Практические задания по модулю «Случайные процессы»

- 1. Нарисовать семейство реализаций для следующих случайных функций: $Y(t) = e^{-tX}, Y(t) = at + X, Y(t) = X \cos at, Y(t) = \cos Ut, Yt = a + Ut + Vt^2, \quad \text{где} \quad X \text{случайная величина, } a \text{неслучайная величина, } U \text{случайная величина, }$ принимающая положительные значения, в последнем примере (U, V) система двух случайных величин.
- 2. Найти характеристики элементарной случайной функции: $Y(t) = Xe^{-t}$, t > 0, где X случайная величина, распределенная по нормальному закону с параметрами m и σ .
- 3. Найти характеристики элементарной случайной функции: $Y(t) = e^{-\lambda t}$, t > 0, где X случайная величина, распределенная по показательному закону с плотностью $f(x) = \lambda e^{-\lambda x}$, $\lambda > 0$, x > 0.
- 4. Найти характеристики элементарной случайной функции: Y(t) = aX + t, где X случайная величина, распределенная по нормальному закону с параметрами m и σ , a неслучайная величина.
- 5. Найти характеристики элементарной случайной функции: $Y(t) = U \cos \omega t + V \sin \omega t$, где (U,V) некоррелированные случайные величины с характеристиками $m_u = m_v = 0, \sigma_u = \sigma_v = \sigma$, ω неслучайная величина.
- 6. Элементарная случайная функция имеет вид: $Y(t) = We^{-Ut}, t > 0$, где случайная величина W имеет характеристики m_{ω} и σ_{ω} , случайная величина U распределена равномерно в интервале (0, a) (a>0), случайные величины W и U независимы. Найти характеристики элементарной случайной функции.