effect on x-rays,

their change in wavelength when they collide with matter (1922), and
Charles T. R. Wilson for inventing the cloud chamber, used to study charged
particles (1906).

1928 (P) Owen W. Richardson for studying the thermionic effect and electrons
emitted by hot metals (1911).

1929 (P) Louis Victor de Broglie for discovering the wave nature of electrons
(1923).

1930 (P) Chandrasekhara Venkata Raman for studying Raman scattering, the scat-
tering of light by atoms and molecules with a change in wavelength (1928).

1932 (P) Werner Heisenberg for creating quantum mechanics (1925).
1933 (P) Erwin Schrödinger and Paul A. M. Dirac for developing wave mechanics

(1925) and relativistic quantum mechanics (1927).
(C) Harold Urey for discovering heavy hydrogen, deuterium (1931).

1935 (P) James Chadwick for discovering the neutron (1932).
(C) Irène and Frédéric Joliot-Curie for synthesizing new radioactive ele-
ments.

1936 (P) Carl D. Anderson for discovering the positron in particular and antimat-
ter in general (1932) and Victor F. Hess for discovering cosmic rays.
(C) Peter J. W. Debye for studying dipole moments and diffraction of x-rays
and electrons in gases.

1937 (P) Clinton Davisson and George Thomson for discovering the diffraction of
electrons by crystals, confirming de Broglie’s hypothesis (1927).

1938 (P) Enrico Fermi for producing the transuranic radioactive elements by neu-
tron irradiation (1934–1937).

1939 (P) Ernest O. Lawrence for inventing the cyclotron.
1943 (P) Otto Stern for developing molecular-beam studies (1923), and using

them to discover the magnetic moment of the proton (1933).
1944 (P) Isidor I. Rabi for discovering nuclear magnetic resonance in atomic and

molecular beams.
(C) Otto Hahn for discovering nuclear fission (1938).

1945 (P) Wolfgang Pauli for discovering the exclusion principle (1924).
1946 (P) Percy W. Bridgman for studying physics at high pressures.
1947 (P) Edward V. Appleton for studying the ionosphere.
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1948 (P) Patrick M. S. Blackett for studying nuclear physics with cloud-chamber
photographs of cosmic-ray interactions.

1949 (P) Hideki Yukawa for predicting the existence of mesons (1935).
1950 (P) Cecil F. Powell for developing the method of studying cosmic rays with

photographic emulsions and discovering new mesons.
1951 (P) John D. Cockcroft and Ernest T. S. Walton for transmuting nuclei in an ac-

celerator (1932).
(C) Edwin M. McMillan for producing neptunium (1940) and Glenn T.
Seaborg for producing plutonium (1941) and further transuranic elements.

1952 (P) Felix Bloch and Edward Mills Purcell for discovering nuclear magnetic res-
onance in liquids and gases (1946).

1953 (P) Frits Zernike for inventing the phase-contrast microscope, which uses in-
terference to provide high contrast.

1954 (P) Max Born for interpreting the wave function as a probability (1926)
and other quantum-mechanical discoveries and Walther Bothe for develop-
ing the coincidence method to study subatomic particles (1930–1931),
producing, in particular, the particle interpreted by Chadwick as the neu-
tron.

1955 (P) Willis E. Lamb, Jr., for discovering the Lamb shift in the hydrogen spec-
trum (1947) and Polykarp Kusch for determining the magnetic moment of
the electron (1947).

1956 (P) John Bardeen, Walter H. Brattain, and William Shockley for inventing the
transistor (1956).

1957 (P) T.-D. Lee and C.-N. Yang for predicting that parity is not conserved in
beta decay (1956).

1958 (P) Pavel A. Čerenkov for discovering Čerenkov radiation (1935) and Ilya
M. Frank and Igor Tamm for interpreting it (1937).

1959 (P) Emilio G. Segrè and Owen Chamberlain for discovering the antiproton
(1955).

1960 (P) Donald A. Glaser for inventing the bubble chamber to study elementary
particles (1952).
(C) Willard Libby for developing radiocarbon dating (1947).

1961 (P) Robert Hofstadter for discovering internal structure in protons and neu-
trons and Rudolf L. Mössbauer for discovering the Mössbauer effect of recoil-
less gamma-ray emission (1957).

1962 (P) Lev Davidovich Landau for studying liquid helium and other condensed
matter theoretically.

1963 (P) Eugene P. Wigner for applying symmetry principles to elementary-parti-
cle theory and Maria Goeppert Mayer and J. Hans D. Jensen for studying the
shell model of nuclei (1947).

1964 (P) Charles H. Townes, Nikolai G. Basov, and Alexandr M. Prokhorov for devel-
oping masers (1951–1952) and lasers.

1965 (P) Sin-itiro Tomonaga, Julian S. Schwinger, and Richard P. Feynman for devel-
oping quantum electrodynamics (1948).

