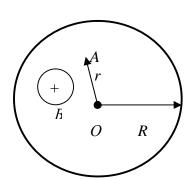

ВАРИАНТ 18.


1. Определить магнитную индукцию поля безграничной плоскости, по которой проходит однородный ток с линейной плотностью τ . (τ — сила тока на единицу длины плоскости, отсчитываемую в направлении, перпендикулярном направлению тока).

- 2. По длинному прямолинейному проводу проходит ток $I_1 = 20 \ A$. В плоскости провода параллельно проводу расположена прямоугольная рамка, по которой проходит ток $I_2 = 30 A$. Стороны рамки $a = 8 \ cm$, $b = 30 \ cm$. Расстояние от провода до рамки $l = 1 \ cm$. Определить силу взаимодействия провода и рамки.
- 3. Найти индукцию магнитного поля в точке P, лежащей в плоскости квадратного контура со стороной l. Сравнить с величиной индукции в центе квадрата.

- 4. Векторы индукции магнитного поля B и напряженности электрического поля E совпадают по направлению. В действующих совместно полях начинает двигаться со скоростью υ электрон. Определить нормальное и касательное ускорение электрона, если скорость электрона a) направлена вдоль полей; δ) направлена перпендикулярно полям.
- 5. Медное кольцо, имеющее массу $m=5~\kappa z$, расположено в плоскости магнитного меридиана. Какой заряд протекает через кольцо при повороте его относительно вертикальной оси на угол $a=90^{0}$? Напряженность горизонтальной составляющей магнитного поля Земли $H=40~\frac{A}{M}$.
- 6. B цилиндрическом объеме радиуса $R = 10 \, c_{M} \, \text{сосредоточено} \, \text{однородное}$ магнитное поле индукцией В. Магнитное равномерно убывает поле так, что Найти величину И направление ускорения, действующего на электрон в точках A, O и на поверхности

цилиндра. Расстояние от точки A до оси цилиндра r = 4.8 cm.

- 7. Определить энергию магнитного поля, приходящуюся на единицу длины длинного прямого провода диаметром d, по которому течет ток I. Дать объяснение полученному результату.
- 8. Две катушки с индуктивностями $L_1 = 5$ ${\it м\Gamma h}$ и $L_2 = 3$ ${\it м\Gamma h}$ включены последовательно и расположены так, что их магнитные поля усиливают друг друга. Индуктивность всей системы L=11 ${\it м\Gamma h}$. Определить взаимную индуктивность катушек.