1966 (P) Alfred Kastler for his optical methods of studying atomic energy levels.
1967 (P) Hans Albrecht Bethe for discovering the routes of energy production in

stars (1939).
1968 (P) Luis W. Alvarez for discovering resonance states of elementary particles.
1969 (P) Murray Gell-Mann for classifying elementary particles (1963).
1970 (P) Hannes Alfvén for developing magnetohydrodynamic theory and Louis

Eugène Félix Néel for discovering antiferromagnetism and ferrimagnetism
(1930s).
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1971 (P) Dennis Gabor for developing holography (1947).
(C) Gerhard Herzberg for studying the structure of molecules spectroscopi-
cally.

1972 (P) John Bardeen, Leon N. Cooper, and John Robert Schrieffer for explaining su-
perconductivity (1957).

1973 (P) Leo Esaki for discovering tunneling in semiconductors, Ivar Giaever for
discovering tunneling in superconductors, and Brian D. Josephson for pre-
dicting the Josephson effect, which involves tunneling of paired electrons
(1958–1962).

1974 (P) Anthony Hewish for discovering pulsars and Martin Ryle for developing
radio interferometry.

1975 (P) Aage N. Bohr, Ben R. Mottelson, and James Rainwater for discovering why
some nuclei take asymmetric shapes.

1976 (P) Burton Richter and Samuel C. C. Ting for discovering the J/psi particle,
the first charmed particle (1974).

1977 (P) John H. Van Vleck, Nevill F. Mott, and Philip W. Anderson for studying
solids quantum-mechanically.
(C) Ilya Prigogine for extending thermodynamics to show how life could
arise in the face of the second law.

1978 (P) Arno A. Penzias and Robert W. Wilson for discovering the cosmic back-
ground radiation (1965) and Pyotr Kapitsa for his studies of liquid helium.

1979 (P) Sheldon L. Glashow, Abdus Salam, and Steven Weinberg for developing the
theory that unified the weak and electromagnetic forces (1958–1971).

1980 (P) Val Fitch and James W. Cronin for discovering CP (charge-parity) viola-
tion (1964), which possibly explains the cosmological dominance of matter
over antimatter.

1981 (P) Nicolaas Bloembergen and Arthur L. Schawlow for developing laser spec-
troscopy and Kai M. Siegbahn for developing high-resolution electron spec-
troscopy (1958).

1982 (P) Kenneth G. Wilson for developing a method of constructing theories of
phase transitions to analyze critical phenomena.

1983 (P) William A. Fowler for theoretical studies of astrophysical nucleosynthesis
and Subramanyan Chandrasekhar for studying physical processes of impor-
tance to stellar structure and evolution, including the prediction of white
dwarf stars (1930).

1984 (P) Carlo Rubbia for discovering the W and Z particles, verifying the elec-
troweak unification, and Simon van der Meer, for developing the method of
stochastic cooling of the CERN beam that allowed the discovery
(1982–1983).

1985 (P) Klaus von Klitzing for the quantized Hall effect, relating to conductivity
in the presence of a magnetic field (1980).

1986 (P) Ernst Ruska for inventing the electron microscope (1931), and Gerd
Binnig and Heinrich Rohrer for inventing the scanning-tunneling electron
microscope (1981).

1987 (P) J. Georg Bednorz and Karl Alex Müller for the discovery of high tempera-
ture superconductivity (1986).

1988 (P) Leon M. Lederman, Melvin Schwartz, and Jack Steinberger for a collabora-
tive experiment that led to the development of a new tool for studying the
weak nuclear force, which affects the radioactive decay of atoms.

1989 (P) Norman Ramsay (U.S.) for various techniques in atomic physics; and
Hans Dehmelt (U.S.) and Wolfgang Paul (Germany) for the development of
techniques for trapping single charge particles.
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1990 (P) Jerome Friedman, Henry Kendall (both U.S.), and Richard Taylor (Canada)
for experiments important to the development of the quark model.

1991 (P) Pierre-Gilles de Gennes for discovering that methods developed for study-
ing order phenomena in simple systems can be generalized to more com-
plex forms of matter, in particular to liquid crystals and polymers.

1992 (P) George Charpak for developing detectors that trace the paths of evanes-
cent subatomic particles produced in particle accelerators.

1993 (P) Russell Hulse and Joseph Taylor for discovering evidence of gravitational
waves.

1994 (P) Bertram N. Brockhouse and Clifford G. Shull for pioneering work in neu-
tron scattering.

1995 (P) Martin L. Perl and Frederick Reines for discovering the tau particle and
the neutrino, respectively.

1996 (P) David M. Lee, Douglas C. Osheroff, and Robert C. Richardson for develop-
ing a superfluid using helium-3.

1997 (P) Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips for develop-
ing methods to cool and trap atoms with laser light.

1998 (P) Robert B. Laughlin, Horst L. Störmer, and Daniel C. Tsui for discovering a
new form of quantum fluid with fractionally charged excitations.




	[David Halliday, Robert Resnick, Jearl Walker]_Fundamentals of Physics ...(BookFi.org)
	appendix b

	~WZ160E
	[David Halliday, Robert Resnick, Jearl Walker]_Fundamentals of Physics ...(BookFi.org)
	cap 13
	cap 7 exercicios
	cap 8 exercicios 
	Untitled
	cap 13 exercicios
	cap 10 
	cap 6
	cap 7.3
	cap 5 exerc...
	cap 5
	cap 11 



